Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = asymmetric traffic conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1314 KB  
Article
Nash Bargaining-Based Hybrid MAC Protocol for Wireless Body Area Networks
by Haoru Su, Jiale Yang, Rong Li and Jian He
Sensors 2026, 26(3), 967; https://doi.org/10.3390/s26030967 (registering DOI) - 2 Feb 2026
Abstract
Wireless Body Area Network (WBAN) is an emerging medical health monitoring technology. However, WBANs encounter critical challenges in balancing reliability, energy efficiency, and Quality of Service (QoS) requirements for life-critical medical data. The design of its Medium Access Control (MAC) protocol has challenges [...] Read more.
Wireless Body Area Network (WBAN) is an emerging medical health monitoring technology. However, WBANs encounter critical challenges in balancing reliability, energy efficiency, and Quality of Service (QoS) requirements for life-critical medical data. The design of its Medium Access Control (MAC) protocol has challenges since dynamic body-shadowing effects and heterogeneous traffic patterns. In this paper, we propose the Nash Bargaining Rate-optimization MAC (NBR-MAC), a hybrid MAC protocol that integrates TDMA-based Guaranteed Time Slots (GTS) with CSMA/CA-based contention access. Unlike traditional schemes, we model the rate allocation as an Asymmetric Nash Bargaining Game, introducing a rigorous disagreement point to guarantee minimum service for critical nodes. The utility function is normalized to resolve dimensional inconsistencies, incorporating sensor priority, buffer status, and channel quality. The Nash Bargaining solution is derived after proving convexity and verifying the axioms. Superframe time slots are allocated based on sensor data priority. Simulation results demonstrate that the proposed protocol enhances transmission success ratio and throughput while reducing packet age and energy consumption under different load conditions. Full article
(This article belongs to the Special Issue Body Area Networks: Intelligence, Sensing and Communication)
Show Figures

Figure 1

21 pages, 5664 KB  
Article
M2S-YOLOv8: Multi-Scale and Asymmetry-Aware Ship Detection for Marine Environments
by Peizheng Li, Dayong Qiao, Jianyi Mu and Linlin Qi
Sensors 2026, 26(2), 502; https://doi.org/10.3390/s26020502 - 12 Jan 2026
Viewed by 263
Abstract
Ship detection serves as a core foundational task for marine environmental perception. However, in real marine scenarios, dense vessel traffic often causes severe target occlusion while multi-scale targets, asymmetric vessel geometries, and harsh conditions (e.g., haze, low illumination) further degrade image quality. These [...] Read more.
Ship detection serves as a core foundational task for marine environmental perception. However, in real marine scenarios, dense vessel traffic often causes severe target occlusion while multi-scale targets, asymmetric vessel geometries, and harsh conditions (e.g., haze, low illumination) further degrade image quality. These factors pose significant challenges to vision-based ship detection methods. To address these issues, we propose M2S-YOLOv8, an improved framework based on YOLOv8, which integrates three key enhancements: First, a Multi-Scale Asymmetry-aware Parallelized Patch-wise Attention (MSA-PPA) module is designed in the backbone to strengthen the perception of multi-scale and geometrically asymmetric vessel targets. Second, a Deformable Convolutional Upsampling (DCNUpsample) operator is introduced in the Neck network to enable adaptive feature fusion with high computational efficiency. Third, a Wasserstein-Distance-Based Weighted Normalized CIoU (WA-CIoU) loss function is developed to alleviate gradient imbalance in small-target regression, thereby improving localization stability. Experimental results on the Unmanned Vessel Zhoushan Perception Dataset (UZPD) and the open-source Singapore Maritime Dataset (SMD) demonstrate that M2S-YOLOv8 achieves a balanced performance between lightweight design and real-time inference, showcasing strong potential for reliable deployment on edge devices of unmanned marine platforms. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

