Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (17,112)

Search Parameters:
Keywords = attentional networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11750 KB  
Article
Computational Identification of Blood–Brain Barrier-Permeant Microbiome Metabolites with Binding Affinity to Neurotransmitter Receptors in Neurodevelopmental Disorders
by Ricardo E. Buendia-Corona, María Fernanda Velasco Dey, Lisset Valencia Robles, Hannia Josselín Hernández-Biviano, Cristina Hermosillo-Abundis and Lucila Isabel Castro-Pastrana
Molecules 2026, 31(2), 366; https://doi.org/10.3390/molecules31020366 (registering DOI) - 20 Jan 2026
Abstract
The gut microbiome produces thousands of metabolites with potential to modulate central nervous system function through peripheral or direct neural mechanisms. Tourette syndrome, attention-deficit/hyperactivity disorder, and autism spectrum disorder exhibit shared neurotransmitter dysregulation and microbiome alterations, yet mechanistic links between microbial metabolites and [...] Read more.
The gut microbiome produces thousands of metabolites with potential to modulate central nervous system function through peripheral or direct neural mechanisms. Tourette syndrome, attention-deficit/hyperactivity disorder, and autism spectrum disorder exhibit shared neurotransmitter dysregulation and microbiome alterations, yet mechanistic links between microbial metabolites and receptor-mediated neuromodulation remain unclear. We screened 27,642 microbiome SMILES metabolites for blood–brain barrier permeability using rule-based SwissADME classification and a PyTorch 2.0 neural network trained on 7807 experimental compounds (test accuracy 86.2%, AUC 0.912). SwissADME identified 1696 BBB-crossing metabolites following Lipinski’s criteria, while PyTorch classified 2484 metabolites with expanded physicochemical diversity. Following 3D conformational optimization (from SMILES) and curation based on ≤32 rotatable bonds, molecular docking was performed against five neurotransmitter receptors representing ionotropic (GABRA2, GRIA2, GRIN2B) and metabotropic (DRD4, HTR1A) receptor classes. The top 50 ligands across five receptors demonstrated method-specific BBB classification (44% SwissADME-only, 44% PyTorch-only, 12% overlap), validating complementary prediction approaches. Fungal metabolites from Ascomycota dominated high-affinity top ligands (66%) and menaquinone MK-7 showed broad phylogenetic conservation (71.4% of phylum). Our results establish detailed receptor–metabolite interaction maps, with fungal metabolites dominating high-affinity ligands, challenging the prevailing bacterial focus of the microbiome and providing a foundation for precision medicine and a framework for developing microbiome-targeted therapeutics to address clinical needs in neurodevelopmental disorders. Full article
(This article belongs to the Special Issue Molecular Docking in Drug Discovery, 2nd Edition)
Show Figures

Figure 1

29 pages, 1440 KB  
Article
Efficient EEG-Based Person Identification: A Unified Framework from Automatic Electrode Selection to Intent Recognition
by Yu Pan, Jingjing Dong and Junpeng Zhang
Sensors 2026, 26(2), 687; https://doi.org/10.3390/s26020687 (registering DOI) - 20 Jan 2026
Abstract
Electroencephalography (EEG) has attracted significant attention as an effective modality for interaction between the physical and virtual worlds, with EEG-based person identification serving as a key gateway to such applications. Despite substantial progress in EEG-based person identification, several challenges remain: (1) how to [...] Read more.
Electroencephalography (EEG) has attracted significant attention as an effective modality for interaction between the physical and virtual worlds, with EEG-based person identification serving as a key gateway to such applications. Despite substantial progress in EEG-based person identification, several challenges remain: (1) how to design an end-to-end EEG-based identification pipeline; (2) how to perform automatic electrode selection for each user to reduce redundancy and improve discriminative capacity; (3) how to enhance the backbone network’s feature extraction capability by suppressing irrelevant information and better leveraging informative patterns; and (4) how to leverage higher-level information in EEG signals to achieve intent recognition (i.e., EEG-based task/activity recognition under controlled paradigms) on top of person identification. To address these issues, this article proposes, for the first time, a unified deep learning framework that integrates automatic electrode selection, person identification, and intent recognition. We introduce a novel backbone network, AES-MBE, which integrates automatic electrode selection (AES) and intent recognition. The network combines a channel-attention mechanism with a multi-scale bidirectional encoder (MBE), enabling adaptive capture of fine-grained local features while modeling global temporal dependencies in both forward and backward directions. We validate our approach using the PhysioNet EEG Motor Movement/Imagery Dataset (EEGMMIDB), which contains EEG recordings from 109 subjects performing 4 tasks. Compared with state-of-the-art methods, our framework achieves superior performance. Specifically, our method attains a person identification accuracy of 98.82% using only 4 electrodes and an average intent recognition accuracy of 91.58%. In addition, our approach demonstrates strong stability and robustness as the number of users varies, offering insights for future research and practical applications. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

