Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (535)

Search Parameters:
Keywords = atmospheric Sentinels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 16139 KiB  
Article
XCH4 Spatiotemporal Variations in a Natural-Gas-Exploiting Basin with Intensive Agriculture Activities Using Multiple Remote Sensing Datasets: Case from Sichuan Basin, China
by Tengnan Wang and Yunpeng Wang
Remote Sens. 2025, 17(15), 2695; https://doi.org/10.3390/rs17152695 - 4 Aug 2025
Viewed by 108
Abstract
The Sichuan Basin is a natural-gas-exploiting area with intensive agriculture activities. However, the spatial and temporal distribution of atmospheric methane concentration and the relationships with intensive agriculture and natural gas extraction activities are not well investigated. In this study, a long-term (2003–2021) dataset [...] Read more.
The Sichuan Basin is a natural-gas-exploiting area with intensive agriculture activities. However, the spatial and temporal distribution of atmospheric methane concentration and the relationships with intensive agriculture and natural gas extraction activities are not well investigated. In this study, a long-term (2003–2021) dataset of column-averaged dry-air mole fraction of methane (XCH4) over the Sichuan Basin and adjacent regions was built by integrating multi-satellite remote sensing data (SCIAMACHY, GOSAT, Sentinel-5P), which was calibrated using ground station data. The results show a strong correlation and consistency (R = 0.88) between the ground station and satellite observations. The atmospheric CH4 concentration of the Sichuan Basin showed an overall higher level (around 20 ppb) than that of the whole of China and an increasing trend in the rates, from around 2.27 ppb to 10.44 ppb per year between 2003 and 2021. The atmospheric CH4 concentration of the Sichuan Basin also exhibits clear seasonal changes (higher in the summer and autumn and lower in the winter and spring) with a clustered geographical distribution. Agricultural activities and natural gas extraction contribute significantly to atmospheric methane concentrations in the study area, which should be considered in carbon emission management. This study provides an effective way to investigate the spatiotemporal distribution of atmospheric CH4 concentration and related factors at a regional scale with natural and human influences using multi-source satellite remote sensing data. Full article
Show Figures

Figure 1

19 pages, 13565 KiB  
Article
Estimation of Ultrahigh Resolution PM2.5 in Urban Areas by Using 30 m Landsat-8 and Sentinel-2 AOD Retrievals
by Hao Lin, Siwei Li, Jiqiang Niu, Jie Yang, Qingxin Wang, Wenqiao Li and Shengpeng Liu
Remote Sens. 2025, 17(15), 2609; https://doi.org/10.3390/rs17152609 - 27 Jul 2025
Viewed by 255
Abstract
Ultrahigh resolution fine particulate matter (PM2.5) mass concentration remote sensing products are crucial for atmospheric environmental monitoring, pollution source verification, health exposure risk assessment, and other fine-scale applications in urban environments. This study developed an ultrahigh resolution retrieval algorithm to estimate [...] Read more.
Ultrahigh resolution fine particulate matter (PM2.5) mass concentration remote sensing products are crucial for atmospheric environmental monitoring, pollution source verification, health exposure risk assessment, and other fine-scale applications in urban environments. This study developed an ultrahigh resolution retrieval algorithm to estimate 30 m resolution PM2.5 mass concentrations over urban areas from Landsat-8 and Sentinel-2A/B satellite measurements. The algorithm utilized aerosol optical depth (AOD) products retrieved from the Landsat-8 OLI and Sentinel-2 MSI measurements from 2017 to 2020, combined with multi-source auxiliary data to establish a PM2.5-AOD relationship model across China. The results showed an overall high coefficient of determination (R2) of 0.82 and 0.76 for the model training accuracy based on samples and stations, respectively. The model prediction accuracy in Beijing and Wuhan reached R2 values of 0.86 and 0.85. Applications in both cities demonstrated that ultrahigh resolution PM2.5 has significant advantages in resolving fine-scale spatial patterns of urban air pollution and pinpointing pollution hotspots. Furthermore, an analysis of point source pollution at a typical heavy pollution emission enterprise confirmed that ultrahigh spatial resolution PM2.5 can accurately identify the diffusion trend of point source pollution, providing fundamental data support for refined monitoring of urban air pollution and air pollution prevention and control. Full article
Show Figures