24 pages, 1177 KB  
Article
Construction of an Optimal Portfolio of Gold, Bonds, Stocks and Bitcoin: An Indonesian Case Study
by Vera Mita Nia, Hermanto Siregar, Roy Sembel and Nimmi Zulbainarni
J. Risk Financial Manag. 2025, 18(12), 668; https://doi.org/10.3390/jrfm18120668 - 25 Nov 2025
Viewed by 2831
Abstract
This study explores how surprise shocks in Indonesia’s macroeconomic environment—specifically interest rates, inflation, and exchange rates—affect the returns and volatility of key financial assets, including gold, Bitcoin (BTC), stocks (JKSE), and government bonds. Utilizing the EGARCH(1,1) model, this research demonstrates that gold exhibits [...] Read more.
This study explores how surprise shocks in Indonesia’s macroeconomic environment—specifically interest rates, inflation, and exchange rates—affect the returns and volatility of key financial assets, including gold, Bitcoin (BTC), stocks (JKSE), and government bonds. Utilizing the EGARCH(1,1) model, this research demonstrates that gold exhibits enduring resilience as a safe-haven during periods of rising inflation and interest rate fluctuations. In contrast, Bitcoin is marked by pronounced speculative dynamics, showing persistent, asymmetric, and extreme volatility, yet delivering attractive gains when market conditions are strong. The findings indicate that stocks and bonds are particularly susceptible to changes in macroeconomic variables, thereby illustrating the vulnerabilities typical of emerging markets. Through portfolio optimization employing the Mean-Variance approach, gold dominates the optimal asset allocation, while Bitcoin provides notable diversification benefits. The results of backtesting using the Kupiec and Basel Traffic Light procedures confirm that GARCH-family risk estimations are robust and meet international regulatory standards. Furthermore, analysis of the Sharpe ratio and cumulative returns reveals that Mean-Variance portfolios consistently outperform equally weighted alternatives by delivering higher risk-adjusted returns and lower overall volatility. By integrating advanced econometric methods with real-world macroeconomic shocks in an Indonesian context, this research offers practical insights for both investors and policymakers addressing asset allocation under uncertainty, while laying the groundwork for future work involving broader asset universes and sophisticated modeling techniques. Full article
(This article belongs to the Section Economics and Finance)
Show Figures

Figure 1

50 pages, 1742 KB  
Review
A Review of Pavement Performance Deterioration Modeling: Influencing Factors and Techniques
by Benjamin G. Famewo and Mehdi Shokouhian
Symmetry 2025, 17(11), 1992; https://doi.org/10.3390/sym17111992 - 18 Nov 2025
Cited by 1 | Viewed by 2419
Abstract
Accurate modeling of pavement performance is vital to maintaining safe, reliable, and sustainable transportation infrastructure. This review synthesizes current approaches to pavement deterioration modeling, with emphasis on key influencing factors, performance indicators, and methodologies employed within Pavement Management Systems (PMS). Primary deterioration drivers, [...] Read more.
Accurate modeling of pavement performance is vital to maintaining safe, reliable, and sustainable transportation infrastructure. This review synthesizes current approaches to pavement deterioration modeling, with emphasis on key influencing factors, performance indicators, and methodologies employed within Pavement Management Systems (PMS). Primary deterioration drivers, including traffic loading and environmental stressors, are analyzed for their impact on degradation patterns. Performance indicators such as the Pavement Surface Evaluation and Rating (PASER), Pavement Condition Index (PCI), and International Roughness Index (IRI) are evaluated for their effectiveness in capturing pavement condition and guiding maintenance decisions. Modeling techniques are broadly categorized into deterministic, probabilistic, and intelligent (machine learning–based) frameworks to illustrate the evolution of predictive approaches. Across these approaches, the notion of symmetry can be interpreted as the balance and consistency achieved between model assumptions, input variables, and predicted pavement behavior, while asymmetry represents deviations caused by uncertainty, variability, and nonlinearity inherent in real-world conditions. Recognizing these symmetrical and asymmetrical relationships helps unify different modeling paradigms and provides insight into how each framework handles equilibrium between accuracy, complexity, and interpretability. The review also highlights persistent challenges in data availability, quality, and standardization. Notably, the increasing adoption of machine learning reflects its capacity to handle high-dimensional and spatiotemporal datasets. Recommendations are proposed to improve the robustness, scalability, and transparency of future deterioration models, thereby enhancing their role in data-driven, resilient, and cost-effective pavement management strategies. Full article
(This article belongs to the Special Issue Application of Symmetry in Civil Infrastructure Asset Management)
Show Figures

