Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = asphalt migration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2723 KiB  
Article
FTIR Characterization of Asphalt SARA Fractions in Response to Rubber Modification
by Mohyeldin Ragab, Eslam Deef-Allah and Magdy Abdelrahman
Appl. Sci. 2025, 15(14), 8062; https://doi.org/10.3390/app15148062 - 20 Jul 2025
Viewed by 342
Abstract
Asphalt–rubber binders (A-RBs) have a long and deep history of use; however, little is known regarding the interrelated chemical behaviors and miscibility of rubber with the asphalt fractions [saturates, aromatics, resins, and asphaltenes (SARA)]. This study comprehensively attempted to address this knowledge deficiency [...] Read more.
Asphalt–rubber binders (A-RBs) have a long and deep history of use; however, little is known regarding the interrelated chemical behaviors and miscibility of rubber with the asphalt fractions [saturates, aromatics, resins, and asphaltenes (SARA)]. This study comprehensively attempted to address this knowledge deficiency by employing Fourier transform infrared spectroscopy (FTIR) to investigate the chemical evolution of A-RBs. A-RB interacted at 190 °C and 3000 min−1 for 8 h was deemed to have the optimal rheological performance. FTIR of the liquid fractions of A-RB 190–3000 showed a prominent chemical shift in the SARA fractions, with new peaks that showed rubber polybutadiene (PB) and polystyrene migration into asphaltenes. Meanwhile, decreases in peaks with C–H aromatic bending and S=O stretching for the A-RB 190–3000 saturates showed that the rubber absorbed low-molecular-weight maltenes during swelling. Peaks associated with C=C aromatic appeared in saturates and aromatics, respectively, emphasizing that unsaturated components migrated from the rubber into the asphalt. Thermal analysis showed that rubber dissolution for this sample reached 82%. While a PB peak existed in asphaltenes of A-RB 220–3000, its intensity was diminished by depolymerization, thus compromising the integrity of the migrated rubber structure and generating less rheological enhancement. This study concludes that FTIR characterization of SARA fractions offers valuable insights into the interactions between asphalt and rubber, and that regulated processing conditions are essential for enhancing binder performance. Full article
(This article belongs to the Special Issue Infrastructure Resilience Analysis)
Show Figures

Figure 1

20 pages, 1363 KiB  
Article
A Three-Dimensional Optimization Framework for Asphalt Mixture Design: Balancing Skeleton Stability, Segregation Control, and Mechanical Strength
by Jinfei Su, Linhao Fan, Lei Zhang, Shenduo Hu, Jicong Xu, Guanxian Li and Shihao Dong
Coatings 2025, 15(7), 807; https://doi.org/10.3390/coatings15070807 - 9 Jul 2025
Viewed by 346
Abstract
The composition design of asphalt mixtures plays a pivotal role in determining pavement performance and durability. To improve skeleton stability, paving uniformity, and mechanical strength, this research proposes a three-dimensional optimization framework for asphalt mixture design, focusing on aggregate gradation and optimum asphalt [...] Read more.
The composition design of asphalt mixtures plays a pivotal role in determining pavement performance and durability. To improve skeleton stability, paving uniformity, and mechanical strength, this research proposes a three-dimensional optimization framework for asphalt mixture design, focusing on aggregate gradation and optimum asphalt content. A skeleton-dense and anti-segregation gradation optimization method was developed by integrating a previously established skeleton-dense model with a segregation tendency prediction approach. In parallel, a mechanically driven method for determining optimum asphalt content was proposed by introducing the maximum migration shear stress as a performance-based alternative to the conventional Marshall stability parameter. Research results show that asphalt mixtures designed and compacted with the optimized gradation exhibit significantly enhanced high-temperature stability, while maintaining satisfactory low-temperature cracking resistance and moisture susceptibility. Field validation was conducted through the construction of a trial pavement section using the optimized gradation under recommended mixing and compaction temperatures. The resulting pavement demonstrated excellent compaction, strong resistance to segregation, and a highly stable spatial structure. These findings confirm the effectiveness of the proposed methodology in enhancing the high-temperature deformation resistance and overall structural integrity of asphalt mixtures. Full article
Show Figures

