Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = artificial membrane chromatography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8767 KiB  
Article
Lipidomic Landscapes of Cryopreserved Sperm from Alpine and Spanish–Creole Bucks
by Mustafa Bodu, Mustafa Hitit, Selamawit Woldesenbet, Muhammet Raşit Uğur, Zeynep Erdoğan, Olivia Chika Greenwood, Raheem Davian Murray, Andres Pech Cervantes and Erdoğan Memili
Animals 2025, 15(13), 1897; https://doi.org/10.3390/ani15131897 - 27 Jun 2025
Viewed by 515
Abstract
This study provides a comparative analysis of the post-thaw sperm lipidomic profiles of Alpine and Spanish–Creole goat breeds to explore breed-specific differences in fatty acid composition and their implications for sperm function and reproductive efficiency. Lipids were extracted from cryopreserved semen samples of [...] Read more.
This study provides a comparative analysis of the post-thaw sperm lipidomic profiles of Alpine and Spanish–Creole goat breeds to explore breed-specific differences in fatty acid composition and their implications for sperm function and reproductive efficiency. Lipids were extracted from cryopreserved semen samples of Alpine (n = 7) and Spanish–Creole (n = 4) mature bucks and subsequently analyzed by gas chromatography–mass spectrometry (GC-MS), with 21 fatty acids identified within the two breeds. Eight of these fatty acids, namely 13:0, 16:0, 18:0, 24:0, 14:1, 18:1 (cis-9), 24:1, and 18:2 showed significant differences (p < 0.05). The levels of 16:0, 18:0, 24:0, 18:1 (cis-9), 18:1, and 18:2 were higher in the Alpine breed, whereas the levels of 13:0, 14:1, and 24:1 were higher in the Spanish–Creole breed (p < 0.05). Of those, 16:0, 18:1 (cis-9), and 18:2 were both statistically and biologically significant (p < 0.05, FC > 2). Concentrations of the total fatty acids, total saturated fatty acids (Total-SFA), and total polyunsaturated fatty acids (Total-PUFA) were significantly higher in the Alpine breed, whereas the concentrations of the total cis-monounsaturated fatty acid (Total cis-MUFA) were significantly higher in the Spanish–Creole breed (p < 0.05). Network and pathway analyses revealed that 16:0, 18:1 (cis-9), and 18:2 contributed to the most central nodes of the lipidomic network, which may support membrane stability and cryotolerance. The lipidomic differences observed between breeds may be attributed to both genetic and environmental factors and may provide valuable tools for enhancing breeding strategies, artificial insemination programs, and sperm cryopreservation techniques. Full article
Show Figures

Figure 1

12 pages, 1374 KiB  
Article
Application of Biomimetic Chromatography and QSRR Approach for Characterizing Organophosphate Pesticides
by Katarzyna Ewa Greber, Karol Topka Kłończyński, Julia Nicman, Beata Judzińska, Kamila Jarzyńska, Yash Raj Singh, Wiesław Sawicki, Tomasz Puzyn, Karolina Jagiello and Krzesimir Ciura
Int. J. Mol. Sci. 2025, 26(5), 1855; https://doi.org/10.3390/ijms26051855 - 21 Feb 2025
Cited by 1 | Viewed by 989
Abstract
Biomimetic chromatography is a powerful tool used in the pharmaceutical industry to characterize the physicochemical properties of molecules during early drug discovery. Some studies have indicated that biomimetic chromatography may also be useful for the evaluation of toxicologically relevant molecules. In this study, [...] Read more.
Biomimetic chromatography is a powerful tool used in the pharmaceutical industry to characterize the physicochemical properties of molecules during early drug discovery. Some studies have indicated that biomimetic chromatography may also be useful for the evaluation of toxicologically relevant molecules. In this study, we evaluated the usefulness of the biomimetic chromatography approach for determining the lipophilicity, affinity to phospholipids, and bind to plasma proteins of selected organophosphate pesticides. Quantitative structure–retention relationship (QSRR) models were proposed to understand the structural features that influence the experimentally determined properties. ACD/labs, Chemicalize, and alvaDesc software were used to calculate theoretical descriptors. Multilinear regression was used as the regression type, and feature selection was supported by a genetic algorithm. The obtained QSRR models were validated internally and externally, and they demonstrated satisfactory performance with key statistical parameters ranged from 0.844 to 0.914 for R2 and 0.696–0.898 for R2ext, respectively, indicating good predictive ability. Full article
(This article belongs to the Special Issue Molecular Toxicology on the Environmental Impact of Pharmaceuticals)
Show Figures