Figure 1

33 pages, 1433 KB  
Article
Hybrid Time Series Transformer–Deep Belief Network for Robust Anomaly Detection in Mobile Communication Networks
by Anita Ershadi Oskouei, Mehrdad Kaveh, Francisco Hernando-Gallego and Diego Martín
Symmetry 2025, 17(11), 1800; https://doi.org/10.3390/sym17111800 - 25 Oct 2025
Cited by 1 | Viewed by 1144
Abstract
The rapid evolution of 5G and emerging 6G networks has increased system complexity, data volume, and security risks, making anomaly detection vital for ensuring reliability and resilience. However, existing machine learning (ML)-based approaches still face challenges related to poor generalization, weak temporal modeling, [...] Read more.
The rapid evolution of 5G and emerging 6G networks has increased system complexity, data volume, and security risks, making anomaly detection vital for ensuring reliability and resilience. However, existing machine learning (ML)-based approaches still face challenges related to poor generalization, weak temporal modeling, and degraded accuracy under heterogeneous and imbalanced real-world conditions. To overcome these limitations, a hybrid time series transformer–deep belief network (HTST-DBN) is introduced, integrating the sequential modeling strength of TST with the hierarchical feature representation of DBN, while an improved orchard algorithm (IOA) performs adaptive hyper-parameter optimization. The framework also embodies the concept of symmetry and asymmetry. The IOA introduces controlled symmetry-breaking between exploration and exploitation, while the TST captures symmetric temporal patterns in network traffic whose asymmetric deviations often indicate anomalies. The proposed method is evaluated across four benchmark datasets (ToN-IoT, 5G-NIDD, CICDDoS2019, and Edge-IoTset) that capture diverse network environments, including 5G core traffic, IoT telemetry, mobile edge computing, and DDoS attacks. Experimental evaluation is conducted by benchmarking HTST-DBN against several state-of-the-art models, including TST, bidirectional encoder representations from transformers (BERT), DBN, deep reinforcement learning (DRL), convolutional neural network (CNN), and random forest (RF) classifiers. The proposed HTST-DBN achieves outstanding performance, with the highest accuracy reaching 99.61%, alongside strong recall and area under the curve (AUC) scores. The HTST-DBN framework presents a scalable and reliable solution for anomaly detection in next-generation mobile networks. Its hybrid architecture, reinforced by hyper-parameter optimization, enables effective learning in complex, dynamic, and heterogeneous environments, making it suitable for real-world deployment in future 5G/6G infrastructures. Full article
(This article belongs to the Special Issue AI-Driven Optimization for EDA: Balancing Symmetry and Asymmetry)
Show Figures

Figure 1

20 pages, 1477 KB  
Article
Dynamic Signal Timing at Urban Intersections: Cycle-Based Delay Classification and Multi-Period Optimization
by Zhao Guo, Alexander Y. Krylatov and Dan Wang
Mathematics 2025, 13(21), 3386; https://doi.org/10.3390/math13213386 - 24 Oct 2025
Viewed by 959
Abstract
This paper addresses the optimization of traffic signal timing at urban intersections by introducing a dynamic green ratio allocation framework based on cycle-based delay classification. Conventional methods such as the Webster delay model often fail to capture the asymmetric delay characteristics and the [...] Read more.
This paper addresses the optimization of traffic signal timing at urban intersections by introducing a dynamic green ratio allocation framework based on cycle-based delay classification. Conventional methods such as the Webster delay model often fail to capture the asymmetric delay characteristics and the impact of fluctuating flows across multiple cycles. We propose a novel approach that classifies cycles into undersaturated and oversaturated states and develops dedicated optimization models for each type. For undersaturated cycles, a new delay function is derived to accurately capture the interaction between queue dissipation and green time allocation, enabling multi-period minimization of total vehicle delay. For oversaturated cycles, queue minimization at the end of each phase is adopted to accelerate congestion dissipation. The framework is validated through simulation and compared with existing methods, demonstrating superior performance in congestion clearance and delay minimization. The results show improved adaptability to changing traffic conditions and enhanced practicality for real-time signal control in smart transportation systems. Full article
Show Figures

