Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = as-built roughness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 11295 KiB  
Article
Process-Driven Structural and Property Evolution in Laser Powder Bed Fusion of a Newly Developed AISI 316L Stainless Steel
by Amir Behjat, Morteza Shamanian, Fazlollah Sadeghi, Mohammad Hossein Mosallanejad and Abdollah Saboori
Materials 2025, 18(14), 3343; https://doi.org/10.3390/ma18143343 - 16 Jul 2025
Viewed by 289
Abstract
The lack of new materials with desired processability and functional characteristics remains a challenge for metal additive manufacturing (AM). Therefore, in this work, a new promising AISI 316L-based alloy with better performance compared to the commercially available one is developed via the laser [...] Read more.
The lack of new materials with desired processability and functional characteristics remains a challenge for metal additive manufacturing (AM). Therefore, in this work, a new promising AISI 316L-based alloy with better performance compared to the commercially available one is developed via the laser powder bed fusion (L-PBF) process. Moreover, establishing process–structure–properties linkages is a critical point that should be evaluated carefully before adding newly developed alloys into the AM market. Hence, the current study investigates the influences of various process parameters on the as-built quality and microstructure of the newly developed alloy. The results revealed that increasing laser energy density led to reduced porosity and surface roughness, likely due to enhanced melting and solidification. Microstructural analysis revealed a uniform distribution of copper within the austenite phase without forming any agglomeration or secondary phases. Electron backscatter diffraction analysis indicated a strong texture along the build direction with a gradual increase in Goss texture at higher energy densities. Grain boundary regions exhibited higher local misorientation and dislocation density. These findings suggest that changing the process parameters of the L-PBF process is a promising method for developing tailored microstructures and chemical compositions of commercially available AISI 316L stainless steel. Full article
Show Figures

Figure 1

17 pages, 2527 KiB  
Article
The Impact of As-Built Surface Characteristics of Selective-Laser-Melted Ti-6Al-4V on Early Osteoblastic Response for Potential Dental Applications
by Muhammad Hassan Razzaq, Olugbenga Ayeni, Selin Köklü, Kagan Berk, Muhammad Usama Zaheer, Tim Tjardts, Franz Faupel, Salih Veziroglu, Yogendra Kumar Mishra, Mehmet Fatih Aycan, O. Cenk Aktas, Tayebeh Ameri and Sinan Sen
J. Funct. Biomater. 2025, 16(7), 230; https://doi.org/10.3390/jfb16070230 - 23 Jun 2025
Viewed by 728
Abstract
This study investigates the potential of Selective Laser Melting (SLM) to tailor the surface characteristics of Ti6Al4V directly during fabrication, eliminating the need for post-processing treatments potentially for dental implants. By adjusting the Volumetric Energy Density (VED) through controlled variations in the laser [...] Read more.
This study investigates the potential of Selective Laser Melting (SLM) to tailor the surface characteristics of Ti6Al4V directly during fabrication, eliminating the need for post-processing treatments potentially for dental implants. By adjusting the Volumetric Energy Density (VED) through controlled variations in the laser scanning speed, we achieved customized surface textures at both the micro- and nanoscale levels. SLM samples fabricated at moderate VED levels (50–100 W·mm3/s) exhibited optimized dual-scale surface roughness—a macro-roughness of up to 25.5–27.6 µm and micro-roughness of as low as 58.8–64.2 nm—resulting in significantly enhanced hydrophilicity, with water contact angles (WCAs) decreasing to ~62°, compared to ~80° on a standard grade 5 machined Ti6Al4V plate. The XPS analysis revealed that the surface oxygen content remains relatively stable at low VED values, with no significant increase. The surface topography plays a significant role in influencing the WCA, particularly when the VED values are low (below 200 W·mm3/s) during SLM, indicating the dominant effect of surface morphology over chemistry in these conditions. Biological assays using osteoblast-like MG-63 cells demonstrated that these as-built SLM surfaces supported a 1.5-fold-higher proliferation and improved cytoskeletal organization relative to the control, confirming the enhanced early cellular responses. These results highlight the capability of SLM to engineer bioactive implant surfaces through process-controlled morphology and chemistry, presenting a promising strategy for the next generation of dental implants suitable for immediate placement and osseointegration. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