Figure 1

20 pages, 10762 KiB  
Article
Biomimetic Chromatography/QSAR Investigations in Modeling Properties Influencing the Biological Efficacy of Phenoxyacetic Acid-Derived Congeners
by Małgorzata Janicka, Małgorzata Sztanke and Krzysztof Sztanke
Molecules 2025, 30(3), 688; https://doi.org/10.3390/molecules30030688 - 4 Feb 2025
Viewed by 896
Abstract
A hybrid method—combining liquid biomimetic chromatography techniques (immobilized artificial membrane chromatography and biopartitioning micellar chromatography) and Quantitative Structure–Activity Relationships—was used to derive helpful models for predicting selected biological properties such as penetration through the plant cuticle, the skin and the blood–brain barrier, and [...] Read more.
A hybrid method—combining liquid biomimetic chromatography techniques (immobilized artificial membrane chromatography and biopartitioning micellar chromatography) and Quantitative Structure–Activity Relationships—was used to derive helpful models for predicting selected biological properties such as penetration through the plant cuticle, the skin and the blood–brain barrier, and binding to human serum albumin of phenoxyacetic acid-derived congeners regarded as potential herbicides. Reliable, high-concept models were developed indicating the lipophilicity, polarizability, and sum of hydrogen bond donors and acceptors as properties that determine the biological efficacy of the title compounds. These models were validated by leave-one-out cross-validation. Modeling the toxicity of phenoxyacetic acid-derived congeners to red blood cells allowed the identification of the most toxic substances as well as those molecular descriptors that determine their hemolytic properties. Full article
Show Figures

Figure 1

28 pages, 927 KiB  
Article
Comprehensive Characterization of Phytochemical Composition, Membrane Permeability, and Antiproliferative Activity of Juglans nigra Polyphenols
by Rita Osztie, Tamás Czeglédi, Sarah Ross, Bence Stipsicz, Eszter Kalydi, Szabolcs Béni, Imre Boldizsár, Eszter Riethmüller, Szilvia E. Bősze and Ágnes Alberti
Int. J. Mol. Sci. 2024, 25(13), 6930; https://doi.org/10.3390/ijms25136930 - 25 Jun 2024
Cited by 2 | Viewed by 2118
Abstract
The aim of our study was the detailed polyphenol profiling of Juglans nigra and the characterization of the membrane permeability and antiproliferative properties of its main phenolics. A total of 161 compounds were tentatively identified in J. nigra bark, leaf, and pericarp extracts [...] Read more.
The aim of our study was the detailed polyphenol profiling of Juglans nigra and the characterization of the membrane permeability and antiproliferative properties of its main phenolics. A total of 161 compounds were tentatively identified in J. nigra bark, leaf, and pericarp extracts by ultrahigh-performance liquid chromatography–high-resolution tandem mass spectrometry (UHPLC-HR-MS/MS). Eight compounds including myricetin-3-O-rhamnoside (86), quercetin-3-O-rhamnoside (106), quercetin-3-O-xyloside (74), juglone (141), 1,2,3,4-tetrahydro-7,8-dihydroxy-4-oxonaphthalen-1-yl-6-O-galloyl-glucoside (92), ellagic acid (143), gallic acid (14), and ethyl gallate (58) were isolated from J. nigra pericarp. The in vitro antiproliferative activity of the isolated compounds was investigated against three human cancer cell lines, confirming that juglone (141) inhibits cell proliferation in all of them, and has similar activity as the clinical standards. The permeability of the isolated compounds across biological membranes was evaluated by the parallel artificial membrane permeability assay (PAMPA). Both juglone (141) and ethyl-gallate (58) showed positive results in the blood–brain-barrier-specific PAMPA-BBB study. Juglone (141) also possesses logPe values which indicates that it may be able to cross both the GI and BBB membranes via passive diffusion. Full article
Show Figures