Figure 1

21 pages, 1427 KB  
Article
Cellular Automata for Optimization of Traffic Emission and Flow Dynamics in Two-Route Systems Using Feedback Information
by Rachid Marzoug, Noureddine Lakouari, José Roberto Pérez Cruz, Beatriz Castillo-Téllez, Gerardo Alberto Mejía-Pérez and Omar Bamaarouf
Infrastructures 2025, 10(5), 120; https://doi.org/10.3390/infrastructures10050120 - 14 May 2025
Cited by 1 | Viewed by 1488
Abstract
Managing emissions and congestion in urban transportation systems is a growing challenge, particularly when traffic dynamics are influenced by real-time conditions and infrastructure constraints. This study addresses this issue by proposing a cellular automata-based model to analyze traffic emissions and flow dynamics in [...] Read more.
Managing emissions and congestion in urban transportation systems is a growing challenge, particularly when traffic dynamics are influenced by real-time conditions and infrastructure constraints. This study addresses this issue by proposing a cellular automata-based model to analyze traffic emissions and flow dynamics in two-route traffic systems under one-directional flow conditions, incorporating various real-time information feedback strategies. Unlike previous studies, the proposed model integrates key components of urban infrastructure, such as lane-changing dynamics, traffic signalization, and vehicle-type heterogeneity, along with operational factors including entry rates, exit probabilities, and the number of waiting vehicles. The model aims to fill a gap in existing emission studies by capturing the dynamics of heterogeneous, multi-lane systems with integrated feedback mechanisms. These considerations provide valuable insights into traffic management and emission mitigation strategies. The analysis reveals that prioritizing information feedback from the system entrance, rather than relying on feedback from the entire system, more effectively reduces traffic emissions. Additionally, the Vehicle Number Feedback Strategy (VNFS) proved to be the most effective, reducing the number of waiting vehicles and consequently lowering CO2 emissions. Furthermore, simulation results indicate that for entry rate values below approximately 0.4, asymmetrical lane-changing generates higher emissions, whereas symmetrical lane-changing yields elevated emissions when entry rate surpasses this threshold. Overall, this research contributes to advancing the understanding of traffic management strategies and offers actionable insights for emissions mitigation in two-route systems, with potential applications in intelligent transportation infrastructure. Full article
(This article belongs to the Special Issue Smart Mobility and Transportation Infrastructure)
Show Figures

Figure 1

22 pages, 3523 KB  
Article
Evaluation of Semantic Segmentation Performance for a Multimodal Roadside Vehicle Detection System on the Edge
by Lauren Ervin, Max Eastepp, Mason McVicker and Kenneth Ricks
Sensors 2025, 25(2), 370; https://doi.org/10.3390/s25020370 - 10 Jan 2025
Viewed by 1952
Abstract
Discretely monitoring traffic systems and tracking payloads on vehicle targets can be challenging when traversal occurs off main roads where overhead traffic cameras are not present. This work proposes a portable roadside vehicle detection system as part of a solution for tracking traffic [...] Read more.
Discretely monitoring traffic systems and tracking payloads on vehicle targets can be challenging when traversal occurs off main roads where overhead traffic cameras are not present. This work proposes a portable roadside vehicle detection system as part of a solution for tracking traffic along any path. Training semantic segmentation networks to automatically detect specific types of vehicles while ignoring others will allow the user to track payloads present only on certain vehicles of interest, such as train cars or semi-trucks. Different vision sensors offer varying advantages for detecting targets in changing environments and weather conditions. To analyze the benefits of both, corresponding LiDAR and camera data were collected at multiple roadside sites and then trained on separate semantic segmentation networks for object detection. A custom CNN architecture was built to handle highly asymmetric LiDAR data, and a network inspired by DeepLabV3+ was used for camera data. The performance of both networks was evaluated, and showed comparable accuracy. Inferences run on embedded platforms showed real-time execution matching the performance on the training hardware for edge deployments anywhere. Both camera and LiDAR semantic segmentation networks were successful in identifying vehicles of interest from the proposed viewpoint. These highly accurate vehicle detection networks can pair with a tracking mechanism to establish a non-intrusive roadside detection system. Full article
(This article belongs to the Special Issue LiDAR Sensors Applied in Intelligent Transportation Systems)
Show Figures