Figure 1

22 pages, 5598 KiB  
Article
Thermal-Ultraviolet-Humidness Coupling Ageing and Regeneration Properties and Mechanisms of SBS-Modified Asphalt Under Hot–Wet Environment Conditions
by Shuo Zhou, Dengfeng Wang, Liuxing Wu, Alimire Maimaitisidike, Zhiqing Wang, Hongbo Zhao and Jiaolong Ren
Materials 2025, 18(8), 1731; https://doi.org/10.3390/ma18081731 - 10 Apr 2025
Cited by 1 | Viewed by 464
Abstract
Styrene-butadiene-styrene (SBS)-modified asphalt, a widely utilised binder in pavement engineering, is susceptible to ageing due to the coupling effects of thermo-oxidation, ultraviolet radiation, and humidness. Due to the limited availability of high-quality asphalt resources, recycling aged asphalt has emerged as a vital strategy [...] Read more.
Styrene-butadiene-styrene (SBS)-modified asphalt, a widely utilised binder in pavement engineering, is susceptible to ageing due to the coupling effects of thermo-oxidation, ultraviolet radiation, and humidness. Due to the limited availability of high-quality asphalt resources, recycling aged asphalt has emerged as a vital strategy for addressing resource shortages and reducing environmental pollution. This study investigated the effects of thermal-ultraviolet-humidness coupled ageing on the pavement performance of SBS-modified asphalt, with a specific focus on the hot–wet climates of Guangzhou and Chengdu. Beijing’s standard climate serves as a reference for this study. Additionally, industrial animal oil was chosen as a rejuvenator for aged SBS-modified asphalt. The mechanisms underlying hot–wet coupling ageing and regeneration of SBS-modified asphalt were analysed using Fourier Transform Infrared Spectroscopy (FTIR) and Fluorescence Microscopy (FM). The findings indicate that thermal-oxidation and humidness accelerate sulphide formation, resulting in a marked increase in sulfoxide groups and facilitating the migration of lighter components, ultimately leading to asphalt hardening. Under high-temperature and humidness conditions, the butadiene index (BI) of asphalt decreased by 5.96% in Chengdu and 15.78% in Guangzhou compared to Beijing. The sulfoxide index (SI) and aromaticity index (CI) increased by 3.74% and 3.89% in Chengdu, and by 9.39% and 8.54% in Guangzhou, respectively, confirming the exacerbating effect of humidness on ageing. During the regeneration process, industrial animal oil effectively diluted polar molecules in aged asphalt, resulting in reductions in SI by 38.88%, 36.74%, and 37.74%, and in CI by 63.77%, 62.54%, and 63.11% under ageing conditions in Beijing, Guangzhou, and Chengdu, respectively. Rejuvenation is achieved by replenishing lighter components, thereby promoting the aggregation and swelling of the degraded SBS chains. Full article
Show Figures

Figure 1

18 pages, 8055 KiB  
Article
Study on the Factors Affecting the Self-Healing Performance of Graphene-Modified Asphalt Based on Molecular Dynamics Simulation
by Fei Guo, Xiaoyu Li, Ziran Wang, Yijun Chen and Jinchao Yue
Polymers 2024, 16(17), 2482; https://doi.org/10.3390/polym16172482 - 30 Aug 2024
Cited by 3 | Viewed by 1309
Abstract
To comprehensively understand the impact of various environmental factors on the self-healing process of graphene-modified asphalt, this study employs molecular dynamics simulation methods to investigate the effects of aging degree (unaged, short-term aged, long-term aged), asphalt type (base asphalt, graphene-modified asphalt), healing temperature [...] Read more.
To comprehensively understand the impact of various environmental factors on the self-healing process of graphene-modified asphalt, this study employs molecular dynamics simulation methods to investigate the effects of aging degree (unaged, short-term aged, long-term aged), asphalt type (base asphalt, graphene-modified asphalt), healing temperature (20 °C, 25 °C, 30 °C), and damage degree (5 Å, 10 Å, 15 Å) on the self-healing performance of asphalt. The validity of the established asphalt molecular models was verified based on four physical quantities: density, radial distribution function analysis, glass transition temperature, and cohesive energy density. The simulated healing time for the asphalt crack model was set to 200 ps. The following conclusions were drawn based on the changes in density, mean square displacement, and diffusion coefficient during the simulated healing process under different influencing factors: Dehydrogenation and oxidation of asphalt molecules during the aging process hinder molecular migration within the asphalt crack model, resulting in poorer self-healing performance. As the service life increases, the decline in the healing performance of graphene-modified asphalt is slower than that of base asphalt, indicating that graphene-modified asphalt has stronger anti-aging properties. When the vacuum layer in the asphalt crack model is small, the changes in the diffusion coefficient are less pronounced. As the crack width increases, the influence of various factors on the diffusion coefficient of the asphalt crack model becomes more significant. When the crack width is large, the self-healing effect of asphalt is more dependent on these influencing factors. Damage degree and oxidative aging have a more significant impact on the healing ability of graphene-modified asphalt than healing temperature. Full article
(This article belongs to the Special Issue Simulation and Calculation of Polymer Composite Materials)
Show Figures