Figure 1

24 pages, 10881 KiB  
Article
Dynamics of Water Quality in the Mirim–Patos–Mangueira Coastal Lagoon System with Sentinel-3 OLCI Data
by Paula Andrea Contreras Rojas, Felipe de Lucia Lobo, Wesley J. Moses, Gilberto Loguercio Collares and Lino Sander de Carvalho
Geomatics 2025, 5(3), 36; https://doi.org/10.3390/geomatics5030036 - 25 Jul 2025
Viewed by 342
Abstract
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the [...] Read more.
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the spatial and temporal patterns of water quality in the lagoon system using Sentinel-3/OLCI satellite imagery. Atmospheric correction was performed using ACOLITE, followed by spectral grouping and classification into optical water types (OWTs) using the Sentinel Applications Platform (SNAP). To explore the behavior of water quality parameters across OWTs, Chlorophyll-a and turbidity were estimated using semi-empirical algorithms specifically designed for complex inland and coastal waters. Results showed a gradual increase in mean turbidity from OWT 2 to OWT 6 and a rise in chlorophyll-a from OWT 2 to OWT 4, with a decline at OWT 6. These OWTs correspond, in general terms, to distinct water masses: OWT 2 to clearer waters, OWT 3 and 4 to intermediate/mixed conditions, and OWT 6 to turbid environments. In the second part, we analyzed the response of the Patos Lagoon to flooding in Rio Grande do Sul during an extreme weather event in May 2024. Satellite-derived turbidity estimates were compared with in situ measurements, revealing a systematic underestimation, with a negative bias of 2.6%, a mean relative error of 78%, and a correlation coefficient of 0.85. The findings highlight the utility of OWT classification for tracking changes in water quality and support the use of remote sensing tools to improve environmental monitoring in data-scarce regions, particularly under extreme hydrometeorological conditions. Full article
(This article belongs to the Special Issue Advances in Ocean Mapping and Hydrospatial Applications)
Show Figures

Figure 1

29 pages, 32010 KiB  
Article
Assessing Environmental Sustainability in the Eastern Mediterranean Under Anthropogenic Air Pollution Risks Through Remote Sensing and Google Earth Engine Integration
by Mohannad Ali Loho, Almustafa Abd Elkader Ayek, Wafa Saleh Alkhuraiji, Safieh Eid, Nazih Y. Rebouh, Mahmoud E. Abd-Elmaboud and Youssef M. Youssef
Atmosphere 2025, 16(8), 894; https://doi.org/10.3390/atmos16080894 - 22 Jul 2025
Viewed by 778
Abstract
Air pollution monitoring in ungauged zones presents unique challenges yet remains critical for understanding environmental health impacts and socioeconomic dynamics in the Eastern Mediterranean region. This study investigates air pollution patterns in northwestern Syria during 2019–2024, analyzing NO2 and CO concentrations using [...] Read more.
Air pollution monitoring in ungauged zones presents unique challenges yet remains critical for understanding environmental health impacts and socioeconomic dynamics in the Eastern Mediterranean region. This study investigates air pollution patterns in northwestern Syria during 2019–2024, analyzing NO2 and CO concentrations using Sentinel-5P TROPOMI satellite data processed through Google Earth Engine. Monthly concentration averages were examined across eight key locations using linear regression analysis to determine temporal trends, with Spearman’s rank correlation coefficients calculated between pollutant levels and five meteorological parameters (temperature, humidity, wind speed, atmospheric pressure, and precipitation) to determine the influence of political governance, economic conditions, and environmental sustainability factors on pollution dynamics. Quality assurance filtering retained only measurements with values ≥ 0.75, and statistical significance was assessed at a p < 0.05 level. The findings reveal distinctive spatiotemporal patterns that reflect the region’s complex political-economic landscape. NO2 concentrations exhibited clear political signatures, with opposition-controlled territories showing upward trends (Al-Rai: 6.18 × 10−8 mol/m2) and weak correlations with climatic variables (<0.20), indicating consistent industrial operations. In contrast, government-controlled areas demonstrated significant downward trends (Hessia: −2.6 × 10−7 mol/m2) with stronger climate–pollutant correlations (0.30–0.45), reflecting the impact of economic sanctions on industrial activities. CO concentrations showed uniform downward trends across all locations regardless of political control. This study contributes significantly to multiple Sustainable Development Goals (SDGs), providing critical baseline data for SDG 3 (Health and Well-being), mapping urban pollution hotspots for SDG 11 (Sustainable Cities), demonstrating climate–pollution correlations for SDG 13 (Climate Action), revealing governance impacts on environmental patterns for SDG 16 (Peace and Justice), and developing transferable methodologies for SDG 17 (Partnerships). These findings underscore the importance of incorporating environmental safeguards into post-conflict reconstruction planning to ensure sustainable development. Full article
(This article belongs to the Special Issue Study of Air Pollution Based on Remote Sensing (2nd Edition))
Show Figures