Figure 1

20 pages, 2231 KiB  
Article
Phytochemical Investigation of Polyphenols from the Aerial Parts of Tanacetum balsamita Used in Transylvanian Ethnobotany and Parallel Artificial Membrane Permeability Assay
by Ágnes Alberti, Eszter Riethmüller, Csenge Anna Felegyi-Tóth, Szilvia Czigle, Dóra Czégényi, Rita Filep and Nóra Papp
Plants 2024, 13(12), 1652; https://doi.org/10.3390/plants13121652 - 14 Jun 2024
Cited by 1 | Viewed by 2090
Abstract
In this study, based on ethnobotanical data recorded in Transylvania, the polyphenolic compounds and the permeability of the aerial part’s extract of Tanacetum balsamita were investigated. Ultrahigh-performance liquid chromatography-tandem mass spectrometry was applied for the analysis of the extracts. Parallel artificial membrane permeability [...] Read more.
In this study, based on ethnobotanical data recorded in Transylvania, the polyphenolic compounds and the permeability of the aerial part’s extract of Tanacetum balsamita were investigated. Ultrahigh-performance liquid chromatography-tandem mass spectrometry was applied for the analysis of the extracts. Parallel artificial membrane permeability assay (PAMPA) for the gastrointestinal tract and the blood–brain barrier was conducted. In the ethanolic and aqueous extracts of the species traditionally used for wound, furuncle, and liver disorders, 92 polyphenols were characterized (e.g., flavonoid, hydroxycinnamic acid, catechin, dihydroxybenzoyl, lignan derivatives, and a monoterpene) including 54 compounds identified for the first time in the plant. In the PAMPA tests, eight components were shown to be capable of passive diffusion across the studied membranes. These include apigenin and seven methoxylated flavonoid derivatives. Based on these results, methoxylated flavonoids might promote the pharmacological potential of T. balsamita to be applied in the enhancement of novel remedies. Full article
Show Figures