Figure 1

13 pages, 1363 KiB  
Article
Geological Characteristics of Shale Reservoir of Pingdiquan Formation in Huoshaoshan Area, Junggar Basin
by Huaibao Xu, Mawutihan Madina, Shaohui Yu, Ze Wang, Huanghui Cheng and Tao Jiang
Processes 2023, 11(7), 2126; https://doi.org/10.3390/pr11072126 - 17 Jul 2023
Cited by 7 | Viewed by 1382
Abstract
Unconventional oil and gas, represented by shale gas and shale oil, have occupied an important position in global energy. The rapid growth of shale gas and shale oil production shows great potential for the exploration and development of shale resources. Junggar basin, the [...] Read more.
Unconventional oil and gas, represented by shale gas and shale oil, have occupied an important position in global energy. The rapid growth of shale gas and shale oil production shows great potential for the exploration and development of shale resources. Junggar basin, the main oil-bearing basin in China, is rich in oil and gas resources, so it is of great practical significance to carry out systematic research on the geological characteristics of shale reservoirs in this region. To this end, this paper designates the shale reservoir of Pingdiquan Formation in Huoshaoshan area of the Jungar Basin as the research object, carries out a geological survey in that area, analyzes reservoir forming conditions using the geological interpretation method, analyzes different local trap reservoir types and their main control factors by dissecting the explored reservoir, optimizes and evaluates favorable traps using the source, fault, facies and circle coupling analysis method, establishes single good identification standard of sedimentary microfacies, and carries out well-connected sedimentary microfacies analysis. Using geochemical methods, such as rock pyrolysis, maceral analysis, vitrinite reflectance, kerogen carbon isotope, saturated hydrocarbon chromatography, etc., the abundance and types of organic matter of shale in different intervals are analyzed and the geological characteristics of shale reservoirs are evaluated. This paper aims to analyze the oil and gas content of the shale reservoir in Pingdiquan Formation in the Junggar Basin to provide reliable reservoir evaluation and guide better development of shale oil and gas resources in the future. The innovative expenditure of this paper lies in conducting the research from two aspects: the analysis of the main controlling factors of reservoir formation from the structural point of view and the analysis of the pore structure and geochemical characteristics of shale from the core experiment point of view, and also the classification of organic matter, so as to provide a basis for finding favorable traps. The results show that the shale sedimentary system in the study area is a small fluvial delta, which belongs to a compression structure, with developed NNE-oriented structural belts and faults; the structural form is a short-axis anticline as a whole, forming a structural coil closure at −900 m, with a trap area of 50 km2 and a closure height of 180 m. According to the geological interpretation method, 19 faults of all levels were found in the area and the vertical migration conditions of oil and gas were good. Pingdiquan Formation was oil-bearing, with many vertical oil-bearing strata and strong horizontal independence of the reservoir. The sedimentary thickness of the Permian Pingdiquan Formation in the study area is 300~1200 m and the oil-bearing strata are divided into 3 oil-bearing formations, 9 sublayers, and 22 monolayers from top to bottom. The abundance of organic matter in different strata is generally high, with an average total organic carbon content of 3.53%, an average hydrocarbon generation potential of 18.1 mg/g, an average chloroform asphalt content of 0.57%, and an average total hydrocarbon content of 3011 μg/g, all of which belong to the shale standard, especially Ping-2. The organic matter in different layers belongs to types I-II1, and the organic matter types are I-II1, I-II2, and II1-II2, respectively. The average carbon isotope of shale kerogen is −2.4%, which belongs to type II2 kerogen. Full article
Show Figures