Figure 1

28 pages, 8088 KiB  
Article
Multi-Band Differential SAR Interferometry for Snow Water Equivalent Retrieval over Alpine Mountains
by Fabio Bovenga, Antonella Belmonte, Alberto Refice and Ilenia Argentiero
Remote Sens. 2025, 17(14), 2479; https://doi.org/10.3390/rs17142479 - 17 Jul 2025
Viewed by 297
Abstract
Snow water equivalent (SWE) can be estimated using Differential SAR Interferometry (DInSAR), which captures changes in snow depth and density between two SAR acquisitions. However, challenges arise due to SAR signal penetration into the snowpack and the intrinsic limitations of DInSAR measurements. This [...] Read more.
Snow water equivalent (SWE) can be estimated using Differential SAR Interferometry (DInSAR), which captures changes in snow depth and density between two SAR acquisitions. However, challenges arise due to SAR signal penetration into the snowpack and the intrinsic limitations of DInSAR measurements. This study addresses these issues and explores the use of multi-band SAR data to derive SWE maps in alpine regions characterized by steep terrain, small spatial extent, and a potentially heterogeneous snowpack. We first conducted a performance analysis to assess SWE estimation precision and the maximum unambiguous SWE variation, considering incidence angle, wavelength, and coherence. Based on these results, we selected C-band Sentinel-1 and L-band SAOCOM data acquired over alpine areas and applied tailored DInSAR processing. Atmospheric artifacts were corrected using zenith total delay maps from the GACOS service. Additionally, sensitivity maps were generated for each interferometric pair to identify pixels suitable for reliable SWE estimation. A comparative analysis of the C- and L-band results revealed several critical issues, including significant atmospheric artifacts, phase decorrelation, and phase unwrapping errors, which impact SWE retrieval accuracy. A comparison between our Sentinel-1-based SWE estimations and independent measurements over an instrumented site shows results fairly in line with previous works exploiting C-band data, with an RSME in the order of a few tens of mm. Full article
(This article belongs to the Special Issue Understanding Snow Hydrology Through Remote Sensing Technologies)
Show Figures

Figure 1

18 pages, 49730 KiB  
Article
High-Resolution Daily XCH4 Prediction Using New Convolutional Neural Network Autoencoder Model and Remote Sensing Data
by Mohamad M. Awad and Saeid Homayouni
Atmosphere 2025, 16(7), 806; https://doi.org/10.3390/atmos16070806 - 1 Jul 2025
Viewed by 304
Abstract
Atmospheric methane (CH4) concentrations have increased to 2.5 times their pre-industrial levels, with a marked acceleration in recent decades. CH4 is responsible for approximately 30% of the global temperature rise since the Industrial Revolution. This growing concentration contributes to environmental [...] Read more.
Atmospheric methane (CH4) concentrations have increased to 2.5 times their pre-industrial levels, with a marked acceleration in recent decades. CH4 is responsible for approximately 30% of the global temperature rise since the Industrial Revolution. This growing concentration contributes to environmental degradation, including ocean acidification, accelerated climate change, and a rise in natural disasters. The column-averaged dry-air mole fraction of methane (XCH4) is a crucial indicator for assessing atmospheric CH4 levels. In this study, the Sentinel-5P TROPOMI instrument was employed to monitor, map, and estimate CH4 concentrations on both regional and global scales. However, TROPOMI data exhibits limitations such as spatial gaps and relatively coarse resolution, particularly at regional scales or over small areas. To mitigate these limitations, a novel Convolutional Neural Network Autoencoder (CNN-AE) model was developed. Validation was performed using the Total Carbon Column Observing Network (TCCON), providing a benchmark for evaluating the accuracy of various interpolation and prediction models. The CNN-AE model demonstrated the highest accuracy in regional-scale analysis, achieving a Mean Absolute Error (MAE) of 28.48 ppb and a Root Mean Square Error (RMSE) of 30.07 ppb. This was followed by the Random Forest (RF) regressor (MAE: 29.07 ppb; RMSE: 36.89 ppb), GridData Nearest Neighbor Interpolator (NNI) (MAE: 30.06 ppb; RMSE: 32.14 ppb), and the Radial Basis Function (RBF) Interpolator (MAE: 80.23 ppb; RMSE: 90.54 ppb). On a global scale, the CNN-AE again outperformed other methods, yielding the lowest MAE and RMSE (19.78 and 24.7 ppb, respectively), followed by RF (21.46 and 27.23 ppb), GridData NNI (25.3 and 32.62 ppb), and RBF (43.08 and 54.93 ppb). Full article
Show Figures