34 pages, 7567 KB  
Article
Enhancing Demand Forecasting Using the Formicary Zebra Optimization with Distributed Attention Guided Deep Learning Model
by Ikhalas Fandi and Wagdi Khalifa
Appl. Sci. 2026, 16(2), 1039; https://doi.org/10.3390/app16021039 - 20 Jan 2026
Abstract
In the modern era, demand forecasting enhances the decision-making tasks of industries for controlling production planning and reducing inventory costs. However, the dynamic nature of the fashion and apparel retail industry necessitates precise demand forecasting to optimize supply chain operations and meet customer [...] Read more.
In the modern era, demand forecasting enhances the decision-making tasks of industries for controlling production planning and reducing inventory costs. However, the dynamic nature of the fashion and apparel retail industry necessitates precise demand forecasting to optimize supply chain operations and meet customer expectations. Consequently, this research proposes the Formicary Zebra Optimization-Based Distributed Attention-Guided Convolutional Recurrent Neural Network (FZ-DACR) model for improving the demand forecasting. In the proposed approach, the combination of the Formicary Zebra Optimization and Distributed Attention mechanism enabled deep learning architectures to assist in capturing the complex patterns of the retail sales data. Specifically, the neural networks, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs), facilitate extracting the local features and temporal dependencies to analyze the volatile demand patterns. Furthermore, the proposed model integrates visual and textual data to enhance forecasting accuracy. By leveraging the adaptive optimization capabilities of the Formicary Zebra Algorithm, the proposed model effectively extracts features from product images and historical sales data while addressing the complexities of volatile demand patterns. Based on extensive experimental analysis of the proposed model using diverse datasets, the FZ-DACR model achieves superior performance, with minimum error values including MAE of 1.34, MSE of 4.7, RMS of 2.17, and R2 of 93.3% using the DRESS dataset. Moreover, the findings highlight the ability of the proposed model in managing the fluctuating trends and supporting inventory and pricing strategies effectively. This innovative approach has significant implications for retailers, enabling more agile supply chains and improved decision making in a highly competitive market. Full article
(This article belongs to the Special Issue Advanced Methods for Time Series Forecasting)
Show Figures