14 pages, 1706 KiB  
Communication
Enhancing Fatigue Life of Metal Parts Produced by High-Speed Laser Powder Bed Fusion Through In Situ Surface Quality Improvement
by Daniel Ordnung, Mirko Sinico, Thibault Mertens, Han Haitjema and Brecht Van Hooreweder
J. Manuf. Mater. Process. 2025, 9(7), 207; https://doi.org/10.3390/jmmp9070207 - 20 Jun 2025
Viewed by 314
Abstract
The poor surface quality of the metal parts produced by laser powder bed fusion limits their application in load-bearing components, as it promotes crack initiation under cyclic loadings. Consequently, improving part quality relies on time-consuming surface finishing. This work explores a dual-laser powder [...] Read more.
The poor surface quality of the metal parts produced by laser powder bed fusion limits their application in load-bearing components, as it promotes crack initiation under cyclic loadings. Consequently, improving part quality relies on time-consuming surface finishing. This work explores a dual-laser powder bed fusion strategy to simultaneously improve the productivity, surface quality, and fatigue life of parts with inclined up-facing surfaces made from a novel tool steel. This is achieved by combining building using a high layer thickness of 120 μm with in situ quality enhancement through powder removal and laser remelting. A bending fatigue campaign was conducted to assess the performance of such treated samples produced with different layer thicknesses (60 μm, hull-bulk 60/120 μm, 120 μm) compared to as-built and machined reference samples. Remelting consistently enhanced the fatigue life compared to the as-built reference samples by up to a factor of 36. The improvement was attributed to the reduced surface roughness, the reduced critical stress concentration factors, and the gradually changing surface features with increased lateral dimensions. This led to a beneficial load distribution and fewer potential crack initiation points. Finally, the remelting samples produced with a layer thickness of 120 μm enhanced the fatigue life by a factor of four and reduced the production time by 30% compared to the standard approach using a layer thickness of 60 μm. Full article
(This article belongs to the Special Issue Progress and Perspectives in Metal Laser Additive Manufacturing)
Show Figures

Graphical abstract

17 pages, 11140 KiB  
Article
Removing Alpha Case from Laser Powder Bed Fusion Components by Cavitation Abrasive Surface Finishing
by Rohin Petram, Conall Wisdom, Alex Montelione, Cole Nouwens, Dan Sanders, Mamidala Ramulu and Dwayne Arola
Materials 2025, 18(9), 1977; https://doi.org/10.3390/ma18091977 - 26 Apr 2025
Viewed by 466
Abstract
Laser powder bed fusion (L-PBF) has become a highly viable method for manufacturing metal structural components for a variety of industries. Despite many attractive qualities, the rough surfaces of L-PBF components often necessitates post-processing treatments to improve the surface finish. Furthermore, heat treatments [...] Read more.
Laser powder bed fusion (L-PBF) has become a highly viable method for manufacturing metal structural components for a variety of industries. Despite many attractive qualities, the rough surfaces of L-PBF components often necessitates post-processing treatments to improve the surface finish. Furthermore, heat treatments are generally necessary to control the microstructure and properties of L-PBF components, which can impart a detrimental surface oxide layer that requires removal. In this investigation, cavitation abrasive surface finishing (CASF) was adopted for the surface treatment of Ti6Al4V components produced by L-PBF and removal of the surface oxide layer. The surface texture, residual stress, and material removal were evaluated over a range of treatment conditions and as a function of the target surface orientation. Results showed that CASF reduced the average surface roughness from the as-built condition (Ra ≈ 15 µm) to below 5 µm as well as imparted a surface compressive residual stress of up to 600 MPa. The CASF treatment removed the alpha case from direct line-of-sight surfaces under a range of treatment intensity. However, deep valleys and surfaces at large oblique angles of incidence (≥60°) proved challenging to treat uniformly. Overall, results suggest that CASF could serve as a potent alternative to chemical treatments for post-processing of L-PBF components of titanium and other metals. Further investigation is recommended for improving the process effectiveness and to characterize the fatigue performance of the treated metal. Full article
(This article belongs to the Special Issue Development and Applications of Laser-Based Additive Manufacturing)
Show Figures