Figure 1

28 pages, 2868 KiB  
Article
Satellite-Based Seasonal Fingerprinting of Methane Emissions from Canadian Dairy Farms Using Sentinel-5P
by Padmanabhan Jagannathan Prajesh, Kaliaperumal Ragunath, Miriam Gordon and Suresh Neethirajan
Climate 2025, 13(7), 135; https://doi.org/10.3390/cli13070135 - 27 Jun 2025
Viewed by 488
Abstract
Methane (CH4) emissions from dairy farming represent a substantial yet under-quantified share of agricultural greenhouse gas emissions. This study provides an in-depth, satellite-based fingerprinting analysis of methane emissions from Canada’s dairy sector, using Sentinel-5P/TROPOMI data. We utilized a robust quasi-experimental design, [...] Read more.
Methane (CH4) emissions from dairy farming represent a substantial yet under-quantified share of agricultural greenhouse gas emissions. This study provides an in-depth, satellite-based fingerprinting analysis of methane emissions from Canada’s dairy sector, using Sentinel-5P/TROPOMI data. We utilized a robust quasi-experimental design, pairing 14 dairy-intensive zones with eight non-dairy reference regions, to analyze methane emissions from 2019 to 2024. A dynamic, region-specific baseline approach was implemented to remove temporal non-stationarity and isolate dairy-specific methane signals. Dairy regions exhibited consistently higher methane concentrations than reference areas, with an average methane anomaly of 17.4 ppb. However, this concentration gap between dairy and non-dairy regions notably narrowed by 57.23% (from 24.42 ppb in 2019 to 10.44 ppb in 2024), driven primarily by accelerated methane increases in non-dairy landscapes and a pronounced one-year contraction during 2022–2023 (−39.29%). Nationally, atmospheric methane levels rose by 3.83%, revealing significant spatial heterogeneity across provinces. Notably, an inverse relationship between the initial methane concentrations in 2019 and subsequent growth rates emerged, indicating spatial convergence. The seasonal analysis uncovered consistent spring minima and fall–winter maxima across regions, reflecting the combined effects of seasonal livestock management practices, atmospheric transport dynamics, and biogeochemical processes. The diminishing dairy methane anomaly suggests complex interplay of intensifying background methane emissions from climate-driven wetland fluxes, increasing fossil fuel extraction activities, and diffuse agricultural emissions. These findings underscore the emerging challenges in attributing sector-specific methane emissions accurately from satellite observations, highlighting both the capabilities and limitations of current satellite monitoring approaches. Full article
Show Figures

Figure 1

42 pages, 1966 KiB  
Review
Cloud Detection Methods for Optical Satellite Imagery: A Comprehensive Review
by Rohit Singh, Mahesh Pal and Mantosh Biswas
Geomatics 2025, 5(3), 27; https://doi.org/10.3390/geomatics5030027 - 26 Jun 2025
Viewed by 843
Abstract
With the continuous advancement of remote sensing technology and its growing importance, the need for ready-to-use data has increased exponentially. Satellite platforms such as Sentinel-2, which carries the Multispectral Instrument (MSI) sensor, known for their cost-effectiveness, capture valuable information about Earth in the [...] Read more.
With the continuous advancement of remote sensing technology and its growing importance, the need for ready-to-use data has increased exponentially. Satellite platforms such as Sentinel-2, which carries the Multispectral Instrument (MSI) sensor, known for their cost-effectiveness, capture valuable information about Earth in the form of images. However, they encounter a significant challenge in the form of clouds and their shadows, which hinders the data acquisition and processing for regions of interest. This article undertakes a comprehensive literature review to systematically analyze the critical cloud-related challenges. It explores the need for accurate cloud detection, reviews existing datasets, and evaluates contemporary cloud detection methodologies, including their strengths and limitations. Additionally, it highlights the inaccuracies introduced by varying atmospheric and environmental conditions, emphasizing the importance of integrating advanced techniques that can utilize local and global semantics. The review also introduces a structured intercomparison framework to enable standardized evaluation across binary and multiclass cloud detection methods using both qualitative and quantitative metrics. To facilitate fair comparison, a conversion mechanism is highlighted to harmonize outputs across methods with different class granularities. By identifying gaps in current practices and datasets, the study highlights the importance of innovative, efficient, and scalable solutions for automated cloud detection, paving the way for unbiased evaluation and improved utilization of satellite imagery across diverse applications. Full article
Show Figures