Figure 1

18 pages, 2716 KiB  
Article
Age-Dependent Activation of Pannexin1 Function Contributes to the Development of Epileptogenesis in Autosomal Dominant Sleep-related Hypermotor Epilepsy Model Rats
by Kouji Fukuyama, Eishi Motomura and Motohiro Okada
Int. J. Mol. Sci. 2024, 25(3), 1619; https://doi.org/10.3390/ijms25031619 - 28 Jan 2024
Cited by 3 | Viewed by 1615
Abstract
To explore the processes of epileptogenesis/ictogenesis, this study determined the age-dependent development of the functional abnormalities in astroglial transmission associated with pannexin1-hemichannel using a genetic rat model of autosomal dominant sleep-related hypermotor epilepsy (ADSHE) named ‘S286L-TG’. Pannexin1 expression in the plasma membrane of [...] Read more.
To explore the processes of epileptogenesis/ictogenesis, this study determined the age-dependent development of the functional abnormalities in astroglial transmission associated with pannexin1-hemichannel using a genetic rat model of autosomal dominant sleep-related hypermotor epilepsy (ADSHE) named ‘S286L-TG’. Pannexin1 expression in the plasma membrane of primary cultured cortical astrocytes and the orbitofrontal cortex (OFC), which is an ADSHE focus region, were determined using capillary immunoblotting. Astroglial D-serine releases induced by artificial high-frequency oscillation (HFO)-evoked stimulation, the removal of extracellular Ca2+, and the P2X7 receptor agonist (BzATP) were determined using ultra-high performance liquid chromatography (UHPLC). The expressions of pannexin1 in the plasma membrane fraction of the OFC in S286L-TG at four weeks old were almost equivalent when compared to the wild type. The pannexin1 expression in the OFC of the wild type non-statistically decreased age-dependently, whereas that in S286L-TG significantly increased age-dependently, resulting in relatively increasing pannexin1 expression from the 7- (at the onset of interictal discharge) and 10-week-old (after the ADSHE seizure onset) S286L-TG compared to the wild type. However, no functional abnormalities of astroglial pannexin1 expression or D-serine release through the pannexin1-hemichannels from the cultured astrocytes of S286L-TG could be detected. Acutely HFO-evoked stimulation, such as physiological ripple burst (200 Hz) and epileptogenic fast ripple burst (500 Hz), frequency-dependently increased both pannexin1 expression in the astroglial plasma membrane and astroglial D-serine release. Neither the selective inhibitors of pannexin1-hemichannel (10PANX) nor connexin43-hemichannel (Gap19) affected astroglial D-serine release during the resting stage, whereas HFO-evoked D-serine release was suppressed by both inhibitors. The inhibitory effect of 10PANX on the ripple burst-evoked D-serine release was more predominant than that of Gap19, whereas fast ripple burst-evoked D-serine release was predominantly suppressed by Gap19 rather than 10PANX. Astroglial D-serine release induced by acute exposure to BzATP was suppressed by 10PANX but not by Gap19. These results suggest that physiological ripple burst during the sleep spindle plays important roles in the organization of some components of cognition in healthy individuals, but conversely, it contributes to the initial development of epileptogenesis/ictogenesis in individuals who have ADSHE vulnerability via activation of the astroglial excitatory transmission associated with pannexin1-hemichannels. Full article
(This article belongs to the Special Issue Molecular Research in Epilepsy and Epileptogenesis)
Show Figures

Figure 1

19 pages, 5588 KiB  
Article
Modeling the Blood-Brain Barrier Permeability of Potential Heterocyclic Drugs via Biomimetic IAM Chromatography Technique Combined with QSAR Methodology
by Małgorzata Janicka, Małgorzata Sztanke and Krzysztof Sztanke
Molecules 2024, 29(2), 287; https://doi.org/10.3390/molecules29020287 - 5 Jan 2024
Cited by 10 | Viewed by 2832
Abstract
Penetration through the blood-brain barrier (BBB) is desirable in the case of potential pharmaceuticals acting on the central nervous system (CNS), but is undesirable in the case of drug candidates acting on the peripheral nervous system because it may cause CNS side effects. [...] Read more.
Penetration through the blood-brain barrier (BBB) is desirable in the case of potential pharmaceuticals acting on the central nervous system (CNS), but is undesirable in the case of drug candidates acting on the peripheral nervous system because it may cause CNS side effects. Therefore, modeling of the permeability across the blood-brain barrier (i.e., the logarithm of the brain to blood concentration ratio, log BB) of potential pharmaceuticals should be performed as early as possible in the preclinical phase of drug development. Biomimetic chromatography with immobilized artificial membrane (IAM) and the quantitative structure-activity relationship (QSAR) methodology were successful in modeling the blood-brain barrier permeability of 126 drug candidates, whose experimentally-derived lipophilicity indices and computationally-derived molecular descriptors (such as molecular weight (MW), number of rotatable bonds (NRB), number of hydrogen bond donors (HBD), number of hydrogen bond acceptors (HBA), topological polar surface area (TPSA), and polarizability (α)) varied by class. The QSARs model established by multiple linear regression showed a positive effect of the lipophilicity (log kw, IAM) and molecular weight of the compound, and a negative effect of the number of hydrogen bond donors and acceptors, on the log BB values. The model has been cross-validated, and all statistics indicate that it is very good and has high predictive ability. The simplicity of the developed model, and its usefulness in screening studies of novel drug candidates that are able to cross the BBB by passive diffusion, are emphasized. Full article
(This article belongs to the Special Issue Heterocyclic Compounds for Drug Design and Drug Discovery)
Show Figures