Figure 1

20 pages, 9507 KiB  
Article
Use of MD Simulation for Investigating Diffusion Behaviors between Virgin Asphalt and Recycled Asphalt Mastic
by Shuqi Chen, Qing Yang, Xin Qiu, Ke Liu, Shanglin Xiao and Wenyi Xu
Buildings 2023, 13(4), 862; https://doi.org/10.3390/buildings13040862 - 25 Mar 2023
Cited by 4 | Viewed by 2141
Abstract
The study aims at investigating diffusion behaviors between virgin asphalt and recycled asphalt mastic (RAM) at an atomistic scale. Firstly, a mutual diffusion model of virgin asphalt–RAM considering the actual mass ratio of filler to asphalt binder (F/A) condition was developed by molecular [...] Read more.
The study aims at investigating diffusion behaviors between virgin asphalt and recycled asphalt mastic (RAM) at an atomistic scale. Firstly, a mutual diffusion model of virgin asphalt–RAM considering the actual mass ratio of filler to asphalt binder (F/A) condition was developed by molecular dynamic (MD)simulation. Secondly, the indexes of relative concentration (RC), radial distribution function (RDF) and mean square displacement (MSD) were used to analyze the molecular arrangement characteristics of polar components in the diffusion processes at different temperatures. Then, the blending efficiency of virgin asphalt–RAM was evaluated by Fick’s second law and the binding energy. The results indicate that the reliability of the RAM model was validated by thermodynamics properties. The results of RC and RDF show that the diffusion direction of virgin asphalt–RAM is not changed by the presence of mineral fillers. However, it will inhibit the occurrence of diffusion behaviors, and the aggregation of molecules in the blending zone increases due to the adsorption of mineral fillers, which would become a barrier to molecular diffusion. The development of MSD indicates that the diffusion coefficients of molecules in both virgin–aged asphalt and virgin asphalt–RAM are on the rise with the increase in temperature. Compared with the virgin–aged asphalt, the molecular migration speed in virgin asphalt–RAM is relatively slow. According to Fick’s second law and the binding energy, diffusion behaviors are dominated by the nonpolar components. The existence of mineral fillers has the greatest effect on the nonpolar components in diffusion. It is suggested that rejuvenator containing more aromatic components should be added or the temperature controlled within 433.15–443.15 K to promote blending efficiency. The research results contribute to a deeper understanding about diffusion behaviors of virgin asphalt–RAM, serving as a benchmark for further study of rejuvenation using computational experiments. Full article
(This article belongs to the Special Issue Advances in Composite Construction in Civil Engineering)
Show Figures