Figure 1

20 pages, 8855 KiB  
Article
Additive Manufacturing of High-Performance Ti-Mo Alloys Used on a Puncture Needle: The Role of Linear Energy Density in Microstructure Evolution and Mechanical Properties
by Xuesong Dai, Yue Sun and Jitai Han
Crystals 2025, 15(2), 149; https://doi.org/10.3390/cryst15020149 - 31 Jan 2025
Viewed by 862
Abstract
This study involved the preparation of dense Ti-10wt.%Mo alloys using selective laser melting (SLM) with a powder combination of pure titanium (Ti) and pure molybdenum (Mo). Integrating temperature stress numerical simulations and actual data elucidates the correlation between linear laser energy density and [...] Read more.
This study involved the preparation of dense Ti-10wt.%Mo alloys using selective laser melting (SLM) with a powder combination of pure titanium (Ti) and pure molybdenum (Mo). Integrating temperature stress numerical simulations and actual data elucidates the correlation between linear laser energy density and residual stress. The impact of linear energy density on the surface roughness, densification behavior, microstructural development, and mechanical properties of SLM-processed Ti-10Mo components was also examined. As linear energy density diminished from 0.125 J/mm to 0.233 J/mm, surface roughness reduced from 18.2 μm to 4.4 μm, while relative compactness increased from 94.9% to 99.8%, respectively. It is necessary to reduce the friction between the puncture needle or implant needle and human tissue, enhancing comfort and precision. The microstructural investigation revealed that SLM-processed Ti-10Mo alloys consist of a phase combination of hexagonal tight-packed (hcp) α-Ti and body-centered cubic (bcc) β-Ti, with heterogeneous conchoidal microstructures found in the samples. Furthermore, as the laser energy input increased, Mo powder particles were mostly fully melted, leading to a significant rise in the microhardness value. The as-built Ti-10Mo alloys exhibited a high ultimate tensile strength of 860 MPa and an elongation of 32.9% at a linear laser energy density of 0.15 J/mm, with the fracture morphology indicating a mixed fracture mode mostly characterized by ductile fracture. This research can enhance the prospective bio-application of Ti-Mo alloys. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

28 pages, 23489 KiB  
Article
Elevated-Temperature Tensile Behavior and Properties of Inconel 718 Fabricated by In-Envelope Additive–Subtractive Hybrid Manufacturing and Post-Process Precipitation Hardening
by Sheida Sarafan, Priti Wanjara, Roger Pelletier, Sila Ece Atabay, Javad Gholipour, Josh Soost, Robert Amos and Prakash Patnaik
J. Manuf. Mater. Process. 2024, 8(6), 297; https://doi.org/10.3390/jmmp8060297 - 21 Dec 2024
Cited by 2 | Viewed by 1470
Abstract
The present study focuses on advancing one of the most popular AM techniques, namely, laser powder bed fusion (LPBF) technology, which has the ability to produce complex geometry parts with minimum material waste but continues to face challenges in minimizing the surface roughness. [...] Read more.
The present study focuses on advancing one of the most popular AM techniques, namely, laser powder bed fusion (LPBF) technology, which has the ability to produce complex geometry parts with minimum material waste but continues to face challenges in minimizing the surface roughness. For this purpose, a novel hybrid manufacturing technology, which applies in a single setup (in-envelope) both LPBF technology and high-speed machining, was examined in this research for the fabrication of tensile specimens with three different surface finish conditions: as-built, hybrid (in-envelope machining) and post-machining (out-of-envelope) on Inconel® alloy 718, hereafter referred to as IN718. As the application of the IN718 alloy in service is typically specified in the precipitation-hardened condition, three different heat treatments were applied to the tensile specimens based on the most promising thermal cycles identified previously for room-temperature tensile properties by the authors. The as-built (AB) specimens had the highest average surface roughness (Ra) of 5.1 μm ± 1.6 μm, which was a significant improvement (five-fold) on the hybrid (1.0 μm ± 0.2 μm) and post-machined (0.8 μm ± 0.5 μm) surfaces. The influence of this surface roughness on the mechanical properties was studied both at ambient temperature and at 650 °C, which is close to the maximum service temperature of this alloy. Regardless of the surface conditions, the room-temperature mechanical properties of the as-fabricated IN718 specimens were within the range of properties reported for standard wrought IN718 in the annealed condition. Nonetheless, detailed examination of the strain localization behavior during tensile testing using digital image correlation showed that the IN718 specimens with AB surfaces exhibited lower ductility (global and local) relative to the hybrid and post-machined ones, most likely due to the higher surface roughness and near-surface porosity in the former. At 650 °C, even though the mechanical properties of all the heat-treated IN718 specimens surpassed the minimum specifications for the wrought precipitation-hardened IN718, the AB surface condition showed up to 4% lower strength and 33–50% lower ductility compared with the hybrid and PM surface conditions. Microfocus X-ray computed tomography (µXCT) of the fractured specimens revealed the presence of numerous open cracks on the AB surface and a predisposition for the near-surface pores to accelerate rupture, leading to premature failure at lower strains. Full article
(This article belongs to the Special Issue Industry 4.0: Manufacturing and Materials Processing)
Show Figures