Figure 1

24 pages, 18914 KiB  
Article
Canopy Chlorophyll Content Inversion of Mountainous Heterogeneous Grasslands Based on the Synergy of Ground Hyperspectral and Sentinel-2 Data: A New Vegetation Index Approach
by Yi Zheng, Yao Wang, Tayir Aziz, Ali Mamtimin, Yang Li and Yan Liu
Remote Sens. 2025, 17(13), 2149; https://doi.org/10.3390/rs17132149 - 23 Jun 2025
Viewed by 435
Abstract
Canopy chlorophyll content (CCC) is a key indicator for assessing the carbon sequestration capacity and material cycling efficiency of ecosystems, and its accurate retrieval holds significant importance for analyzing ecosystem functioning. Although numerous destructive and remote sensing methods have been developed to estimate [...] Read more.
Canopy chlorophyll content (CCC) is a key indicator for assessing the carbon sequestration capacity and material cycling efficiency of ecosystems, and its accurate retrieval holds significant importance for analyzing ecosystem functioning. Although numerous destructive and remote sensing methods have been developed to estimate CCC, the accurate estimation of CCC remains a significant challenge in mountainous regions with complex terrain and heterogeneous vegetation types. Through the synergistic analysis of ground hyperspectral and Sentinel-2 data, this study employed Pearson correlation analysis and spectral resampling techniques to identify Sentinel-2 blue band B1 (443 nm) and red band B4 (665 nm) as chlorophyll-sensitive bands through spectral matching with the hyperspectral reflectance of typical grassland vegetation. Based on this, we developed a new four-band vegetation index (VI), the Dual Red-edge and Coastal Aerosol Vegetation Index (DRECAVI), for estimating the CCC of heterogeneous grasslands in the middle section of the Tianshan Mountains. DRECAVI incorporates red-edge anti-saturation modules (bands B4 and B7) and aerosol correction modules (bands B1 and B8). In order to test the performance of the new index, we compared it with eight commonly used indices and a hybrid model, the Sentinel-2 Biophysical Processor (S2BP). The results indicated the following: (1) DRECAVI demonstrated the highest accuracy in CCC retrieval for mountainous vegetation (R2 = 0.74, RMSE = 16.79, MAE = 12.50) compared to other VIs and hybrid methods, effectively mitigating saturation effects in high biomass areas and capturing a weak bimodal distribution pattern of CCC in the montane meadow. (2) The blue band B1 enhances atmospheric correction robustness by suppressing aerosol scattering, and the red-edge band B7 overcomes the sensitivity limitations of conventional red-edge indices (such as NDVI705, CIred-edge, and NDRE), demonstrating the potential application of the synergy mechanism between the blue band and the red-edge band. (3) Although the S2BP achieved high accuracy (R2 = 0.73, RMSE = 19.83, MAE = 14.71) without saturation effects and detected a bimodal distribution of CCC in the montane meadow of the study area, its algorithmic complexity hindered large-scale operational applications. In contrast, DRECAVI maintained similar precision while reducing algorithmic complexity, making it more suitable for regional-scale grassland dynamic monitoring. This study confirms that the synergistic use of multi-source data effectively overcomes the limitations of the spectral–spatial resolution of a single data source, providing a novel methodology for the precision monitoring of mountain ecosystems. Full article
Show Figures