Figure 1

24 pages, 54360 KB  
Article
ATM-Net: A Lightweight Multimodal Fusion Network for Real-Time UAV-Based Object Detection
by Jiawei Chen, Junyu Huang, Zuye Zhang, Jinxin Yang, Zhifeng Wu and Renbo Luo
Drones 2026, 10(1), 67; https://doi.org/10.3390/drones10010067 - 20 Jan 2026
Abstract
UAV-based object detection faces critical challenges including extreme scale variations (targets occupy 0.1–2% image area), bird’s-eye view complexities, and all-weather operational demands. Single RGB sensors degrade under poor illumination while infrared sensors lack spatial details. We propose ATM-Net, a lightweight multimodal RGB–infrared fusion [...] Read more.
UAV-based object detection faces critical challenges including extreme scale variations (targets occupy 0.1–2% image area), bird’s-eye view complexities, and all-weather operational demands. Single RGB sensors degrade under poor illumination while infrared sensors lack spatial details. We propose ATM-Net, a lightweight multimodal RGB–infrared fusion network for robust UAV vehicle detection. ATM-Net integrates three innovations: (1) Asymmetric Recurrent Fusion Module (ARFM) performs “extraction→fusion→separation” cycles across pyramid levels, balancing cross-modal collaboration and modality independence. (2) Tri-Dimensional Attention (TDA) recalibrates features through orthogonal Channel-Width, Height-Channel, and Height-Width branches, enabling comprehensive multi-dimensional feature enhancement. (3) Multi-scale Adaptive Feature Pyramid Network (MAFPN) constructs enhanced representations via bidirectional flow and multi-path aggregation. Experiments on VEDAI and DroneVehicle datasets demonstrate superior performance—92.4% mAP50 and 64.7% mAP50-95 on VEDAI, 83.7% mAP on DroneVehicle—with only 4.83M parameters. ATM-Net achieves optimal accuracy–efficiency balance for resource-constrained UAV edge platforms. Full article
18 pages, 10969 KB  
Article
Simulation Data-Based Dual Domain Network (Sim-DDNet) for Motion Artifact Reduction in MR Images
by Seong-Hyeon Kang, Jun-Young Chung, Youngjin Lee and The Alzheimer’s Disease Neuroimaging Initiative
Magnetochemistry 2026, 12(1), 14; https://doi.org/10.3390/magnetochemistry12010014 - 20 Jan 2026
Abstract
Brain magnetic resonance imaging (MRI) is highly susceptible to motion artifacts that degrade fine structural details and undermine quantitative analysis. Conventional U-Net-based deep learning approaches for motion artifact reduction typically operate only in the image domain and are often trained on data with [...] Read more.
Brain magnetic resonance imaging (MRI) is highly susceptible to motion artifacts that degrade fine structural details and undermine quantitative analysis. Conventional U-Net-based deep learning approaches for motion artifact reduction typically operate only in the image domain and are often trained on data with simplified motion patterns, thereby limiting physical plausibility and generalization. We propose Sim-DDNet, a simulation-data-based dual-domain network that combines k-space-based motion simulation with a joint image-k-space reconstruction architecture. Motion-corrupted data were generated from T2-weighted Alzheimer’s Disease Neuroimaging Initiative brain MR scans using a k-space replacement scheme with three to five random rotational and translational events per volume, yielding 69,283 paired samples (49,852/6969/12,462 for training/validation/testing). Sim-DDNet integrates a real-valued U-Net-like image branch and a complex-valued k-space branch using cross attention, FiLM-based feature modulation, soft data consistency, and composite loss comprising L1, structural similarity index measure (SSIM), perceptual, and k-space-weighted terms. On the independent test set, Sim-DDNet achieved a peak signal-to-noise ratio of 31.05 dB, SSIM of 0.85, and gradient magnitude similarity deviation of 0.077, consistently outperforming U-Net and U-Net++ across all three metrics while producing less blurring, fewer residual ghost/streak artifacts, and reduced hallucination of non-existent structures. These results indicate that dual-domain, data-consistency-aware learning, which explicitly exploits k-space information, is a promising approach for physically plausible motion artifact correction in brain MRI. Full article
(This article belongs to the Special Issue Magnetic Resonances: Current Applications and Future Perspectives)
Show Figures