Figure 1

14 pages, 13014 KiB  
Article
A Design Strategy for Surface Modification and Decarburization to Achieve Enhanced Mechanical Properties in Additively Manufactured Stainless Steel
by Soumya Sridar, Noah Sargent, Stephanie Prochaska, Mitra Shabani, Owen Hildreth and Wei Xiong
J. Manuf. Mater. Process. 2024, 8(6), 264; https://doi.org/10.3390/jmmp8060264 - 20 Nov 2024
Viewed by 1028
Abstract
Post-processing of additively manufactured components, including the removal of support structures and the reduction in surface roughness, presents significant challenges. Conventional milling struggles to access internal cavities, while the Self-Terminating Etching Process (STEP) offers a promising solution. STEP effectively smooths surfaces and dissolves [...] Read more.
Post-processing of additively manufactured components, including the removal of support structures and the reduction in surface roughness, presents significant challenges. Conventional milling struggles to access internal cavities, while the Self-Terminating Etching Process (STEP) offers a promising solution. STEP effectively smooths surfaces and dissolves supports without substantial changes in geometry. However, it can lead to compositional changes and precipitation, affecting the material properties and necessitating a design strategy to mitigate them. In this study, STEP is applied to stainless steel 316L (SS316L) produced via laser powder bed fusion, reducing surface roughness from 7 to 2 μm. After STEP, the surface carbon exhibited a threefold increase, leading to the formation of M23C6 clusters. This significantly impacted the yield strength, resulting in a 37% reduction compared to the as-built condition. The key to overcoming this challenge was using computational simulations, which guided the determination of the decarburization conditions: 1000 °C for 60 min, ensuring maximum M23C6 dissolution and surface carbon reduction with minimal grain coarsening. Following these conditions, the yield strength of SS316L was restored to the level observed in the as-built condition. These findings underscore the potential of the proposed design strategy to enhance the mechanical performance of additively manufactured components significantly. Full article
Show Figures

Figure 1

14 pages, 5999 KiB  
Article
Effect of Initial Surface Morphology and Laser Parameters on the Laser Polishing of Stainless Steel Manufactured by Laser Powder Bed Fusion
by Jiangwei Liu, Kangkang Zhao, Xiebin Wang and Hu Li
Materials 2024, 17(20), 4968; https://doi.org/10.3390/ma17204968 - 11 Oct 2024
Cited by 3 | Viewed by 1349
Abstract
The topological characteristics of the down-skin surfaces for as-built components by laser powder bed fusion (LPBF) are particularly representative, while the study on the improvement of the surface quality of these surfaces remains largely unexplored. Herein, the laser polishing of LPBF-built components with [...] Read more.
The topological characteristics of the down-skin surfaces for as-built components by laser powder bed fusion (LPBF) are particularly representative, while the study on the improvement of the surface quality of these surfaces remains largely unexplored. Herein, the laser polishing of LPBF-built components with different inclination angles was systematically investigated with an emphasis on the down-skin surfaces. Our result shows that the topography of the top surface is independent of the inclination angle, and the surface topography of the down-skin surface is dominated by additional angle-dependent surface characteristics. It also indicates that the surface roughness can be reduced sharply when increasing the laser power from 40 W to 60 W, and the reduction slows down when further increasing the laser power while decreasing the scanning speed leads to a progressive improvement of the surface morphology. Moreover, a second-order regression model was established to evaluate the influence of the initial surface morphology and polishing parameters on the polished surface roughness and to achieve surface roughness optimization. Therefore, our established methodology can be readily applied to surface morphology manipulation and process optimization for laser polishing of widely used metals and alloys fabricated by the additive manufacturing process. Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