Figure 1

22 pages, 87692 KiB  
Article
Investigation on Performances and Functions of Asphalt Mixtures Modified with Super Absorbent Polymer (SAP)
by Yuxuan Sun, Weimin Song, Hao Wu, Yiqun Zhan, Zhezheng Wu and Jian Yin
Materials 2023, 16(3), 1082; https://doi.org/10.3390/ma16031082 - 26 Jan 2023
Cited by 11 | Viewed by 2426
Abstract
The super absorbent polymer (SAP) has been attracting extensive concerns due to its strong capacity in water absorption and retention. The amorphous hydrogels formed by the post-absorbent SAP have the potential of clogging the micro-cracks in asphalt materials and refraining the rainwater from [...] Read more.
The super absorbent polymer (SAP) has been attracting extensive concerns due to its strong capacity in water absorption and retention. The amorphous hydrogels formed by the post-absorbent SAP have the potential of clogging the micro-cracks in asphalt materials and refraining the rainwater from infiltrating. This provides the possibility of applying SAP in asphalt pavements to seal or fill the cracks and relieve the distresses caused by rainwater infiltration in the underlying layers. Before exploring the cracking sealing mechanism of SAPs in asphalt pavements, a series of experiments were performed to evaluate the feasibility and influences of SAPs in asphalt mastics and asphalt mixtures on their mechanical performances and functionalities. Firstly, the basic properties of SAPs were analyzed, and then the rheological properties of the asphalt mastics using SAP replacing mineral powder (10%, 20%, 30%, and 40% by volume) were explored. The water stability and infiltration reduction effect of the asphalt mixtures incorporated with SAP were evaluated by the Marshall stability test, immersion Marshall stability test, freeze-thaw splitting strength test, Cantabro test, and permeability test. The test results indicated that SAPs could be used in the asphalt mixtures to partially substitute mineral powder with desirable mechanical performances. When less than 10% of the mineral powder was replaced by the SAP, the high-temperature performance and fatigue life of the asphalt mastics could be improved to some extent, but both declined after the content of the SAP was larger than 10%. Due to the hydrogels formed by SAPs after water absorption, the water stability of the asphalt mixtures deteriorated with the increased content of SAPs. Moreover, the results from the permeability tests implied that the SAP hydrogels could fill the seepage channels in the material, thus improving the migration and infiltration resistances of the asphalt mixtures. With the increased contents of SAPs, the permeability coefficients of the asphalt mixtures could be reduced up to 55%. Based on the research findings in this study, when an appropriate amount of SAP was added in the asphalt materials, desirable temperature stability, water stability, and fatigue resistance could be achieved regarding actual requirements from applications. At the same time, the addition of SAPs could effectively refrain the infiltration and migration of rainwater in asphalt pavements, thus potentially mitigating the effect of water erosion on the underlying layers. Full article
(This article belongs to the Special Issue Asphalt Mixtures and Pavements Design)
Show Figures

Figure 1

15 pages, 5442 KiB  
Article
Rejuvenation Mechanism of Asphalt Mixtures Modified with Crumb Rubber
by Hossein Noorvand, Kamil Kaloush, Jose Medina and Shane Underwood
CivilEng 2021, 2(2), 370-384; https://doi.org/10.3390/civileng2020020 - 12 May 2021
Cited by 6 | Viewed by 3054
Abstract
Asphalt aging is one of the main factors causing asphalt pavements deterioration. Previous studies reported on some aging benefits of asphalt rubber mixtures through laboratory evaluation. A field observation of various pavement sections of crumb rubber modified asphalt friction courses (ARFC) in the [...] Read more.
Asphalt aging is one of the main factors causing asphalt pavements deterioration. Previous studies reported on some aging benefits of asphalt rubber mixtures through laboratory evaluation. A field observation of various pavement sections of crumb rubber modified asphalt friction courses (ARFC) in the Phoenix, Arizona area indicated an interesting pattern of transverse/reflective cracking. These ARFC courses were placed several years ago on existing jointed plain concrete pavements for highway noise mitigation. Over the years, the shoulders had very noticeable and extensive cracking over the joints; however, the driving lanes of the pavement showed less cracking formation in severity and extent. The issue with this phenomenon is that widely adopted theories that stem from continuum mechanics of materials and layered mechanics of pavement systems cannot directly explain this phenomenon. One hypothesis could be that traffic loads continually manipulate the pavement over time, which causes some maltenes (oils and resins) compounds absorbed in the crumb rubber particles to migrate out leading to rejuvenation of the mastic in the asphalt mixture. To investigate the validity of such a hypothesis, an experimental laboratory testing was undertaken to condition samples with and without dynamic loads at high temperatures. This was followed by creep compliance and indirect tensile strength testing. The results showed the higher creep for samples aged with dynamic loading compared to those aged without loading. Higher creep compliance was attributed to higher flexibility of samples due to the rejuvenation of the maltenes. This was also supported by the higher fracture energy results obtained for samples conditioned with dynamic loading from indirect tensile strength testing. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