Figure 1

23 pages, 40307 KB  
Article
EFPNet: An Efficient Feature Perception Network for Real-Time Detection of Small UAV Targets
by Jiahao Huang, Wei Jin, Huifeng Tao, Yunsong Feng, Yuanxin Shang, Siyu Wang and Aibing Liu
Remote Sens. 2026, 18(2), 340; https://doi.org/10.3390/rs18020340 - 20 Jan 2026
Abstract
In recent years, unmanned aerial vehicles (UAVs) have become increasingly prevalent across diverse application scenarios due to their high maneuverability, compact size, and cost-effectiveness. However, these advantages also introduce significant challenges for UAV detection in complex environments. This paper proposes an efficient feature [...] Read more.
In recent years, unmanned aerial vehicles (UAVs) have become increasingly prevalent across diverse application scenarios due to their high maneuverability, compact size, and cost-effectiveness. However, these advantages also introduce significant challenges for UAV detection in complex environments. This paper proposes an efficient feature perception network (EFPNet) for UAV detection, developed on the foundation of the RT-DETR framework. Specifically, a dual-branch HiLo-ConvMix attention (HCM-Attn) mechanism and a pyramid sparse feature transformer network (PSFT-Net) are introduced, along with the integration of a DySample dynamic upsampling module. The HCM-Attn module facilitates interaction between high- and low-frequency information, effectively suppressing background noise interference. The PSFT-Net is designed to leverage deep-level features to guide the encoding and fusion of shallow features, thereby enhancing the model’s capability to perceive UAV texture characteristics. Furthermore, the integrated DySample dynamic upsampling module ensures efficient reconstruction and restoration of feature representations. On the TIB and Drone-vs-Bird datasets, the proposed EFPNet achieves mAP50 scores of 94.1% and 98.1%, representing improvements of 3.2% and 1.9% over the baseline models, respectively. Our experimental results demonstrate the effectiveness of the proposed method for small UAV detection. Full article
Show Figures

Figure 1

13 pages, 2413 KB  
Article
Constructing a Concentric GO Network via Rotational Extrusion for Synergistic Axial–Hoop Mechanics in Polymer Microtubes
by Wenyan Wang, Wen Liang, Guanxi Zhao, Rui Han and Min Nie
Polymers 2026, 18(2), 273; https://doi.org/10.3390/polym18020273 - 20 Jan 2026
Abstract
Driven by societal and technological progress, the polymer tubing industry is increasingly focused on sustainable and biodegradable products, with polylactic acid (PLA)-based microtubes gaining attention for applications such as medical stents and disposable straws. However, their inherent mechanical limitations, especially under hoop loading [...] Read more.
Driven by societal and technological progress, the polymer tubing industry is increasingly focused on sustainable and biodegradable products, with polylactic acid (PLA)-based microtubes gaining attention for applications such as medical stents and disposable straws. However, their inherent mechanical limitations, especially under hoop loading and the brittleness of PLA, restrict broader use. Although two-dimensional nanofillers can enhance polymer properties, conventional extrusion only creates uniaxial alignment, leaving fillers randomly oriented in the radial plane and failing to improve hoop performance. To address this, we developed a rotational extrusion strategy that superimposes a rotational force onto the conventional axial flow, generating a biaxial stress field. By adjusting rotational speed to regulate hoop stress, a concentric, interlocked graphene oxide network in a PLA/polybutylene adipate terephthalate microtube is induced along the circumferential direction without disturbing its axial alignment. This architecturally tailored structure significantly enhances hoop mechanical properties, including high compressive strength of 0.54 MPa, excellent low-temperature impact toughness of 0.33 J, and improved bending resistance of 30 N, while maintaining axial mechanical strength exceeding 50 MPa. This work demonstrates a scalable and efficient processing route to fabricate high-performance composite microtubes with tunable and balanced directional properties, offering a viable strategy for industrial applications in medical, packaging, and structural fields. Full article
Show Figures

Figure 1

17 pages, 1848 KB  
Article
Complexity and Robustness of Public–Private Partnership Networks
by Na Zhao, Xiongfei Jiang and Ling Bai
Entropy 2026, 28(1), 122; https://doi.org/10.3390/e28010122 - 20 Jan 2026
Abstract
Public–private partnership (PPP) has been increasingly imported to deliver infrastructure and public services around the world. As an emerging public procurement mode, PPP has drawn considerable attention both from academy and industry. We construct a PPP shareholder network of China and analyze its [...] Read more.
Public–private partnership (PPP) has been increasingly imported to deliver infrastructure and public services around the world. As an emerging public procurement mode, PPP has drawn considerable attention both from academy and industry. We construct a PPP shareholder network of China and analyze its topological complexity, robustness, and geographic structure. We find that the PPP shareholder network exhibits small-world behavior and a heavy-tailed degree distribution. Using multiple centrality measures, we investigate the network robustness under various attack strategies. The results show that the targeted attack destroys the network more efficiently than the random attack, especially the degree-based and betweenness-based attacks. For geographic topology, it exhibits a hierarchical spatial structure in which Beijing is the central hub and provincial capitals are regional centers. Our research has significant implications for policy-making to improve supervision for enterprises involved in PPP projects. Full article
(This article belongs to the Special Issue Complexity in Financial Networks)
Show Figures