17 pages, 5180 KiB  
Article
Performance of Atmospheric Plasma-Sprayed Thermal Barrier Coatings on Additively Manufactured Super Alloy Substrates
by Madhura Bellippady, Stefan Björklund, Xin-Hai Li, Robert Frykholm, Bjorn Kjellman, Shrikant Joshi and Nicolaie Markocsan
Coatings 2024, 14(5), 626; https://doi.org/10.3390/coatings14050626 - 15 May 2024
Cited by 1 | Viewed by 2013
Abstract
This work represents a preliminary study of atmospheric plasma-sprayed (APS) Yttria-Stabilized Zirconia (YSZ)-based thermal barrier coatings (TBCs) deposited on forged and additive manufactured (AM) HAYNES®282® (H282) superalloy substrates. The effect of different feedstock morphologies and spray gun designs with radial [...] Read more.
This work represents a preliminary study of atmospheric plasma-sprayed (APS) Yttria-Stabilized Zirconia (YSZ)-based thermal barrier coatings (TBCs) deposited on forged and additive manufactured (AM) HAYNES®282® (H282) superalloy substrates. The effect of different feedstock morphologies and spray gun designs with radial and axial injection on APS-deposited YSZ layer characteristics such as microstructure, porosity content, roughness, etc., has been investigated. The performance of TBCs in terms of thermal cycling fatigue (TCF) lifetime and erosion behaviour were also comprehensively investigated. In view of the high surface roughness of as-built AM surfaces compared to forged substrates, two different types of NiCoCrAlY bond coats were examined: one involved high-velocity air fuel (HVAF) spraying of a finer powder, and the other involved APS deposition of a coarser feedstock. Despite the process and feedstock differences, the above two routes yielded comparable bond coat surface roughness on both types of substrates. Variation in porosity level in the APS topcoat was observed when deposited using different YSZ feedstock powders employing axial or radial injection. However, the resultant TBCs on AM-derived substrates were observed to possess similar microstructures and functional properties as TBCs deposited on reference (forged) substrates for any given YSZ deposition process and feedstock. Full article
(This article belongs to the Special Issue Advances in Thermal Spray Coatings: Technologies and Applications)
Show Figures

Figure 1

15 pages, 4316 KiB  
Article
Evaluation of 3D Printing Orientation on Volume Parameters and Mechanical Properties of As-Build TI64ELI
by Lebogang Lebea, Dawood Desai, Harry Ngwangwa and Fulufhelo Nemavhola
Metals 2024, 14(4), 447; https://doi.org/10.3390/met14040447 - 11 Apr 2024
Cited by 1 | Viewed by 1688
Abstract
The discovery of the utility of various titanium alloys as implant biomaterials has resulted in these materials becoming far more popular than other metals in the medical world. However, the production of these materials using additive manufacturing has its own challenges some of [...] Read more.
The discovery of the utility of various titanium alloys as implant biomaterials has resulted in these materials becoming far more popular than other metals in the medical world. However, the production of these materials using additive manufacturing has its own challenges some of those being the surface finish that can be used as an implantology material. As such, the purpose of this study is to evaluate the influence of 3D-printed Ti64ELI on the as-built samples printed at 60°, 90°, and 180° orientations. Such studies are very limited, specifically in the development of the laser shock peening surface modification of dental implants. The study showed that each mechanical test that was performed contributes differently to the printing orientation, e.g., some tests yielded better properties when 180° printing orientation was used, and others had poorer properties when a 180° printing orientation was used. It was observed that 60° testing yielded a micro-hardness value of 349.6, and this value was increased by 0.37% when 90° orientation was measured. The lowest HV value was observed under a 180° orientation with 342.2 HV. The core material volume (Vmc) was 0.05266 mm3/mm2 at a 60° orientation, which increased by 11.48% for the 90° orientation. Furthermore, it was observed that the surface roughness (Sa) at 60° orientation was 43.68 μm. This was further increased by 6% when using the 90° orientation. Full article
Show Figures