15 pages, 2084 KiB  
Article
Thermodynamic Properties Investigation of Process Volatile Organic Compounds (VOCs) and Its Transport Impact Factor in Oil Sands Management
by Jing Yuan, Yuyong Sun, Yong Jia and Qianfeng Zhang
Nanomaterials 2021, 11(3), 709; https://doi.org/10.3390/nano11030709 - 11 Mar 2021
Cited by 1 | Viewed by 2609
Abstract
This paper presents a new approach for the determination of volatile organic compounds (VOCs) characteristics and their migration influencing factors in oil sands management processes and reveals the relationship between different asphaltene content and different solvents. Specifically, thermodynamic (i.e., partitioning coefficients, Kr, specific [...] Read more.
This paper presents a new approach for the determination of volatile organic compounds (VOCs) characteristics and their migration influencing factors in oil sands management processes and reveals the relationship between different asphaltene content and different solvents. Specifically, thermodynamic (i.e., partitioning coefficients, Kr, specific retention volume, Vg, the activity coefficients, γ and enthalpy of solution, ΔH0) and their impact factors are discussed. Gas-liquid chromatography (GLC) experimental measurements were used as the test data. A range of solvents (nC5, iC5, nC6, nC7, and Toluene) has been tested in different asphalt contents (0, 2.56, 9.93, 36.86, 53.67 wt%). There are temperatures in the range of 333.2–393.2 K (with 10 K increase) were conducted, respectively. The dynamics properties of asphalt mixture are calculated, and the relation between dynamics properties of asphalt mixture and absolute temperature, asphalt content and solvent type is discussed. The results show that within the acceptable error range, partitioning coefficients, Kr, specific retention volume, Vg, and enthalpy of solution, ΔH0 and other thermodynamic properties have a good tendency to predict, they decrease with the increase in asphaltene content and temperature and increase with the increase in solute carbon number. Full article
Show Figures

Figure 1

14 pages, 4220 KiB  
Article
Study on Migratory Behavior of Aggregate in Asphalt Mixture Based on the Intelligent Acquisition System of Aggregate Attitude Data
by Chen Zhang and Zhengwei Zhang
Sustainability 2021, 13(6), 3053; https://doi.org/10.3390/su13063053 - 11 Mar 2021
Cited by 12 | Viewed by 2429
Abstract
In order to provide a new method to study the migration behavior of coarse aggregates in the compaction process of asphalt mixtures, the “Intelligent Aggregate Attitude Acquisition System (IAS)” is developed based on 3D printing technology and wireless intelligent sensing technology, and the [...] Read more.
In order to provide a new method to study the migration behavior of coarse aggregates in the compaction process of asphalt mixtures, the “Intelligent Aggregate Attitude Acquisition System (IAS)” is developed based on 3D printing technology and wireless intelligent sensing technology, and the “Intelligent Attitude Aggregate (IAA)” is prepared as the acquisition terminal. The Superpave Gyratory Compaction (SGC) test and the Internet of Things (IOT) wireless sensor technology are combined to collect and analyze the attitude data of an SMA-20 asphalt mixture built in IAA at different compaction stages, and the migration behavior of coarse aggregate in the compaction process is quantitatively characterized. The result shows that the IAA is suitable as a “tracking aggregate” to study the aggregate transfer behavior in asphalt mixtures. The IAA in the upper layer tends to move vertically downward, while the particles in the lower layer tend to move horizontally and spatial rotation in the process of rotating compaction. With the increase in asphalt content, the lubrication effect between aggregate particles is obvious, and the friction resistance of aggregate particles decreases when it is embedded downward. Affected by shear force in the process of rotary compaction, the aggregate particles are easier to overcome friction and cause large horizontal migration and spatial rotation. With the increase in compaction temperature, the viscosity of asphalt binder decreases, and the contact friction between aggregate particles decreases. The asphalt content has a significant effect on the displacement in the horizontal plane Dxoy of the aggregate. The asphalt content and compaction temperature have significant effects on the spatial rotation angle Φ of aggregate, but the asphalt content has a greater impact on it. Full article
(This article belongs to the Special Issue Smart Solutions for Sustainable Transport Infrastructure)
Show Figures