Figure 1

17 pages, 1317 KiB  
Article
Evaluation of the Chemical Stability, Membrane Permeability and Antiproliferative Activity of Cyclic Diarylheptanoids from European Hornbeam (Carpinus betulus L.)
by Csenge Anna Felegyi-Tóth, Tímea Heilmann, Eszter Buda, Bence Stipsicz, Alexandra Simon, Imre Boldizsár, Szilvia Bősze, Eszter Riethmüller and Ágnes Alberti
Int. J. Mol. Sci. 2023, 24(17), 13489; https://doi.org/10.3390/ijms241713489 - 30 Aug 2023
Cited by 1 | Viewed by 1789
Abstract
Four cyclic diarylheptanoids—carpinontriols A (1) and B (2), giffonin X (3) and 3,12,17-trihydroxytricyclo [12.3.1.12,6]nonadeca-1(18),2(19),3,5,14,16-hexaene-8,11-dione (4)—were isolated from Carpinus betulus (Betulaceae). Chemical stability of the isolated diarylheptanoids was evaluated as a function of storage [...] Read more.
Four cyclic diarylheptanoids—carpinontriols A (1) and B (2), giffonin X (3) and 3,12,17-trihydroxytricyclo [12.3.1.12,6]nonadeca-1(18),2(19),3,5,14,16-hexaene-8,11-dione (4)—were isolated from Carpinus betulus (Betulaceae). Chemical stability of the isolated diarylheptanoids was evaluated as a function of storage temperature (−15, 5, 22 °C) and time (12 and 23 weeks). The effect of the solvent and the pH (1.2, 6.8, 7.4) on the stability of these diarylheptanoids was also investigated. Compounds 2 and 4 showed good stability both in aqueous and methanolic solutions at all investigated temperatures. Only 2 was stable at all three studied biorelevant pH values. Degradation products of 1 and 3 were formed by the elimination of a water molecule from the parent compounds, as confirmed by ultrahigh-performance liquid chromatography–high-resolution tandem mass spectrometry (UHPLC-HR-MS). The permeability of the compounds across biological membranes was evaluated by the parallel artificial membrane permeability assay (PAMPA). Compound 3 possesses a logPe value of −5.92 ± 0.04 in the blood–brain barrier-specific PAMPA-BBB study, indicating that it may be able to cross the blood–brain barrier via passive diffusion. The in vitro antiproliferative activity of the compounds was investigated against five human cancer cell lines, confirming that 1 inhibits cell proliferation in A2058 human metastatic melanoma cells. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

12 pages, 1179 KiB  
Article
Immobilized Keratin HPLC Stationary Phase—A Forgotten Model of Transdermal Absorption: To What Molecular and Biological Properties Is It Relevant?
by Anna Weronika Sobańska and Elżbieta Brzezińska
Pharmaceutics 2023, 15(4), 1172; https://doi.org/10.3390/pharmaceutics15041172 - 7 Apr 2023
Viewed by 1624
Abstract
Chromatographic retention data collected on immobilized keratin (KER) or immobilized artificial membrane (IAM) stationary phases were used to predict skin permeability coefficient (log Kp) and bioconcentration factor (log BCF) of structurally unrelated compounds. Models of both properties contained, apart from [...] Read more.
Chromatographic retention data collected on immobilized keratin (KER) or immobilized artificial membrane (IAM) stationary phases were used to predict skin permeability coefficient (log Kp) and bioconcentration factor (log BCF) of structurally unrelated compounds. Models of both properties contained, apart from chromatographic descriptors, calculated physico-chemical parameters. The log Kp model, containing keratin-based retention factor, has slightly better statistical parameters and is in a better agreement with experimental log Kp data than the model derived from IAM chromatography; both models are applicable primarily to non-ionized compounds.Based on the multiple linear regression (MLR) analyses conducted in this study, it was concluded that immobilized keratin chromatographic support is a moderately useful tool for skin permeability assessment.However, chromatography on immobilized keratin may also be of use for a different purpose—in studies of compounds’ bioconcentration in aquatic organisms. Full article
(This article belongs to the Special Issue Transdermal/Dermal Drug Delivery System)
Show Figures