Figure 1

20 pages, 5153 KiB  
Article
A Practical Method for Red-Edge Band Reconstruction for Landsat Image by Synergizing Sentinel-2 Data with Machine Learning Regression Algorithms
by Yuan Zhang, Zhekui Fan, Wenjia Yan, Chentian Ge and Huasheng Sun
Sensors 2025, 25(11), 3570; https://doi.org/10.3390/s25113570 - 5 Jun 2025
Viewed by 689
Abstract
Red-edge bands are the most essential spectral data for multispectral remote sensing images, with them playing a critical role in monitoring vegetation growth status at regional and global scales. However, the absence of red-edge bands limits the applicability of Landsat images, the most [...] Read more.
Red-edge bands are the most essential spectral data for multispectral remote sensing images, with them playing a critical role in monitoring vegetation growth status at regional and global scales. However, the absence of red-edge bands limits the applicability of Landsat images, the most widely used remote sensing data, to vegetation monitoring. This study proposes an innovative method to reconstruct Landsat’s red-edge bands. The consistency in corresponding bands of Landsat OLI and Sentinel-2 MSI was first investigated using different resampling approaches and atmospheric correction algorithms. Three machine learning algorithms (ridge regression, gradient boosted regression tree (GBRT), and random forest regression) were then employed to build the red-edge reconstruction model for different vegetation types. With the optimal model, three red-edge bands of Landsat OLI were subsequently obtained in alignment with their derived vegetation indices. Our results showed that bilinear interpolation resampling, in combination with the LaSRC atmospheric correction algorithm, achieved high consistency between the matching bands of OLI and MSI (R2 > 0.88). With the GBRT algorithm, three simulated OLI red-edge bands were highly consistent with those of MSI, with an R2 > 0.96 and an RMSE < 0.0122. The derived Landsat red-edge indices coincide with those of Sentinel-2, with an R2 of 0.78 to 0.95 and an rRMSE of 3.37% to 21.64%. This study illustrates that the proposed red-edge reconstruction method can extend the spectral domain of Landsat OLI and enhance its applicability in global vegetation remote sensing. Meanwhile, it provides potential insight into historical Landsat TM/ETM+ data enhancement for improving time-series vegetation monitoring. Full article
(This article belongs to the Special Issue Machine Learning in Image/Video Processing and Sensing)
Show Figures

Figure 1

18 pages, 11878 KiB  
Article
Spatio-Temporal Patterns of Methane Emissions from 2019 Onwards: A Satellite-Based Comparison of High- and Low-Emission Regions
by Elżbieta Wójcik-Gront, Agnieszka Wnuk and Dariusz Gozdowski
Atmosphere 2025, 16(6), 670; https://doi.org/10.3390/atmos16060670 - 1 Jun 2025
Viewed by 468
Abstract
Methane (CH4) is a potent greenhouse gas with a significant impact on short- and medium-term climate forcing, and its atmospheric concentration has been increasing rapidly in recent decades. This study aims to analyze spatio-temporal patterns of atmospheric methane concentrations between 2019 [...] Read more.
Methane (CH4) is a potent greenhouse gas with a significant impact on short- and medium-term climate forcing, and its atmospheric concentration has been increasing rapidly in recent decades. This study aims to analyze spatio-temporal patterns of atmospheric methane concentrations between 2019 and 2025, focusing on comparisons between regions characterized by high and low emission intensities. Level-3 XCH4 data from the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite were used, which were aggregated into seasonal and annual composites. High-emission regions, such as the Mekong Delta, Nile Delta, Eastern Uttar Pradesh and Bihar, Central Thailand, Lake Victoria Basin, and Eastern Arkansas, were contrasted with low-emission areas including Patagonia, the Mongolian Steppe, Northern Scandinavia, the Australian Outback, the Sahara Desert, and the Canadian Shield. The results show that high-emission regions exhibit substantially higher seasonal amplitude in XCH4 concentrations, with an average seasonal variation of approximately 30.00 ppb, compared to 17.39 ppb in low-emission regions. Methane concentrations generally peaked at the end of the year (Q4) and reached their lowest levels during the first half of the year (Q1 or Q2), particularly in agriculturally dominated regions. Principal component and cluster analyses further confirmed a strong spatial differentiation between high- and low-emission regions based on both temporal trends and seasonal behavior. These findings demonstrate the potential of satellite remote sensing to monitor regional methane dynamics and highlight the need for targeted mitigation strategies in major agricultural and wetland zones. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