Figure 1

23 pages, 5756 KB  
Article
MG-HGLNet: A Mixed-Grained Hierarchical Geometric-Semantic Learning Framework with Dynamic Prototypes for Coronary Artery Lesions Assessment
by Xiangxin Wang, Yangfan Chen, Yi Wu, Yujia Zhou, Yang Chen and Qianjin Feng
Bioengineering 2026, 13(1), 118; https://doi.org/10.3390/bioengineering13010118 - 20 Jan 2026
Abstract
Automated assessment of coronary artery (CA) lesions via Coronary Computed Tomography Angiography (CCTA) is essential for the diagnosis of coronary artery disease (CAD). However, current deep learning approaches confront several challenges, primarily regarding the modeling of long-range anatomical dependencies, the effective decoupling of [...] Read more.
Automated assessment of coronary artery (CA) lesions via Coronary Computed Tomography Angiography (CCTA) is essential for the diagnosis of coronary artery disease (CAD). However, current deep learning approaches confront several challenges, primarily regarding the modeling of long-range anatomical dependencies, the effective decoupling of plaque texture from stenosis geometry, and the utilization of clinically prevalent mixed-grained annotations. To address these challenges, we propose a novel mixed-grained hierarchical geometric-semantic learning network (MG-HGLNet). Specifically, we introduce a topology-aware dual-stream encoding (TDE) module, which incorporates a bidirectional vessel Mamba (BiV-Mamba) encoder to capture global hemodynamic contexts and rectify spatial distortions inherent in curved planar reformation (CPR). Furthermore, a synergistic spectral–morphological decoupling (SSD) module is designed to disentangle task-specific features; it utilizes frequency-domain analysis to extract plaque spectral fingerprints while employing a texture-guided deformable attention mechanism to refine luminal boundary. To mitigate the scarcity of fine-grained labels, we implement a mixed-grained supervision optimization (MSO) strategy, utilizing anatomy-aware dynamic prototypes and logical consistency constraints to effectively leverage coarse branch-level labels. Extensive experiments on an in-house dataset demonstrate that MG-HGLNet achieves a stenosis grading accuracy of 92.4% and a plaque classification accuracy of 91.5%. The results suggest that our framework not only outperforms state-of-the-art methods but also maintains robust performance under weakly supervised settings, offering a promising solution for label-efficient CAD diagnosis. Full article
Show Figures

Graphical abstract

21 pages, 1809 KB  
Article
Comparative Evaluation of Deep Learning Architectures for Non-Destructive Estimation of Carotenoid Content from Visible–Near-Infrared (400–850 nm) Spectral Reflectance Data
by Yuta Tsuchiya, Yuhei Hirono and Rei Sonobe
AgriEngineering 2026, 8(1), 36; https://doi.org/10.3390/agriengineering8010036 - 19 Jan 2026
Abstract
This study compared three deep learning architectures—one-dimensional convolutional neural network (1D-CNN), self-supervised learning (SSL), and Vision Transformer (ViT)—to evaluate their ability to predict carotenoid content from visible–near-infrared (VIS–NIR) spectral reflectance data (400–850 nm) acquired non-destructively from tea leaves. Model performance was evaluated using [...] Read more.
This study compared three deep learning architectures—one-dimensional convolutional neural network (1D-CNN), self-supervised learning (SSL), and Vision Transformer (ViT)—to evaluate their ability to predict carotenoid content from visible–near-infrared (VIS–NIR) spectral reflectance data (400–850 nm) acquired non-destructively from tea leaves. Model performance was evaluated using 10-fold cross-validation and analyzed through the mean SHapley Additive exPlanations values to identify key spectral features. The ViT model achieved the highest predictive accuracy (coefficient of determination [R2] = 0.81, root mean square error [RMSE] = 1.04, ratio of performance to deviation [RPD] = 2.32), followed by 1D-CNN (R2 = 0.75, RMSE = 1.21, RPD = 1.99), whereas SSL showed substantially lower predictive performance (R2 = 0.30, RMSE = 2.01, RPD = 1.20). Feature importance analysis revealed that ViT focused strongly on the red-edge region around 720 nm, which corresponds to spectral features associated with carotenoids and chlorophyll. The 1D-CNN relied mainly on blue (450–480 nm) and red (670–700 nm) regions, while SSL exhibited a broadly distributed importance pattern across wavelengths. These results indicate that ViT’s self-attention mechanism captures long-range spectral dependencies more effectively than conventional convolutional or self-supervised models. Overall, the study demonstrates that transformer-based architectures provide a powerful and interpretable framework for non-destructive estimation of carotenoid content from VIS–NIR reflectance spectroscopy. Full article
(This article belongs to the Special Issue The Future of Artificial Intelligence in Agriculture, 2nd Edition)
Show Figures