Figure 1

13 pages, 1574 KiB  
Article
Computational Approach to Drug Penetration across the Blood-Brain and Blood-Milk Barrier Using Chromatographic Descriptors
by Wanat Karolina, Rojek Agata and Brzezińska Elżbieta
Cells 2023, 12(3), 421; https://doi.org/10.3390/cells12030421 - 27 Jan 2023
Cited by 2 | Viewed by 2021
Abstract
Drug penetration through biological barriers is an important aspect of pharmacokinetics. Although the structure of the blood-brain and blood-milk barriers is different, a connection can be found in the literature between drugs entering the central nervous system (CNS) and breast milk. This study [...] Read more.
Drug penetration through biological barriers is an important aspect of pharmacokinetics. Although the structure of the blood-brain and blood-milk barriers is different, a connection can be found in the literature between drugs entering the central nervous system (CNS) and breast milk. This study was created to reveal such a relationship with the use of statistical modelling. The basic physicochemical properties of 37 active pharmaceutical compounds (APIs) and their chromatographic retention data (TLC and HPLC) were incorporated into calculations as molecular descriptors (MDs). Chromatography was performed in a thin layer format (TLC), where the plates were impregnated with bovine serum albumin to mimic plasma protein binding. Two columns were used in high performance liquid chromatography (HPLC): one with immobilized human serum albumin (HSA), and the other containing an immobilized artificial membrane (IAM). Statistical methods including multiple linear regression (MLR), cluster analysis (CA) and random forest regression (RF) were performed with satisfactory results: the MLR model explains 83% of the independent variable variability related to CNS bioavailability; while the RF model explains up to 87%. In both cases, the parameter related to breast milk penetration was included in the created models. A significant share of reversed-phase TLC retention values was also noticed in the RF model. Full article
Show Figures

Figure 1

17 pages, 2138 KiB  
Article
Affinity of Compounds for Phosphatydylcholine-Based Immobilized Artificial Membrane—A Measure of Their Bioconcentration in Aquatic Organisms
by Anna W. Sobańska
Membranes 2022, 12(11), 1130; https://doi.org/10.3390/membranes12111130 - 11 Nov 2022
Cited by 6 | Viewed by 1656
Abstract
The BCF (bioconcentration factor) of solutes in aquatic organisms is an important parameter because many undesired chemicals enter the ecosystem and affect the wildlife. Chromatographic retention factor log kwIAM obtained from immobilized artificial membrane (IAM) HPLC chromatography with buffered, aqueous mobile [...] Read more.
The BCF (bioconcentration factor) of solutes in aquatic organisms is an important parameter because many undesired chemicals enter the ecosystem and affect the wildlife. Chromatographic retention factor log kwIAM obtained from immobilized artificial membrane (IAM) HPLC chromatography with buffered, aqueous mobile phases and calculated molecular descriptors obtained for a group of 120 structurally unrelated compounds were used to generate useful models of log BCF. It was established that log kwIAM obtained in the conditions described in this study is not sufficient as a sole predictor of bioconcentration. Simple, potentially useful models based on log kwIAM and a selection of readily available, calculated descriptors and accounting for over 88% of total variability were generated using multiple linear regression (MLR), partial least squares (PLS) regression and artificial neural networks (ANN). The models proposed in the study were tested on an external group of 120 compounds and on a group of 40 compounds with known experimental log BCF values. It was established that a relatively simple MLR model containing four independent variables leads to satisfying BCF predictions and is more intuitive than PLS or ANN models. Full article
Show Figures