Figure 1

22 pages, 5856 KB  
Article
Automated Recognition of Snow-Covered and Icy Road Surfaces Based on T-Net of Mount Tianshan
by Jingqi Liu, Yaonan Zhang, Jie Liu, Zhaobin Wang and Zhixing Zhang
Remote Sens. 2024, 16(19), 3727; https://doi.org/10.3390/rs16193727 - 7 Oct 2024
Cited by 5 | Viewed by 3308
Abstract
The Tianshan Expressway plays a crucial role in China’s “Belt and Road” strategy, yet the extreme climate of the Tianshan Mountains poses significant traffic safety risks, hindering local economic development. Efficient detection of hazardous road surface conditions (RSCs) is vital to address these [...] Read more.
The Tianshan Expressway plays a crucial role in China’s “Belt and Road” strategy, yet the extreme climate of the Tianshan Mountains poses significant traffic safety risks, hindering local economic development. Efficient detection of hazardous road surface conditions (RSCs) is vital to address these challenges. The complexity and variability of RSCs in the region, exacerbated by harsh weather, make traditional surveillance methods inadequate for real-time monitoring. To overcome these limitations, a vision-based artificial intelligence approach is urgently needed to ensure effective, real-time detection of dangerous RSCs in the Tianshan road network. This paper analyzes the primary structures and architectures of mainstream neural networks and explores their performance for RSC recognition through a comprehensive set of experiments, filling a research gap. Additionally, T-Net, specifically designed for the Tianshan Expressway engineering project, is built upon the optimal architecture identified in this study. Leveraging the split-transform-merge structure paradigm and asymmetric convolution, the model excels in capturing detailed information by learning features across multiple dimensions and perspectives. Furthermore, the integration of channel, spatial, and multi-head attention modules enhances the weighting of key features, making the T-Net particularly effective in recognizing the characteristics of snow-covered and icy road surfaces. All models presented in this paper were trained on a custom RSC dataset, compiled from various sources. Experimental results indicate that the T-Net outperforms fourteen once state-of-the-art (SOTA) models and three models specifically designed for RSC recognition, with 97.44% accuracy and 9.79% loss on the validation set. Full article
(This article belongs to the Special Issue Deep Learning and Computer Vision in Remote Sensing-III)
Show Figures