Figure 1

27 pages, 4802 KB  
Article
Fine-Grained Radar Hand Gesture Recognition Method Based on Variable-Channel DRSN
by Penghui Chen, Siben Li, Chenchen Yuan, Yujing Bai and Jun Wang
Electronics 2026, 15(2), 437; https://doi.org/10.3390/electronics15020437 - 19 Jan 2026
Abstract
With the ongoing miniaturization of smart devices, fine-grained hand gesture recognition using millimeter-wave radar has attracted increasing attention, yet practical deployment remains challenging in continuous-gesture segmentation, robust feature extraction, and reliable classification. This paper presents an end-to-end fine-grained gesture recognition framework based on [...] Read more.
With the ongoing miniaturization of smart devices, fine-grained hand gesture recognition using millimeter-wave radar has attracted increasing attention, yet practical deployment remains challenging in continuous-gesture segmentation, robust feature extraction, and reliable classification. This paper presents an end-to-end fine-grained gesture recognition framework based on frequency modulated continuous wave(FMCW) millimeter-wave radar, including gesture design, data acquisition, feature construction, and neural network-based classification. Ten gesture types are recorded (eight valid gestures and two return-to-neutral gestures); for classification, the two return-to-neutral gesture types are merged into a single invalid class, yielding a nine-class task. A sliding-window segmentation method is developed using short-time Fourier transformation(STFT)-based Doppler-time representations, and a dataset of 4050 labeled samples is collected. Multiple signal classification(MUSIC)-based super-resolution estimation is adopted to construct range–time and angle–time representations, and instance-wise normalization is applied to Doppler and range features to mitigate inter-individual variability without test leakage. For recognition, a variable-channel deep residual shrinkage network (DRSN) is employed to improve robustness to noise, supporting single-, dual-, and triple-channel feature inputs. Results under both subject-dependent evaluation with repeated random splits and subject-independent leave one subject out(LOSO) cross-validation show that DRSN architecture consistently outperforms the RefineNet-based baseline, and the triple-channel configuration achieves the best performance (98.88% accuracy). Overall, the variable-channel design enables flexible feature selection to meet diverse application requirements. Full article
Show Figures