Figure 1

17 pages, 3504 KiB  
Article
The Effects of Asphalt Migration on the Dynamic Modulus of Asphalt Mixture
by Hui Wang, Shihao Zhan and Guojun Liu
Appl. Sci. 2019, 9(13), 2747; https://doi.org/10.3390/app9132747 - 7 Jul 2019
Cited by 26 | Viewed by 4148
Abstract
Asphalt migration is one of the significant detrimental effects on asphalt pavement performance. In order to simulate the state after the occurrence of asphalt migration amid asphalt pavement layers and further investigate the effects of asphalt migration on the dynamic modulus of asphalt [...] Read more.
Asphalt migration is one of the significant detrimental effects on asphalt pavement performance. In order to simulate the state after the occurrence of asphalt migration amid asphalt pavement layers and further investigate the effects of asphalt migration on the dynamic modulus of asphalt mixture, samples with different asphalt contents layers were firstly separated into the upper and lower half portions and then compacted together. By conducting the dynamic modulus test with the Superpave Simple Performance Tester (SPT), the variation laws of the dynamic modulus (|E*|) and the phase angle (δ) at different testing temperatures and loading frequencies were analyzed in this paper. Further, the dynamic modulus and the stiffness parameter (|E*|/sinδ) at the loading frequency of 10 Hz and testing temperature of 50 °C were illustrated. Simultaneously, the master curves of the dynamic modulus and phase angle of asphalt mixtures under different testing conditions were constructed to better investigate the effects of asphalt migration on the dynamic modulus by means of Williams–Landel–Ferry (WLF) equation and Sigmoidal function. Results show that, after the asphalt migration, the dynamic modulus of asphalt mixtures increase with the increasing loading frequency while they decrease with the increasing testing temperature; the dynamic modulus and the stiffness parameter are the highest when asphalt mixtures have the optimum asphalt content layers, and then decrease with the incremental difference of asphalt content in the upper and lower half portions. Besides this, different from the master curves of dynamic modulus, the master curves of phase angle firstly increase with the increase of loading frequency to the highest point and then decrease with the further increase of loading frequency and are not as smooth as that of dynamic modulus. It can be concluded that the asphalt migration has compromised the mixture’s mechanical structure, and the more asphalt migrates, the weaker the mechanical properties of asphalt mixture will be. Additionally, based on the shift factors and master curves in the time–temperature superposition principle (TTSP), the effects of asphalt migration on the dynamic modulus and the variation laws of the dynamic modulus of asphalt mixture after the occurrence of asphalt migration can be better construed at the quantitative level. Full article
Show Figures

Figure 1

13 pages, 20033 KiB  
Article
Aging Mechanism and Properties of SBS Modified Bitumen under Complex Environmental Conditions
by Hui Wei, Xianping Bai, Guoping Qian, Feiyue Wang, Zhengfu Li, Jiao Jin and Yuhao Zhang
Materials 2019, 12(7), 1189; https://doi.org/10.3390/ma12071189 - 11 Apr 2019
Cited by 72 | Viewed by 6074
Abstract
Bitumen aging can lead to the deterioration of asphalt pavement performance, shortening the service life of road. In order to solve the problem that current studies on the ultraviolet (UV) aging of bitumen either ignore the effects of natural environmental conditions or only [...] Read more.
Bitumen aging can lead to the deterioration of asphalt pavement performance, shortening the service life of road. In order to solve the problem that current studies on the ultraviolet (UV) aging of bitumen either ignore the effects of natural environmental conditions or only consider the effects of water. In this study, different aqueous media and UV coupled simulated aging tests were carried out on virgin bitumen and styrene butadiene styrene (SBS) modified bitumen in a UV environment chamber. The combination of macroscopic performance tests and microstructure tests was used to analyze the physical, rheological, and microstructure changes of virgin bitumen and SBS modified bitumen after The film oven test (TFOT) aging and UV aging in different environments (UV, UV + Water, UV + Acid, UV + Salt). Dynamic shear rheometer (DSR) results indicated that UV aging results in the increase of rutting factor and the improvement of rutting resistance at high temperature. The Fourier transform infrared spectrum (FTIR) results illustrated that the bitumen would be oxidized and SBS would be degraded under ultraviolet radiation. The four-component analysis test results showed that light component migrated to the heavy component during the aging process. Moreover, water will aggravate the UV aging of bitumen, and the presence of acid or salt worsens ultraviolet aging. Full article
Show Figures