Figure 1

13 pages, 1334 KB  
Article
Graph-Based Traffic Forecasting with the Dynamics of Road Symmetry and Capacity Performance
by Ye Yuan, Yuan Peng, Ruicai Meng and Yongliang Sun
Symmetry 2024, 16(7), 935; https://doi.org/10.3390/sym16070935 - 22 Jul 2024
Cited by 1 | Viewed by 1661
Abstract
Symmetry in traffic patterns is a fundamental aspect of intelligent transportation systems, aiming to precisely predict traffic flow in real time despite the complex interplay of spatial and temporal factors. This paper presents a novel method of traffic forecasting that incorporates parameters related [...] Read more.
Symmetry in traffic patterns is a fundamental aspect of intelligent transportation systems, aiming to precisely predict traffic flow in real time despite the complex interplay of spatial and temporal factors. This paper presents a novel method of traffic forecasting that incorporates parameters related to road symmetry into a Graph Convolution Network model. Our model is crafted to dynamically adjust to real-time changes in road conditions, including the presence of symmetric and asymmetric road layouts, which substantially influence traffic flow. We have developed a GCN model that not only accounts for standard traffic flow metrics but also integrates a matrix representing road symmetry. The model undergoes training and validation on the METR-LA dataset, showcasing a significant enhancement in prediction accuracy. In the comparative analysis of state-of-the-art methods, our model demonstrated a significant enhancement in performance, achieving 30.68% improvement in Mean Squared Error (MSE) and a 24.28% improvement in Mean Absolute Error (MAE) over the best-performing method. The implications of our research are profound for urban planners, traffic management systems, and navigation service providers, as it offers a more dependable tool for forecasting traffic conditions, aiding in road design, and refining route planning strategies based on the symmetry of road networks. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

29 pages, 11919 KB  
Article
Integration of Decentralized Graph-Based Multi-Agent Reinforcement Learning with Digital Twin for Traffic Signal Optimization
by Vijayalakshmi K. Kumarasamy, Abhilasha Jairam Saroj, Yu Liang, Dalei Wu, Michael P. Hunter, Angshuman Guin and Mina Sartipi
Symmetry 2024, 16(4), 448; https://doi.org/10.3390/sym16040448 - 7 Apr 2024
Cited by 22 | Viewed by 5971
Abstract
Machine learning (ML) methods, particularly Reinforcement Learning (RL), have gained widespread attention for optimizing traffic signal control in intelligent transportation systems. However, existing ML approaches often exhibit limitations in scalability and adaptability, particularly within large traffic networks. This paper introduces an innovative solution [...] Read more.
Machine learning (ML) methods, particularly Reinforcement Learning (RL), have gained widespread attention for optimizing traffic signal control in intelligent transportation systems. However, existing ML approaches often exhibit limitations in scalability and adaptability, particularly within large traffic networks. This paper introduces an innovative solution by integrating decentralized graph-based multi-agent reinforcement learning (DGMARL) with a Digital Twin to enhance traffic signal optimization, targeting the reduction of traffic congestion and network-wide fuel consumption associated with vehicle stops and stop delays. In this approach, DGMARL agents are employed to learn traffic state patterns and make informed decisions regarding traffic signal control. The integration with a Digital Twin module further facilitates this process by simulating and replicating the real-time asymmetric traffic behaviors of a complex traffic network. The evaluation of this proposed methodology utilized PTV-Vissim, a traffic simulation software, which also serves as the simulation engine for the Digital Twin. The study focused on the Martin Luther King (MLK) Smart Corridor in Chattanooga, Tennessee, USA, by considering symmetric and asymmetric road layouts and traffic conditions. Comparative analysis against an actuated signal control baseline approach revealed significant improvements. Experiment results demonstrate a remarkable 55.38% reduction in Eco_PI, a developed performance measure capturing the cumulative impact of stops and penalized stop delays on fuel consumption, over a 24 h scenario. In a PM-peak-hour scenario, the average reduction in Eco_PI reached 38.94%, indicating the substantial improvement achieved in optimizing traffic flow and reducing fuel consumption during high-demand periods. These findings underscore the effectiveness of the integrated DGMARL and Digital Twin approach in optimizing traffic signals, contributing to a more sustainable and efficient traffic management system. Full article
Show Figures