Figure 1

31 pages, 4972 KB  
Article
Minutiae-Free Fingerprint Recognition via Vision Transformers: An Explainable Approach
by Bilgehan Arslan
Appl. Sci. 2026, 16(2), 1009; https://doi.org/10.3390/app16021009 - 19 Jan 2026
Abstract
Fingerprint recognition systems have relied on fragile workflows based on minutiae extraction, which suffer from significant performance losses under real-world conditions such as sensor diversity and low image quality. This study introduces a fully minutiae-free fingerprint recognition framework based on self-supervised Vision Transformers. [...] Read more.
Fingerprint recognition systems have relied on fragile workflows based on minutiae extraction, which suffer from significant performance losses under real-world conditions such as sensor diversity and low image quality. This study introduces a fully minutiae-free fingerprint recognition framework based on self-supervised Vision Transformers. A systematic evaluation of multiple DINOv2 model variants is conducted, and the proposed system ultimately adopts the DINOv2-Base Vision Transformer as the primary configuration, as it offers the best generalization performance trade-off under conditions of limited fingerprint data. Larger variants are additionally analyzed to assess scalability and capacity limits. The DINOv2 pretrained network is fine-tuned using self-supervised domain adaptation on 64,801 fingerprint images, eliminating all classical enhancement, binarization, and minutiae extraction steps. Unlike the single-sensor protocols commonly used in the literature, the proposed approach is extensively evaluated in a heterogeneous testbed with a wide range of sensors, qualities, and acquisition methods, including 1631 unique fingers from 12 datasets. The achieved EER of 5.56% under these challenging conditions demonstrates clear cross-sensor superiority over traditional systems such as VeriFinger (26.90%) and SourceAFIS (41.95%) on the same testbed. A systematic comparison of different model capacities shows that moderate-scale ViT models provide optimal generalization under limited-data conditions. Explainability analyses indicate that the attention maps of the model trained without any minutiae information exhibit meaningful overlap with classical structural regions (IoU = 0.41 ± 0.07). Openly sharing the full implementation and evaluation infrastructure makes the study reproducible and provides a standardized benchmark for future research. Full article
Show Figures