Figure 1

15 pages, 3250 KiB  
Article
Fatigue Performance of the CA Mortar Used in CRTS I Ballastless Slab Track under Simulated Servicing Condition
by Yuchuan Shan, Shuguang Zheng, Xuefeng Zhang, Wei Luo, Jingda Mao and Deyu Kong
Materials 2018, 11(11), 2259; https://doi.org/10.3390/ma11112259 - 13 Nov 2018
Cited by 25 | Viewed by 4021
Abstract
The cement and asphalt mortar (CA mortar) used in the China Railway Track System (CRTS) I ballastless slab track may encounter a coupling fatigue effect under the high-frequency vibration, load and high-and-low temperature cycles, and the deterioration under fatigue may happen during service [...] Read more.
The cement and asphalt mortar (CA mortar) used in the China Railway Track System (CRTS) I ballastless slab track may encounter a coupling fatigue effect under the high-frequency vibration, load and high-and-low temperature cycles, and the deterioration under fatigue may happen during service of the high-speed railway. In this study, the performance degradation and its mechanism of the CA mortar with and without polymer emulsion incorporated under the coupling fatigue effects of the high-frequency vibration, load and temperature were studied by using an anti-fatigue testing device specially developed for the CA mortar used in the ballastless slab track of the high-speed railway. The results showed that the deformation capacity of the CA mortar for CRTS I slab ballastless slab track decreased after fatigue test under simulated service environment, presenting a typical brittle characteristic and an obvious reduction of the ductility and toughness. The Scanning Electron Microscopy (SEM) observation and the mercury intrusion porosimetry (MIP) analysis showed that the volume of the macropore decreased whereas that of the micropore increased after the fatigue test. The asphalt in the hardened CA mortar revealed a softening and migration from the bulk paste to fill the pore and make the structure denser and even ooze out of the CA mortar under the high-frequency vibration and high temperature. Through incorporating the polymer emulsion, the anti-fatigue property of the CA mortar was obviously improved, which can prevent the CA mortar from losing its elastic adjustment function too early. Though increase of the strength and elastic modulus for the CA mortar after severe service is beneficial to the stability of train running, the comfort level and safety of the train operation may decline due to the gradual reduction of the ductility & toughness and the gradual loss of the elastic damping adjustment function of the CA mortar between the base concrete slab and the track slab. Full article
(This article belongs to the Special Issue Durability and Life time of Polymers, Composites and Nanocomposites)
Show Figures

Figure 1

16 pages, 26088 KiB  
Article
Inventory of Onshore Hydrocarbon Seeps in Romania (HYSED-RO Database)
by Artur Ionescu, Pierfrancesco Burrato, Calin Baciu, Giuseppe Etiope and Boglarka-Mercedesz Kis
Geosciences 2017, 7(2), 39; https://doi.org/10.3390/geosciences7020039 - 1 Jun 2017
Cited by 5 | Viewed by 9084
Abstract
Seeps are the expression of the migration of hydrocarbons from subsurface accumulations to the surface in sedimentary basins. They may represent an important indication of the presence of petroleum (gas and oil) reservoirs and faults, and are a natural source of greenhouse gas [...] Read more.
Seeps are the expression of the migration of hydrocarbons from subsurface accumulations to the surface in sedimentary basins. They may represent an important indication of the presence of petroleum (gas and oil) reservoirs and faults, and are a natural source of greenhouse gas (methane) and atmospheric pollutants (ethane, propane) to the atmosphere. Romania is one of the countries with the largest number of seeps in the world, due to the high petroleum potential and active tectonics. Based on a review of the available literature, and on the field surveys performed by the authors during the last 17 years, we report the first comprehensive GIS-based inventory of 470 seeps in Romania (HYSED-RO), including gas seeps (10.4% of the total), oil seeps (11.7%), mud volcanoes (50.4%), gas-rich springs (12.6%), asphalt (solid) seeps (4.3%), unclassified manifestations (4.0%), and uncertain seeps (6.6%). Seeps are typically located in correspondence with major faults and vertical and fractured stratigraphic contacts associated to petroleum reservoirs (anticlines) in low heat flow areas, and their gas-geochemistry reflects that of the subsurface reservoirs. The largest and most active seeps occur in the Carpathian Foredeep, where they release thermogenic gas, and subordinately in the Transylvanian Basin, where gas is mainly microbial. HYSED-RO may represent a key reference for baseline characterization prior to subsurface petroleum extraction, for environmental studies, and atmospheric greenhouse gas emission estimates in Romania. Full article
(This article belongs to the Special Issue Natural Gas Origin, Migration, Alteration and Seepage)
Show Figures

Figure 1

Back to TopTop