Figure 1

24 pages, 5695 KiB  
Article
Modelling Asphalt Overlay As-Built Roughness Based on Profile Transformation—Case for Paver Using Automatic Levelling System
by Rodrigo Díaz-Torrealba, José Ramón Marcobal and Juan Gallego
Sensors 2024, 24(7), 2131; https://doi.org/10.3390/s24072131 - 27 Mar 2024
Cited by 1 | Viewed by 1367
Abstract
The as-built roughness, or smoothness obtained during pavement construction, plays an important role in road engineering since it serves as an indicator for both the level of service provided to users and the overall standard of construction quality. Being able to predict as-built [...] Read more.
The as-built roughness, or smoothness obtained during pavement construction, plays an important role in road engineering since it serves as an indicator for both the level of service provided to users and the overall standard of construction quality. Being able to predict as-built roughness is therefore important for supporting pavement design and management decision making. An as-built IRI prediction model for asphalt overlays based on profile transformation was proposed in a previous study. The model, used as basis for this work, was developed for the case of wheeled pavers without automatic screed levelling. This study presents further development of the base prediction model, including the use of an automatic screed control system through a long-distance averaging mobile reference. Formulation of linear systems that constitute the model are presented for the case of a wheeled paver using contactless acoustic sensors set-up over a floating levelling beam attached to the paver. To calibrate the model, longitudinal profile data from the Long-Term Pavement Performance SPS-5 experiment was used, obtaining a mean error of 0.17 m/km for the predicted IRI. The results obtained demonstrate the potential of the proposed approach as a modelling alternative. Full article
Show Figures

Figure 1

28 pages, 17574 KiB  
Article
The Effect of Laser Shock Peening (LSP) on the Surface Roughness and Fatigue Behavior of Additively Manufactured Ti-6Al-4V Alloy
by Krista Dyer, Samira Ghadar, Sanin Zulić, Danijela Rostohar, Ebrahim Asadi and Reza Molaei
Coatings 2024, 14(1), 110; https://doi.org/10.3390/coatings14010110 - 15 Jan 2024
Cited by 7 | Viewed by 2916
Abstract
Laser shock peening (LSP) uses plasma shock waves to induce compressive residual stress at the surface of a component which has the potential to improve its fatigue properties. For AM parts, the existence of internal defects, surface roughness, and tensile residual stresses leads [...] Read more.
Laser shock peening (LSP) uses plasma shock waves to induce compressive residual stress at the surface of a component which has the potential to improve its fatigue properties. For AM parts, the existence of internal defects, surface roughness, and tensile residual stresses leads to noticeably lower fatigue strength compared to materials produced through conventional processes. Furthermore, there is a tendency for greater scatter in the fatigue behavior of these parts when compared to traditionally manufactured components. In this study, the effect of LSP on the roughness and fatigue behavior of Ti-6Al-4V alloy constructed through Laser Powder Bed Fusion (L-PBF) technique was investigated. Two types of samples were designed and tested: as-built surface air foil samples for four-point bending tests and machined surface straight gage samples for uniaxial fatigue testing. Two sets of process parameters, optimized and non-optimized, were also used for the fabrication of each sample type. It was found that LSP had negative effects on the smooth (i.e., machined) surface samples, whereas for as-built surfaces the roughness was enhanced by decreasing the sharpness of the deep valleys and partially remelting the loosely bonded particles on the peaks. It was found that the scatter of the fatigue data decreased for optimized machined samples, while no clear improvement was observed in their lives. However, all non-optimized samples showed improvements in fatigue lives after the LSP process. Full article
Show Figures

Figure 1

22 pages, 1139 KiB  
Article
Indicators for Takt Production Performance Assessment—A Conceptual Study
by Kimmo Keskiniva, Arto Saari and Juha-Matti Junnonen
Buildings 2024, 14(1), 50; https://doi.org/10.3390/buildings14010050 - 23 Dec 2023
Cited by 3 | Viewed by 1708
Abstract
This conceptual study aims to produce rough analysis methods and visualizations for production data (formatted in time, location, and work) that can be collected from construction sites that utilize takt production. The scope is on creating methods for evaluating the soundness of the [...] Read more.
This conceptual study aims to produce rough analysis methods and visualizations for production data (formatted in time, location, and work) that can be collected from construction sites that utilize takt production. The scope is on creating methods for evaluating the soundness of the takt plan and its execution. Relevant production literature regarding takt production management and data collection are utilized in the production of the methods and visualizations. However, only imaginary production data are utilized in this study to keep the indicators as simplified and clear as possible. A total of seven indicators with varying levels of novelty are provided in the study. The proposed indicators emphasize punctual adherence to the takt schedule, homogenous production pace, avoiding trade overlapping in locations, steady work in process, and coherent short and long-term production targets. Both as-planned and as-built perspectives are considered. The proposed indicators are argued to be valuable for production management and research and development processes since they provide status information and document the progression of the production for later indicators purposes. This study also acts as a foundation for further empirical studies regarding takt production data utilization. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