Figure 1

24 pages, 2082 KB  
Article
An Optical–SAR Remote Sensing Image Automatic Registration Model Based on Multi-Constraint Optimization
by Yaqi Zhang, Shengbo Chen, Xitong Xu, Jiaqi Yang, Yuqiao Suo, Jinchen Zhu, Menghan Wu, Aonan Zhang and Qiqi Li
Remote Sens. 2026, 18(2), 333; https://doi.org/10.3390/rs18020333 - 19 Jan 2026
Abstract
Accurate registration of optical and synthetic aperture radar (SAR) images is a fundamental prerequisite for multi-source remote sensing data fusion and analysis. However, due to the substantial differences in imaging mechanisms, optical–SAR image pairs often exhibit significant radiometric discrepancies and spatially varying geometric [...] Read more.
Accurate registration of optical and synthetic aperture radar (SAR) images is a fundamental prerequisite for multi-source remote sensing data fusion and analysis. However, due to the substantial differences in imaging mechanisms, optical–SAR image pairs often exhibit significant radiometric discrepancies and spatially varying geometric inconsistencies, which severely limit the robustness of traditional feature or region-based registration methods in cross-modal scenarios. To address these challenges, this paper proposes an end-to-end Optical–SAR Registration Network (OSR-Net) based on multi-constraint joint optimization. The proposed framework explicitly decouples cross-modal feature alignment and geometric correction, enabling robust registration under large appearance variation. Specifically, a multi-modal feature extraction module constructs a shared high-level representation, while a multi-scale channel attention mechanism adaptively enhances cross-modal feature consistency. A multi-scale affine transformation prediction module provides a coarse-to-fine geometric initialization, which stabilizes parameter estimation under complex imaging conditions. Furthermore, an improved spatial transformer network is introduced to perform structure-preserving geometric refinement, mitigating spatial distortion induced by modality discrepancies. In addition, a multi-constraint loss formulation is designed to jointly enforce geometric accuracy, structural consistency, and physical plausibility. By employing a dynamic weighting strategy, the optimization process progressively shifts from global alignment to local structural refinement, effectively preventing degenerate solutions and improving robustness. Extensive experiments on public optical–SAR datasets demonstrate that the proposed method achieves accurate and stable registration across diverse scenes, providing a reliable geometric foundation for subsequent multi-source remote sensing data fusion. Full article
(This article belongs to the Section Remote Sensing Image Processing)
31 pages, 5575 KB  
Article
Explainable Deep Learning and Edge Inference for Chilli Thrips Severity Classification in Strawberry Canopies
by Uchechukwu Ilodibe, Daeun Choi, Sriyanka Lahiri, Changying Li, Daniel Hofstetter and Yiannis Ampatzidis
Agriculture 2026, 16(2), 252; https://doi.org/10.3390/agriculture16020252 - 19 Jan 2026
Abstract
Traditional plant scouting is often a costly and labor-intensive task that requires experienced specialists to diagnose and manage plant stresses. Artificial intelligence (AI), particularly deep learning and computer vision, offers the potential to transform scouting by enabling rapid, non-intrusive detection and classification of [...] Read more.
Traditional plant scouting is often a costly and labor-intensive task that requires experienced specialists to diagnose and manage plant stresses. Artificial intelligence (AI), particularly deep learning and computer vision, offers the potential to transform scouting by enabling rapid, non-intrusive detection and classification of early stress symptoms from plant images. However, deep learning models are often opaque, relying on millions of parameters to extract complex nonlinear features that are not interpretable by growers. Recently, eXplainable AI (XAI) techniques have been used to identify key spatial regions that contribute to model predictions. This project explored the potential of convolutional neural networks (CNNs) for classifying the severity of chilli thrips damage in strawberry plants in Florida and employed XAI techniques to interpret model decisions and identify symptom-relevant canopy features. Four CNN architectures, YOLOv11, EfficientNetV2, Xception, and MobileNetV3, were trained and evaluated using 2353 square RGB canopy images of different sizes (256, 480, 640 and 1024 pixels) to classify symptoms as healthy, moderate, or severe. Trade-offs between image size, model parameter count, inference speed, and accuracy were examined in determining the best-performing model. The models achieved accuracies ranging from 77% to 85% with inference times of 5.7 to 262.3 ms, demonstrating strong potential for real-time pest severity estimation. Gradient-Weighted Class Activation Mapping (Grad-CAM) visualization revealed that model attention focused on biologically relevant regions such as fruits, stems, leaf edges, leaf surfaces, and dying leaves, areas commonly affected by chilli thrips. Subsequent analysis showed that model attention spread from localized regions in healthy plants to wide diffuse regions in severe plants. This alignment between model attention and expert scouting logic suggests that CNNs internalize symptom-specific visual cues and can reliably classify pest-induced plant stress. Full article
27 pages, 1101 KB  
Article
Research on and Application of a Low-Carbon Assessment Model for Railway Bridges During the Construction Phase Based on the ANP-Fuzzy Method
by Bo Zhao, Bangyan Guo, Dan Ye, Mingzhu Xiu and Jingjing Wang
Infrastructures 2026, 11(1), 32; https://doi.org/10.3390/infrastructures11010032 - 19 Jan 2026
Abstract
Against the backdrop of global climate change and China’s “dual-carbon” goals, carbon emissions from the construction phase of transportation infrastructure, particularly the rapidly expanding railway network, have garnered significant attention. However, systematic research and general evaluation models targeting the factors influencing carbon emissions [...] Read more.
Against the backdrop of global climate change and China’s “dual-carbon” goals, carbon emissions from the construction phase of transportation infrastructure, particularly the rapidly expanding railway network, have garnered significant attention. However, systematic research and general evaluation models targeting the factors influencing carbon emissions during the railway bridge construction phase remain insufficient. To address this gap, this study presents a novel low-carbon evaluation model that integrates the analytic network process (ANP) and the fuzzy comprehensive evaluation (FCE) method. First, a carbon accounting model covering four stages—material production, transportation, construction, and maintenance—is established based on life cycle assessment (LCA) theory, providing a data foundation. Second, an innovative low-carbon evaluation index system for railway bridges, comprising 5 criterion layers and 23 indicator layers, is constructed. The ANP method is employed to calculate weights, effectively capturing the interdependencies among indicators, while the FCE method handles assessment ambiguities, forming a comprehensive evaluation framework. A case study of the bridge demonstrates the model’s effectiveness, yielding an evaluation score of 82.38 (“excellent” grade), which is consistent with expert judgement. The ranking of indicator weights from the model is highly consistent with the actual carbon emission inventory ranking (Spearman coefficient of 0.714). Key indicators—C21 (use of high-performance materials), C22 (concrete consumption), and C25 (transportation energy consumption)—collectively account for approximately 60% of the total impact, accurately identifying the major emission sources. This research not only verifies the model’s efficacy in pinpointing critical carbon sources but also provides a scientific theoretical basis and practical tool for low-carbon decision-making and optimization in the planning and design stages of railway bridge projects. Full article
Back to TopTop