Figure 1

21 pages, 10444 KB  
Article
Analysis of Asymmetric Wear of Brake Pads on Freight Wagons despite Full Contact between Pad Surface and Wheel
by Sergii Panchenko, Juraj Gerlici, Alyona Lovska, Vasyl Ravlyuk, Ján Dižo and Miroslav Blatnický
Symmetry 2024, 16(3), 346; https://doi.org/10.3390/sym16030346 - 13 Mar 2024
Cited by 7 | Viewed by 3234
Abstract
This article presents the results of a study focused on identifying the main causes of the asymmetric (clinodual) wear of composite brake pads on freight wagons. A new scientific approach to determining the clinodual wear of composite brake pads on freight wagons is [...] Read more.
This article presents the results of a study focused on identifying the main causes of the asymmetric (clinodual) wear of composite brake pads on freight wagons. A new scientific approach to determining the clinodual wear of composite brake pads on freight wagons is proposed. It is established that the harmful abrasion of the pad occurs during the movement of the freight train due to an imperfection in the bogie-brake lever transmission. The causes of the non-normative frictional wear of composite brake pads were investigated. This kind of wear leads to the tilting and abutting of the upper end of the brake pads against the rotating wheel during train running. The results of geometric and kinetostatic studies of the “pad–wheel” tribotechnical pair are provided to establish the causes and consequences of the accelerated clinodual frictional wear of composite brake pads on pendulum suspension in the bogies of freight wagons. The conditions of rotation of the wheels during braking “for” and “against” the clockwise direction depending on the direction of the train are considered. A new approach to brake-pad-wear prediction depending on the mileage of wagons under operational conditions is proposed. The research conducted in this study contributes to the development of the mechanical parts of freight-wagon brakes, increasing the efficiency of brake operation and improving the safety of train traffic. Full article
Show Figures

Figure 1

13 pages, 869 KB  
Article
Delay-Aware Intelligent Asymmetrical Edge Control for Autonomous Vehicles with Dynamic Leading Velocity
by Lihan Liu, Senfan Jin, Yi Xue, Zhuwei Wang, Chao Fang, Meng Li and Yanhua Sun
Symmetry 2023, 15(5), 1089; https://doi.org/10.3390/sym15051089 - 15 May 2023
Cited by 2 | Viewed by 1902
Abstract
The integration of Connected Cruise Control (CCC) and wireless Vehicle-to-Vehicle (V2V) communication technology aims to improve driving safety and stability. To enhance CCC’s adaptability in complex traffic conditions, in-depth research into intelligent asymmetrical control design is crucial. In this paper, the intelligent CCC [...] Read more.
The integration of Connected Cruise Control (CCC) and wireless Vehicle-to-Vehicle (V2V) communication technology aims to improve driving safety and stability. To enhance CCC’s adaptability in complex traffic conditions, in-depth research into intelligent asymmetrical control design is crucial. In this paper, the intelligent CCC controller issue is investigated by jointly considering the dynamic network-induced delays and target vehicle speeds. In particular, a deep reinforcement learning (DRL)-based controller design method is introduced utilizing the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. In order to generate intelligent asymmetrical control strategies, the quadratic reward function, determined by control inputs and vehicle state errors acquired through interaction with the traffic environment, is maximized by the training that involves both actor and critic networks. In order to counteract performance degradation due to dynamic platoon factors, the impact of dynamic target vehicle speeds and previous control strategies is incorporated into the definitions of Markov Decision Process (MDP), CCC problem formulation, and vehicle dynamics analysis. Simulation results show that our proposed intelligent asymmetrical control algorithm is well-suited for dynamic traffic scenarios with network-induced delays and outperforms existing methods. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