Figure 1

1 pages, 182 KiB  
Abstract
Chromatographic Retention Factor Obtained on Immobilized Keratin Stationary Phase—What Molecular Properties Does It Encode?
by Anna Weronika Sobanska and Elżbieta Brzezińska
Med. Sci. Forum 2022, 14(1), 67; https://doi.org/10.3390/ECMC2022-13242 - 1 Nov 2022
Viewed by 759
Abstract
Chromatographic retention factors (log kKERATIN) of 33 molecules were obtained on an immobilized keratin stationary phase by Turowski and Kaliszan (J. Pharm. Biomed. Anal. 15, 1997, 1325–1333). Their objective was to develop a novel stationary phase that could be used to [...] Read more.
Chromatographic retention factors (log kKERATIN) of 33 molecules were obtained on an immobilized keratin stationary phase by Turowski and Kaliszan (J. Pharm. Biomed. Anal. 15, 1997, 1325–1333). Their objective was to develop a novel stationary phase that could be used to investigate the skin permeability coefficient of solutes (log Kp) in vitro. However, log kKERATIN is not a sufficiently good predictor of skin permeability coefficient to be used as a sole descriptor in log Kp models. Turowski and Kaliszan reported that this descriptor can be used in combination with the chromatographic retention factor obtained by Immobilized Artificial Membrane Chromatography (log kIAM) and the results of log Kp predictions using multiple linear regression (MLR) models are moderately satisfying. In this study, the values of log kKERATIN obtained by Turowski and Kaliszan were correlated with a set of descriptors calculated using SwissADME software. It was discovered that log kKERATIN encodes primarily lipophilicity, solubility, and molecular size descriptors, which are important factors governing the ability of compounds to cross the skin barrier. On the other hand, log kKERATIN does not correlate with polar surface area (PSA) and the molecule’s ability to form hydrogen bonds—which are important properties in the context of solutes’ skin permeability. It was concluded that log kKERATIN could be used as a descriptor in MLR models of log kpin combination with other parameters, such as PSA or H-bond descriptors. Full article
(This article belongs to the Proceedings of The 8th International Electronic Conference on Medicinal Chemistry)
17 pages, 34217 KiB  
Article
Evaluation of the In Vitro Wound-Healing Potential of Ayahuasca
by Joana Gonçalves, Ângelo Luís, Eugenia Gallardo and Ana Paula Duarte
Molecules 2022, 27(18), 5760; https://doi.org/10.3390/molecules27185760 - 6 Sep 2022
Cited by 3 | Viewed by 3042
Abstract
Ayahuasca is an Amazonian drink, which contains β-carboline alkaloids and N,N-dimethyltryptamine. The aim of this study was to evaluate the healing potential of decoctions of a commercial mixture, four individual plants and four mixtures of two plants used in the [...] Read more.
Ayahuasca is an Amazonian drink, which contains β-carboline alkaloids and N,N-dimethyltryptamine. The aim of this study was to evaluate the healing potential of decoctions of a commercial mixture, four individual plants and four mixtures of two plants used in the ayahuasca preparation. Thus, the cytotoxic potential of the samples was evaluated and a wound-healing assay was performed with a NHDF cell line. Subsequently, a parallel artificial membrane permeability assay was also performed, to verify if any psychoactive compound could be absorbed by skin fibroblasts. The integrity and permeability of the cell layer were also evaluated, using the transepithelial electrical resistance assay and Lucifer yellow permeability assay, respectively. The compounds absorbed by the cell layer were quantified by high-performance liquid chromatography coupled to a diode array detector. The results showed that only one sample showed cytotoxicity and all the others promoted the migration of skin fibroblasts. Additionally, it was also verified that β-carbolynic alkaloids and N,N-dimethyltriptamine were not absorbed by the cell layer, and in general, did not interfere with its permeability and integrity. To the best of our knowledge, this is the first study where ayahuasca’s wound-healing potential was evaluated. Full article
(This article belongs to the Special Issue Advances in Natural Products and Their Biological Activities)
41 pages, 2036 KiB  
Review
Liquid Chromatography on the Different Methods for the Determination of Lipophilicity: An Essential Analytical Tool in Medicinal Chemistry
by José X. Soares, Álvaro Santos, Carla Fernandes and Madalena M. M. Pinto
Chemosensors 2022, 10(8), 340; https://doi.org/10.3390/chemosensors10080340 - 18 Aug 2022
Cited by 40 | Viewed by 11140
Abstract
Lipophilicity is one of many parameters involved in the biological activity of drugs, as it affects their pharmacokinetic and pharmacodynamic behavior. Generally, lipophilicity is assessed by the partition coefficient of a compound between a nonpolar phase (n-octanol) and an aqueous phase [...] Read more.
Lipophilicity is one of many parameters involved in the biological activity of drugs, as it affects their pharmacokinetic and pharmacodynamic behavior. Generally, lipophilicity is assessed by the partition coefficient of a compound between a nonpolar phase (n-octanol) and an aqueous phase (water), expressed as P (partition coefficient) or as its decimal logarithm (Log P). The gold standard method for the experimental determination of Log P is the shake-flask method. In this context, chromatographic methods enable the direct and simple quantification of the partitioned compound between the two phases. This review discusses the use of liquid chromatography (LC) for direct and indirect determination of lipophilicity. Beyond the classical isotropic log P determination, methods for assessing anisotropic lipophilicity are also reviewed. Several examples are discussed that highlight the versatility of LC technique and current trends. The last section of this review focuses on a case study describing an experience of our group and emphasizing the dual role of LC in determining Log P. Full article
(This article belongs to the Collection Women Special Issue in Chemosensors and Analytical Chemistry)
Show Figures