36 pages, 10251 KiB  
Article
Integrating Advanced Sensor Technologies for Enhanced Agricultural Weather Forecasts and Irrigation Advisories: The MAGDA Project Approach
by Martina Lagasio, Stefano Barindelli, Zenaida Chitu, Sergio Contreras, Amelia Fernández-Rodríguez, Martijn de Klerk, Alessandro Fumagalli, Andrea Gatti, Lukas Hammerschmidt, Damir Haskovic, Massimo Milelli, Elena Oberto, Irina Ontel, Julien Orensanz, Fabiola Ramelli, Francesco Uboldi, Aso Validi and Eugenio Realini
Remote Sens. 2025, 17(11), 1855; https://doi.org/10.3390/rs17111855 - 26 May 2025
Viewed by 704
Abstract
Weather forecasting is essential for agriculture, yet current methods often lack the localized accuracy required to manage extreme weather events and optimize irrigation. The MAGDA Horizon Europe/EUSPA project addresses this gap by developing a modular system that integrates novel European space-based, airborne, and [...] Read more.
Weather forecasting is essential for agriculture, yet current methods often lack the localized accuracy required to manage extreme weather events and optimize irrigation. The MAGDA Horizon Europe/EUSPA project addresses this gap by developing a modular system that integrates novel European space-based, airborne, and ground-based technologies. Unlike conventional forecasting systems, MAGDA enables precise, field-level predictions through the integration of cutting-edge technologies: Meteodrones provide vertical atmospheric profiles where traditional data are sparse; GNSS-reflectometry offers real-time soil moisture insights; and all observations feed into convection-permitting models for accurate nowcasting of extreme events. By combining satellite data, GNSS, Meteodrones, and high-resolution meteorological models, MAGDA enhances agricultural and water management with precise, tailored forecasts. Climate change is intensifying extreme weather events such as heavy rainfall, hail, and droughts, threatening both crop yields and water resources. Improving forecast reliability requires better observational data to refine initial atmospheric conditions. Recent advancements in assimilating reflectivity and in situ observations into high-resolution NWMs show promise, particularly for convective weather. Experiments using Sentinel and GNSS-derived data have further improved severe weather prediction. MAGDA employs a high-resolution cloud-resolving model and integrates GNSS, radar, weather stations, and Meteodrones to provide comprehensive atmospheric insights. These enhanced forecasts support both irrigation management and extreme weather warnings, delivered through a Farm Management System to assist farmers. As climate change increases the frequency of floods and droughts, MAGDA’s integration of high-resolution, multi-source observational technologies, including GNSS-reflectometry and drone-based atmospheric profiling, is crucial for ensuring sustainable agriculture and efficient water resource management. Full article
Show Figures

Graphical abstract

31 pages, 2794 KiB  
Article
Comparative Analysis of Trophic Status Assessment Using Different Sensors and Atmospheric Correction Methods in Greece’s WFD Lake Network
by Vassiliki Markogianni, Dionissios P. Kalivas, George P. Petropoulos, Rigas Giovos and Elias Dimitriou
Remote Sens. 2025, 17(11), 1822; https://doi.org/10.3390/rs17111822 - 23 May 2025
Viewed by 538
Abstract
Today, open-source Cloud Computing platforms are valuable for geospatial image analysis while the combination of the Google Earth Engine (GEE) platform and new satellite launches greatly facilitate the monitoring of national-scale lake Water Quality (WQ). The main aim of this research is to [...] Read more.
Today, open-source Cloud Computing platforms are valuable for geospatial image analysis while the combination of the Google Earth Engine (GEE) platform and new satellite launches greatly facilitate the monitoring of national-scale lake Water Quality (WQ). The main aim of this research is to assess the transferability and performance of published general, natural-only and artificial-only lake WQ models (Chl-a, Secchi Disk Depth-SDD- and Total Phosphorus-TP) across Greece’s WFD (Water Framework Directive) lake sampling network. We utilized Landsat (7 ETM +/8 OLI) and Sentinel 2 surface reflectance (SR) data embedded in GEE, while subjected to different atmospheric correction (AC) methods. Subsequently, Carlson’s Trophic State Index (TSI) was calculated based on both in situ and modelled WQ values. Initially, WQ models employed both DOS1-corrected (Dark Object Subtraction 1; manually applied) and GEE-retrieved respective SR data from the year 2018. Double WQ values per lake station were inserted in a linear regression analysis to harmonize the AC differences, separately for Landsat and Sentinel 2 data. Yielded linear equations were accompanied by strong associations (R2 ranging from 0.68 to 0.98) while modelled and GEE-modelled TSI values were further validated based on reference in situ WQ datasets from the years 2019 and 2020. The values of the basic statistical error metrics indicated firstly the increased assessment’s accuracy of GEE-modelled over modelled TSIs and then the superiority of Landsat over Sentinel 2 data. In this way, the hereby adopted methodology was evolved into an efficient lake management tool by providing managers the means for integrated sustainable water resources management while contributing to saving valuable image pre-processing time. Full article
Show Figures