20 pages, 2128 KB  
Article
Using Adaptive Zero-Knowledge Authentication Protocol in VANET Automotive Network
by Igor Anatolyevich Kalmykov, Aleksandr Anatolyevich Olenev, Natalia Igorevna Kalmykova and Daniil Vyacheslavovich Dukhovnyj
Information 2023, 14(1), 27; https://doi.org/10.3390/info14010027 - 31 Dec 2022
Cited by 11 | Viewed by 4052
Abstract
One of the most important components of intelligent transportation systems (ITS) is the automotive self-organizing VANET network (vehicular ad hoc network). Its nodes are vehicles with specialized onboard units (OBU) installed on them. Such a network can be subject to various attacks. To [...] Read more.
One of the most important components of intelligent transportation systems (ITS) is the automotive self-organizing VANET network (vehicular ad hoc network). Its nodes are vehicles with specialized onboard units (OBU) installed on them. Such a network can be subject to various attacks. To reduce the effectiveness of a number of attacks on the VANET, it is advisable to use authentication protocols. Well-known authentication protocols support a security policy with full trust in roadside unit (RSU) base stations. The disadvantage of these authentication protocols is the ability of the RSU to track the route of the vehicle. This leads to a violation of the privacy and anonymity of the vehicle’s owner. To eliminate this drawback, the article proposes an adaptive authentication protocol. An advantage of this protocol is the provision of high imitation resistance without using symmetric and asymmetric ciphers. This result has been achieved by using a zero-knowledge authentication protocol. A scheme for adapting the protocol parameters depending on the intensity of the user’s traffic has been developed for the proposed protocol. The scientific novelty of this solution is to reduce time spent on authentication without changing the protocol execution algorithm by reducing the number of modular exponentiation operations when calculating true and “distorted” digests of the prover and verifying the correctness of responses, as well as by reducing the number of responses. Authentication, as before, takes place in one round without changing the bit depth of the modulus used in the protocol. To evaluate the effectiveness of the adaptive authentication protocol, the VANET model was implemented using NS-2. The obtained research results have shown that the adaptation of the authentication protocol in conditions of increased density of vehicles on the road makes it possible to increase the volume of data exchange between OBU and RSU by reducing the level of confidentiality. In addition, a mechanism for verifying the authority of the vehicle’s owner for provided services has been developed. As a result of the implementation of this mechanism, vehicle registration sites (VRS) calculate the public key of the vehicle without using encryption and provide necessary services to the owner. Full article
(This article belongs to the Special Issue Vehicular-to-Everything Communication in IoT)
Show Figures

Figure 1

15 pages, 1092 KB  
Article
A DRL-Driven Intelligent Optimization Strategy for Resource Allocation in Cloud-Edge-End Cooperation Environments
by Chao Fang, Tianyi Zhang, Jingjing Huang, Hang Xu, Zhaoming Hu, Yihui Yang, Zhuwei Wang, Zequan Zhou and Xiling Luo
Symmetry 2022, 14(10), 2120; https://doi.org/10.3390/sym14102120 - 12 Oct 2022
Cited by 21 | Viewed by 3199
Abstract
Complex dynamic services and heterogeneous network environments make the asymmetrical control a curial issue to handle on the Internet. With the advent of the Internet of Things (IoT) and the fifth generation (5G), the emerging network applications lead to the explosive growth of [...] Read more.
Complex dynamic services and heterogeneous network environments make the asymmetrical control a curial issue to handle on the Internet. With the advent of the Internet of Things (IoT) and the fifth generation (5G), the emerging network applications lead to the explosive growth of mobile traffic while bringing forward more challenging service requirements to future radio access networks. Therefore, how to effectively allocate limited heterogeneous network resources to improve content delivery for massive application services to ensure network quality of service (QoS) becomes particularly urgent in heterogeneous network environments. To cope with the explosive mobile traffic caused by emerging Internet services, this paper designs an intelligent optimization strategy based on deep reinforcement learning (DRL) for resource allocation in heterogeneous cloud-edge-end collaboration environments. Meanwhile, the asymmetrical control problem caused by complex dynamic services and heterogeneous network environments is discussed and overcome by distributed cooperation among cloud-edge-end nodes in the system. Specifically, the multi-layer heterogeneous resource allocation problem is formulated as a maximal traffic offloading model, where content caching and request aggregation mechanisms are utilized. A novel DRL policy is proposed to improve content distribution by making cache replacement and task scheduling for arriving content requests in accordance with the information about users’ history requests, in-network cache capacity, available link bandwidth and topology structure. The performance of our proposed solution and its similar counterparts are analyzed in different network conditions. Full article
(This article belongs to the Special Issue Asymmetrical Network Control for Complex Dynamic Services)
Show Figures

Figure 1

Back to TopTop