Graphical abstract

17 pages, 1314 KiB  
Article
Accessing Lipophilicity and Biomimetic Chromatography Profile of Biologically Active Ingredients of Botanicals Used in the Treatment of Inflammatory Bowel Disease
by Mario-Livio Jeličić, Daniela Amidžić Klarić, Jelena Kovačić, Donatella Verbanac and Ana Mornar
Pharmaceuticals 2022, 15(8), 965; https://doi.org/10.3390/ph15080965 - 4 Aug 2022
Cited by 5 | Viewed by 3265
Abstract
In the present study, various procedures have been compared for the determination of lipophilicity, hydrophobicity, and plasma protein binding of curcuminoids, boswellic acids, andrographolides, and piperine as biologically active ingredients of botanicals used in IBD treatment. Our results have shown that IAM-HPLC assay [...] Read more.
In the present study, various procedures have been compared for the determination of lipophilicity, hydrophobicity, and plasma protein binding of curcuminoids, boswellic acids, andrographolides, and piperine as biologically active ingredients of botanicals used in IBD treatment. Our results have shown that IAM-HPLC assay is the most suitable one for lipophilicity determination of all analytes regardless of their class and botanical source. HSA-HPAC and AGP-HPAC assays revealed that all investigated compounds have a higher affinity for HSA which is the most abundant protein in human plasma. The high affinity of biologically active compounds to all biological structures (phospholipids and proteins) admonishes that their small portion is available for therapeutic effects in IBD patients. Our experimental research is complemented by various theoretical approaches based on different algorithms for pharmacokinetic properties prediction. The similarities between experimental and calculated values were evaluated using PCA and CA as a statistical tool. The statistical analysis implies that plasma protein binding is a complex process, and theoretical approaches still cannot fully replace experimental ones. Full article
Show Figures

Graphical abstract

Back to TopTop