Graphical abstract

16 pages, 25927 KiB  
Article
Severe Disturbance of Aurora on C-Band Sentinel-1 Interferogram at Mid-Latitudes: A Case Study During 11 May 2024
by Yixun Zhu, Chao Xiong, Yifei Ji, Simin Wang, Fengjue Wang, Feixiang Tang and Baohua Sun
Remote Sens. 2025, 17(10), 1687; https://doi.org/10.3390/rs17101687 - 11 May 2025
Viewed by 465
Abstract
Aurora is caused by the collision of high-energy particles with particles in the Earth’s atmosphere. Recent advances in synthetic aperture radar (SAR) have demonstrated significant potential for ionospheric inversion at various scales, offering new insights into auroral processes. In this study, we present [...] Read more.
Aurora is caused by the collision of high-energy particles with particles in the Earth’s atmosphere. Recent advances in synthetic aperture radar (SAR) have demonstrated significant potential for ionospheric inversion at various scales, offering new insights into auroral processes. In this study, we present the first reported perturbation of C-band SAR signals induced by auroral activity during the enormous geomagnetic storm of 11 May 2024. The auroral boundaries observed by the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) align closely with Sentinel-1 interferograms, despite the event occurring at mid-latitudes. A novel application of Sentinel-1 is illustrated, namely the inversion of the two-dimensional morphology and boundaries of the aurora at very high resolution and without interference from severe weather. Sentinel-1 promises to become a new method for the detection of precipitation particles, despite operating in the C-band, which is less disturbed by the ionosphere. Interferograms can also capture small-scale sporadic plasma patches associated with aurora. Furthermore, the analysis indicates that distinct polarization channels exhibit varying sensitivity towards auroral boundaries, with cross-polarization displaying heightened responsiveness. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

19 pages, 5119 KiB  
Article
Linking Satellite and Ground Observations of NO2 in Spanish Cities: Influence of Meteorology and O3
by Carlos Morillas, Sergio Álvarez, José C. M. Pires, Adrián Jesús García and Sara Martínez
Nitrogen 2025, 6(2), 32; https://doi.org/10.3390/nitrogen6020032 - 2 May 2025
Viewed by 705
Abstract
In Spain, several major cities face high rates of avoidable deaths due to NO2 exposure. Understanding NO2 atmospheric dynamics is essential to support public health efforts and policymaking. Recent satellite products have proven useful in characterizing urban atmospheric composition in various [...] Read more.
In Spain, several major cities face high rates of avoidable deaths due to NO2 exposure. Understanding NO2 atmospheric dynamics is essential to support public health efforts and policymaking. Recent satellite products have proven useful in characterizing urban atmospheric composition in various regions. This study compares NO2 concentration data from in situ air quality monitoring networks and the Sentinel-5P TROPOMI satellite in Spain’s three largest cities (Madrid, Barcelona, and Valencia), alongside O3 levels —due to its close photochemical relationship with NOx—wind speed and direction, temperature, relative humidity, and solar radiation. Data from 2022 were analyzed using Pearson correlation coefficients and Principal Component Analysis (PCA) to identify key relationships and patterns. Results showed a consistent negative correlation between NO2 and O3, wind speed, temperature, and solar radiation. Differences between in situ and satellite data were more pronounced in coastal cities, influenced by wind patterns and urban morphology (Madrid: r = 0.86, v = 1.34 m/s; Valencia: r = 0.68, v = 2.97 m/s; Barcelona: r = 0.65, v = 8.04 m/s). These insights enhance the understanding of NO2 behavior in urban environments and support the use of remote sensing to estimate surface-level pollution in areas lacking ground-based monitoring infrastructure. This is the first study in Spain to jointly evaluate NO2 from satellite and in situ data across multiple cities, linking pollutant concentrations with meteorological and chemical drivers to improve surface-level estimation strategies and support air quality assessment in under-monitored areas. Full article
Show Figures

Graphical abstract

Back to TopTop