17 pages, 11245 KiB  
Article
Fabrication of Electron Beam Melted Titanium Aluminide: The Effects of Machining Parameters and Heat Treatment on Surface Roughness and Hardness
by Murat Isik, Mehmet Yildiz, Ragip Orkun Secer, Ceren Sen, Guney Mert Bilgin, Akin Orhangul, Guray Akbulut, Hamidreza Javidrad and Bahattin Koc
Metals 2023, 13(12), 1952; https://doi.org/10.3390/met13121952 - 28 Nov 2023
Cited by 2 | Viewed by 2175
Abstract
Titanium aluminide alloys have gained attention for their lightweight and high-performance properties, particularly in aerospace and automotive applications. Traditional manufacturing methods such as casting and forging have limitations on part size and complexity, but additive manufacturing (AM), specifically electron beam melting (EBM), has [...] Read more.
Titanium aluminide alloys have gained attention for their lightweight and high-performance properties, particularly in aerospace and automotive applications. Traditional manufacturing methods such as casting and forging have limitations on part size and complexity, but additive manufacturing (AM), specifically electron beam melting (EBM), has overcome these challenges. However, the surface quality of AM parts is not ideal for sensitive applications, so post-processing techniques such as machining are used to improve it. The combination of AM and machining is seen as a promising solution. However, research on optimizing machining parameters and their impact on surface quality characteristics is lacking. Limited studies exist on additively manufactured TiAl alloys, necessitating further investigation into surface roughness during EBM TiAl machining and its relationship to cutting speed. As-built and heat-treated TiAl samples undergo machining at different feed rates and surface speeds. Profilometer analysis reveals worsened surface roughness in both heat-treated and non-heat-treated specimens at certain machining conditions, with higher speeds exacerbating edge cracks and material pull-outs. The hardness of the machined surfaces remains consistent within the range of 32–33.1 HRC at condition 3C (45 SFM and 0.1 mm/tooth). As-built hardness remains unchanged with increasing spindle and cutting head speeds. Conversely, heat-treated condition 3C surfaces demonstrate greater hardness than condition 1A (15 SFM, and 0.04 mm/tooth), indicating increased hardness with varying feed and surface speeds. This suggests crack formation in the as-built condition is considered to be influenced by factors beyond hardness, such as deformation-related grain refinement/strain hardening, while hardness and the existence of the α2 phase play a more significant role in heat-treated surfaces. Full article
(This article belongs to the Special Issue Additive Manufacturing of Titanium Alloys 2022)
Show Figures

Figure 1

13 pages, 4497 KiB  
Article
Performance Analysis of Additively Manufactured Hydraulic Check Valves with Different Postprocessing
by Agnieszka Klimek, Janusz Kluczyński and Jakub Łuszczek
Materials 2023, 16(23), 7302; https://doi.org/10.3390/ma16237302 - 24 Nov 2023
Viewed by 1291
Abstract
Due to the need to use very precise manufacturing processes, hydraulic applications are one of the most demanding parts in production. Such a feature requires using molded and properly machined parts. On the other hand, such an approach makes hydraulic parts very heavy [...] Read more.
Due to the need to use very precise manufacturing processes, hydraulic applications are one of the most demanding parts in production. Such a feature requires using molded and properly machined parts. On the other hand, such an approach makes hydraulic parts very heavy and requires the use of large amounts of material. One of the most promising manufacturing technologies that could be a real alternative to hydraulic parts production is additive manufacturing (AM). This paper aims to study how the AM process affects the performance properties of the as-built state, and investigate changes after different types of postprocessing in the case of hydraulic check valves. Based on the obtained results, using proper postprocessing is a crucial feature of obtaining check valves that perform their functions in a hydraulic system. In as-built parts, the surface roughness of the valve seats significantly exceeds the acceptable range (almost nine times—from 4.01 µm to 33.92 µm). The influence of the surface roughness of the valve seats was verified via opening pressure and internal leakage tests based on ISO standards. The opening pressures in all tested samples were similar to those in the conventionally made counterparts, but in the case of internal leakage only a fully finished AM valve revealed promising results. The obtained results could be useful for various enterprises that are seeking weight reduction possibilities for their low-volume manufactured products. Full article
(This article belongs to the Special Issue State-of-the-Art in Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop