Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = arrhenius-type constitutive model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 25395 KB  
Article
Hot Deformation and Predictive Modelling of β-Ti-15Mo Alloy: Linking Flow Stress, ω-Phase Evolution, and Thermomechanical Behaviour
by Arthur de Bribean Guerra, Alberto Moreira Jorge Junior, Guilherme Yuuki Koga and Claudemiro Bolfarini
Metals 2025, 15(8), 877; https://doi.org/10.3390/met15080877 - 6 Aug 2025
Viewed by 289
Abstract
This study investigates the hot deformation behaviour and flow stress prediction of metastable β-Ti-15Mo alloy, a promising material for biomedical applications requiring strength–modulus optimisation and thermomechanical tunability. Isothermal compression tests were performed within the temperature range of 923–1173 K and at strain rates [...] Read more.
This study investigates the hot deformation behaviour and flow stress prediction of metastable β-Ti-15Mo alloy, a promising material for biomedical applications requiring strength–modulus optimisation and thermomechanical tunability. Isothermal compression tests were performed within the temperature range of 923–1173 K and at strain rates of 0.17, 1.72, and 17.2 s1 to assess the material’s response under industrially relevant hot working conditions. The alloy showed significant sensitivity to temperature and strain rate, with dynamic recovery (DRV) and dynamic recrystallisation (DRX) dominating the softening behaviour depending on the conditions. A strain-compensated Arrhenius-type constitutive model was developed and validated, resulting in an apparent activation energy of approximately 234 kJ/mol. Zener–Hollomon parameter analysis confirmed a transition in deformation mechanisms. Although microstructural and diffraction data suggest possible contributions from nanoscale phase transformations, including ω-phase dissolution at high temperatures, these aspects remain to be fully elucidated. The model offers reliable predictions of flow behaviour and supports optimisation of thermomechanical processing routes for biomedical β-Ti alloys. Full article
(This article belongs to the Special Issue Hot Forming/Processing of Metals and Alloys)
Show Figures

Graphical abstract

28 pages, 3272 KB  
Review
Research Advancements in High-Temperature Constitutive Models of Metallic Materials
by Fengjuan Ding, Tengjiao Hong, Fulong Dong and Dong Huang
Crystals 2025, 15(8), 699; https://doi.org/10.3390/cryst15080699 - 31 Jul 2025
Viewed by 1464
Abstract
The constitutive model is widely employed to characterize the rheological properties of metallic materials under high-temperature conditions. It is typically derived from a series of high-temperature tests conducted at varying deformation temperatures, strain rates, and strains, including hot stretching, hot compression, separated Hopkinson [...] Read more.
The constitutive model is widely employed to characterize the rheological properties of metallic materials under high-temperature conditions. It is typically derived from a series of high-temperature tests conducted at varying deformation temperatures, strain rates, and strains, including hot stretching, hot compression, separated Hopkinson pressure bar testing, and hot torsion. The original experimental data used for establishing the constitutive model serves as the foundation for developing phenomenological models such as Arrhenius and Johnson–Cook models, as well as physical-based models like Zerilli–Armstrong or machine learning-based constitutive models. The resulting constitutive equations are integrated into finite element analysis software such as Abaqus, Ansys, and Deform to create custom programs that predict the distributions of stress, strain rate, and temperature in materials during processes such as cutting, stamping, forging, and others. By adhering to these methodologies, we can optimize parameters related to metal processing technology; this helps to prevent forming defects while minimizing the waste of consumables and reducing costs. This study provides a comprehensive overview of commonly utilized experimental equipment and methods for developing constitutive models. It discusses various types of constitutive models along with their modifications and applications. Additionally, it reviews recent research advancements in this field while anticipating future trends concerning the development of constitutive models for high-temperature deformation processes involving metallic materials. Full article
Show Figures

Figure 1

15 pages, 3980 KB  
Article
Four-Dimensional-Printed Woven Metamaterials for Vibration Reduction and Energy Absorption in Aircraft Landing Gear
by Xiong Wang, Changliang Lin, Liang Li, Yang Lu, Xizhe Zhu and Wenjie Wang
Materials 2025, 18(14), 3371; https://doi.org/10.3390/ma18143371 - 18 Jul 2025
Viewed by 419
Abstract
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent [...] Read more.
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent to traditional textile preforms. Six distinct braided structural units (types 1–6) were devised based on periodic trigonometric functions (Y = A sin(12πX)), and integrated with shape memory polylactic acid (SMP-PLA), thereby achieving a synergistic combination of topological architecture and adaptive response characteristics. Compression tests reveal that reducing strip density to 50–25% (as in types 1–3) markedly enhances energy absorption performance, achieving a maximum specific energy absorption of 3.3 J/g. Three-point bending tests further demonstrate that the yarn amplitude parameter A is inversely correlated with load-bearing capacity; for instance, the type 1 structure (A = 3) withstands a maximum load stress of 8 MPa, representing a 100% increase compared to the type 2 structure (A = 4.5). A multi-branch viscoelastic constitutive model elucidates the temperature-dependent stress relaxation behavior during the glass–rubber phase transition and clarifies the relaxation time conversion mechanism governed by the Williams–Landel–Ferry (WLF) and Arrhenius equations. Experimental results further confirm the shape memory effect, with the type 3 structure fully recovering its original shape within 3 s under thermal stimulation at 80 °C, thus addressing the non-reusability issue of conventional energy-absorbing structures. This work establishes a new paradigm for the design of impact-resistant aviation components, particularly in the context of anti-collision structures and reusable energy absorption systems for eVTOL aircraft. Future research should further investigate the regulation of multi-stimulus response behaviors and microstructural optimization to advance the engineering application of smart textile metamaterials in aviation protection systems. Full article
Show Figures

Figure 1

17 pages, 12082 KB  
Article
Microstructural Analysis and Constitutive Modeling of Superplastic Deformation Behavior of Al-Mg-Zn-Cu-Zr-xNi Alloys with Different Ni Contents
by Zarnigor S. Turaeva, Ahmed O. Mosleh, Olga A. Yakovtseva, Anton D. Kotov and Anastasia V. Mikhaylovskaya
Metals 2025, 15(1), 45; https://doi.org/10.3390/met15010045 - 5 Jan 2025
Cited by 2 | Viewed by 1277
Abstract
Superplastic forming is a process that enables the production of complex-shaped parts using metallic alloys. To design the optimal forming regimes and ensure the success of forming operations, it is essential to use mathematical models that accurately represent the superplastic deformation behavior. This [...] Read more.
Superplastic forming is a process that enables the production of complex-shaped parts using metallic alloys. To design the optimal forming regimes and ensure the success of forming operations, it is essential to use mathematical models that accurately represent the superplastic deformation behavior. This paper is concerned with the study of the microstructure and superplastic deformation behavior, with the construction of a constitutive model, of Al-Mg-Zn-Cu-Zr aluminum alloys with varying Ni contents. The aluminum solid solution and coarse precipitates of the T(Mg32(Al,Zn)49 and Al3Ni second phases were formed in the studied alloy and Cu dissolved in both second phases. The deformation behavior was investigated in the temperature range of 400–480 °C and the strain rate range of 10−3–10−1 s−1. Due to the fine Al3Zr precipitates, the alloys exhibit a partially recrystallized grain structure before the onset of superplastic deformation. Coarse precipitates of the second phases facilitate dynamic recrystallization and enhance superplasticity at the strain rates and temperatures studied. The alloys with ~6–9% particles exhibit high-strain-rate superplasticity at temperatures of 440–480 °C and strain rates of 10−2–10−1 s−1. The presence of high fractions of ~9% Al3(Ni,Cu) and ~3% T-phase precipitates provided high-strain-rate superplasticity with elongations of 700–800% at a low temperature of 400 °C. An Arrhenius-type constitutive model with good agreement between the predicted and experimental flow stresses was developed for the alloys with different Ni contents. Full article
(This article belongs to the Special Issue Advanced Forming Process of Light Alloy)
Show Figures

Figure 1

23 pages, 17855 KB  
Article
Constitutive Modelling Analysis and Hot Deformation Process of AISI 8822H Steel
by Khaled Elanany, Wojciech Borek and Saad Ebied
Materials 2024, 17(23), 5713; https://doi.org/10.3390/ma17235713 - 22 Nov 2024
Viewed by 878
Abstract
This study used the Gleeble 3800 thermomechanical simulator to examine the hot deformation characteristics of AISI 8822H steel. The main goal was to understand the alloy’s behaviour under various thermomechanical settings, emphasising temperature ranges between 1173 K and 1323 K and strain rates [...] Read more.
This study used the Gleeble 3800 thermomechanical simulator to examine the hot deformation characteristics of AISI 8822H steel. The main goal was to understand the alloy’s behaviour under various thermomechanical settings, emphasising temperature ranges between 1173 K and 1323 K and strain rates from 0.01 s−1 to 10 s−1. This study aimed to enhance the alloy’s manufacturing process by offering a thorough understanding of the material’s response to these conditions. Four various constitutive models—Arrhenius-type, Johnson–Cook, modified Johnson–Cook, and Trimble—were used in a comprehensive technique to forecast flow stress values in order to meet the study’s goals. The accuracy of each model in forecasting the behaviour of the material under the given circumstances was assessed. A thorough comparison investigation revealed that the Trimble model was the most accurate model allowing prediction of material behaviour, with the maximum correlation factor (R = 0.99) and at least average absolute relative error (1.7%). On the other hand, the Johnson–Cook model had the least correlation factor (R = 0.92) and the maximum average absolute relative error (32.2%), indicating that it was the least accurate because it could not account for all softening effects. Full article
(This article belongs to the Special Issue Progress in Plastic Deformation of Metals and Alloys (Second Volume))
Show Figures

Figure 1

15 pages, 4836 KB  
Article
Constitutive Model for Thermal-Oxygen-Aged EPDM Rubber Based on the Arrhenius Law
by Xiaoling Hu, Xing Yang, Xi Jiang and Kui Song
Polymers 2024, 16(18), 2608; https://doi.org/10.3390/polym16182608 - 14 Sep 2024
Cited by 5 | Viewed by 1914
Abstract
Ethylene-propylene-diene monomer (EPDM) is a key engineering material; its mechanical characterization is important for the safe use of the material. In this paper, the coupled effects of thermal degradation temperature and time on the tensile mechanical behavior of EPDM rubber were investigated. The [...] Read more.
Ethylene-propylene-diene monomer (EPDM) is a key engineering material; its mechanical characterization is important for the safe use of the material. In this paper, the coupled effects of thermal degradation temperature and time on the tensile mechanical behavior of EPDM rubber were investigated. The tensile stress-strain curves of the aged and unaged EPDM rubber show strong nonlinearity, demonstrating especially rapid stiffening as the strain increases under small deformation. The popular Mooney–Rivlin and Ogden (N = 3) models were chosen to fit the test data, and the results indicate that neither of the classical models can accurately describe the tensile mechanical behavior of this rubber. Six hyperelastic constitutive models, which are excellent for rubber with highly nonlinearity, were employed, and their abilities to reproduce the stress-strain curve of the unaged EPDM were assessed. Finally, the Davis–De–Thomas model was found to be an appropriate hyperelastic model for EPDM rubber. A Dakin-type kinetic relationship was employed to describe the relationships between the model parameters and aging temperature and time, and, combined with the Arrhenius law, a thermal aging constitutive model for EPDM rubber was established. The ability of the proposed model was checked by independent testing data. In the moderate strain range of 200%, the errors remained below 10%. The maximum errors of the prediction results at 85 °C for 4 days and 100 °C for 2 and 4 days were computed to be 17.06%, 17.51% and 19.77%, respectively. This work develops a theoretical approach to predicting the mechanical behavior of rubber material that has suffered thermal aging; this approach is helpful in determining the safe long-term use of the material. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

18 pages, 11847 KB  
Article
Hot Workability and Microstructure Evolution of Homogenized 2050 Al-Cu-Li Alloy during Hot Deformation
by Zhiyong Sheng, Yuanchun Huang, Yongxing Zhao, Rong Fu, Xucheng Wang, Xi Fan and Fan Wu
Materials 2024, 17(17), 4236; https://doi.org/10.3390/ma17174236 - 27 Aug 2024
Viewed by 1383
Abstract
For this article, hot compression tests were carried out on homogenized 2050 Al-Cu-Li alloys under different deformation temperatures and strain rates, and an Arrhenius-type constitutive model with strain compensation was established to accurately describe the alloy flow behavior. Furthermore, thermal processing maps were [...] Read more.
For this article, hot compression tests were carried out on homogenized 2050 Al-Cu-Li alloys under different deformation temperatures and strain rates, and an Arrhenius-type constitutive model with strain compensation was established to accurately describe the alloy flow behavior. Furthermore, thermal processing maps were created and the deformation mechanisms in different working regions were revealed by microstructural characterization. The results showed that most of the deformed grains orientated toward <101>//CD (CD: compression direction) during the hot compression process, and, together with some dynamic recovery (DRV), dynamic recrystallization (DRX) occurred. The appearance of large-scale DRX grains at low temperatures rather than in high-temperature conditions is related to the particle-stimulated nucleation mechanism, due to the dynamic precipitation that occurs during the deformation process. The hot-working diagrams with a true strain of 0.8 indicated that the high strain-rate regions C (300 °C–400 °C, 0.1–1 s−1) and D (440 °C–500 °C, 0.1–1 s−1) are unfavorable for the processing of 2050 Al-Li alloys, owing to the flow instability caused by local deformation banding, microcracks, and micro-voids. The optimum processing region was considered to be 430 °C–500 °C and 0.1 s−1–0.001 s−1, with a dissipation efficiency of more than 30%, dominated by DRV and DRX; the DRX mechanisms are DDRX and CDRX. Full article
Show Figures

Figure 1

40 pages, 24981 KB  
Article
Modeling Strain Hardening of Metallic Materials with Sigmoidal Function Considering Temperature and Strain Rate Effects
by Boyu Pan, Fuhui Shen, Sanjay Raghav Sampathkumar and Sebastian Münstermann
Materials 2024, 17(16), 3950; https://doi.org/10.3390/ma17163950 - 8 Aug 2024
Cited by 2 | Viewed by 2077
Abstract
This study uses a sigmoidal function to describe the plastic strain hardening of metallic materials, considering temperature and strain rate effects. The effectiveness of this approach is evaluated and systematically compared with other hardening laws. Incorporating temperature and strain rate effects into the [...] Read more.
This study uses a sigmoidal function to describe the plastic strain hardening of metallic materials, considering temperature and strain rate effects. The effectiveness of this approach is evaluated and systematically compared with other hardening laws. Incorporating temperature and strain rate effects into the parameters of this sigmoidal-type hardening law enables a more precise description and prediction of the plastic deformation of materials under different combinations of temperature and strain rate. The temperature effect is coupled using a simplified Arrhenius model, and the strain rate effect is coupled with a modified Johnson–Cook model. The sigmoidal-type hardening law is integrated with an asymmetric yield criterion to address complex behavior, such as anisotropy and strength differential effects. The calibration and validation of the constitutive model involve examining uniaxial tensile/compressive flow curves in various directions and biaxial tensile/compressive flow curves for diverse metallic alloys, proving the proposed model’s broad applicability. Full article
Show Figures

Figure 1

28 pages, 2843 KB  
Article
Theoretical Model of Structural Phase Transitions in Al-Cu Solid Solutions under Dynamic Loading Using Machine Learning
by Natalya Grachyova, Eugenii Fomin and Alexander Mayer
Dynamics 2024, 4(3), 526-553; https://doi.org/10.3390/dynamics4030028 - 12 Jul 2024
Cited by 1 | Viewed by 1526
Abstract
The development of dynamic plasticity models with accounting of interplay between several plasticity mechanisms is an urgent problem for the theoretical description of the complex dynamic loading of materials. Here, we consider dynamic plastic relaxation by means of the combined action of dislocations [...] Read more.
The development of dynamic plasticity models with accounting of interplay between several plasticity mechanisms is an urgent problem for the theoretical description of the complex dynamic loading of materials. Here, we consider dynamic plastic relaxation by means of the combined action of dislocations and phase transitions using Al-Cu solid solutions as the model materials and uniaxial compression as the model loading. We propose a simple and robust theoretical model combining molecular dynamics (MD) data, theoretical framework and machine learning (ML) methods. MD simulations of uniaxial compression of Al, Cu and Al-Cu solid solutions reveal a relaxation of shear stresses due to a combination of dislocation plasticity and phase transformations with a complete suppression of the dislocation activity for Cu concentrations in the range of 30–80%. In particular, pure Al reveals an almost complete phase transition from the FCC (face-centered cubic) to the BCC (body-centered cubic) structure at a pressure of about 36 GPa, while pure copper does not reveal it at least till 110 GPa. A theoretical model of stress relaxation is developed, taking into account the dislocation activity and phase transformations, and is applied for the description of the MD results of an Al-Cu solid solution. Arrhenius-type equations are employed to describe the rates of phase transformation. The Bayesian method is applied to identify the model parameters with fitting to MD results as the reference data. Two forward-propagation artificial neural networks (ANNs) trained by MD data for uniaxial compression and tension are used to approximate the single-valued functions being parts of constitutive relation, such as the equation of state (EOS), elastic (shear and bulk) moduli and the nucleation strain distance function describing dislocation nucleation. The developed theoretical model with machine learning can be further used for the simulation of a shock-wave structure in metastable Al-Cu solid solutions, and the developed method can be applied to other metallic systems, including high-entropy alloys. Full article
Show Figures

Figure 1

17 pages, 934 KB  
Article
Shipwrecked on the Rock, or Not Quite: Gypsophytes and Edaphic Islands
by Juan F. Mota, Fabián Martínez-Hernández, Francisco Javier Pérez-García, Antonio Jesús Mendoza-Fernández, Esteban Salmerón-Sánchez and M. Encarna Merlo
Plants 2024, 13(7), 970; https://doi.org/10.3390/plants13070970 - 27 Mar 2024
Cited by 3 | Viewed by 1600
Abstract
Species–area relationships (SAR) constitute a key aspect of ecological theory and are integral to other scientific disciplines, such as biogeography, which have played a crucial role in advancing biology. The theory of insular biogeography provides a clear example. This theory initially expanded from [...] Read more.
Species–area relationships (SAR) constitute a key aspect of ecological theory and are integral to other scientific disciplines, such as biogeography, which have played a crucial role in advancing biology. The theory of insular biogeography provides a clear example. This theory initially expanded from true islands to other types of systems characterized by their insularity. One such approach was linked to geoedaphic islands, as seen in gypsum outcrops. While these continental areas have been considered insular systems, only limited and mostly indirect evidence thereof has been provided. This study utilized SAR to advance the understanding of gypsum outcrops as insular continental territories. It is hereby hypothesized that gypsum outcrops are edaphic islands, although their insular nature depends on the different functional or ecological plant types, and this nature will be reflected in the potential Arrhenius model z values. The results obtained support both hypotheses and provide insight into the ecological factors that help interpret the insularity of these areas. This interpretation goes beyond their mere extent and the distance among outcrops, emphasizing the importance of environmental filters. Said filters vary in permeability depending on the degree of gypsophily, or preference for gypsum, exhibited by different species. Full article
(This article belongs to the Special Issue Taxonomy, Biodiversity and Ecology of Mediterranean Plants)
Show Figures

Figure 1

17 pages, 17592 KB  
Article
Thermal Deformation Behavior and Microstructural Evolution of Multicomponent Mg-Li-Zn-Al-Y Alloys under Hot Compression
by Kun Yang, Weiwu Bai, Bin Li, Hao Chen, Guo Li, Guobing Wei and Junwei Liu
Materials 2024, 17(2), 489; https://doi.org/10.3390/ma17020489 - 19 Jan 2024
Cited by 2 | Viewed by 1336
Abstract
High-temperature compression tests on Mg-11.5Li-2.5Zn-0.35Al-0.3Y (in wt.%) were carried out on a Gleeble-3500 thermal simulator. Flow stress and microstructural evolution were analyzed at different temperatures (T = 473 K, 523 K, 573 K, and 623 K) and strain rates (ε˙ = [...] Read more.
High-temperature compression tests on Mg-11.5Li-2.5Zn-0.35Al-0.3Y (in wt.%) were carried out on a Gleeble-3500 thermal simulator. Flow stress and microstructural evolution were analyzed at different temperatures (T = 473 K, 523 K, 573 K, and 623 K) and strain rates (ε˙ = 1 s−1, 0.1 s−1, 0.01 s−1, and 0.001 s−1). On this basis, the constitutive model of the alloy was established using the Arrhenius-type constitutive model, and the thermal processing map of the alloy was drawn based on the DMM (dynamic material modeling) theory. The experimental results show that the flow stress of the Mg-11.5Li-2.5Zn-0.35Al-0.3Y alloy decreases with an increase in temperature and a decrease in strain rate. The grain size increases uniformly with the increase in temperature, while a sudden increase occurs with the decrease in strain rate. The predicted value of the model is compared with the experimental value to verify the correctness of the model, and the correlation coefficient, R = 0.9690, was calculated, which further proves the applicability of the model to the Mg-11.5Li-2.5Zn-0.35Al-0.3Y alloy. This alloy can be safely plastic-deformed 473 K~623 K and 0.001 s−1~1 s−1. Full article
Show Figures

Figure 1

12 pages, 2235 KB  
Article
Hot Deformation Behavior of Fe40Mn20Cr20Ni20 Medium-Entropy Alloy
by Zhen Wang, Qixin Ma, Zhouzhu Mao, Xikou He, Lei Zhao, Hongyan Che and Junwei Qiao
Metals 2024, 14(1), 32; https://doi.org/10.3390/met14010032 - 28 Dec 2023
Cited by 1 | Viewed by 1532
Abstract
Fe40Mn20Cr20Ni20 medium-entropy alloy (MEA) has a single-phase crystal structure with high strength and good ductility at room temperature. It is important to study the hot deformation behavior for this alloy at a partially recrystallized state for [...] Read more.
Fe40Mn20Cr20Ni20 medium-entropy alloy (MEA) has a single-phase crystal structure with high strength and good ductility at room temperature. It is important to study the hot deformation behavior for this alloy at a partially recrystallized state for possible high-temperature applications. In this investigation, the tensile tests were conducted on sheet materials treated via cold rolling combined with annealing at strain rates of 1 × 10−3–1 × 10−1 s−1 and deformation temperatures of 573–873 K. And the hyperbolic sine model was used to study the relationship between the peak stress, deformation energy storage and Zener–Hollomon parameter (Z parameter) of Fe40Mn20Cr20Ni20 medium-entropy alloys under high-temperature tension. According to the Arrhenius-type model, the constitutive equation of the alloys based on the flow stress was constructed, and the deformation activation energy and material parameters under different strain conditions were obtained. Based on the power dissipation theory and the instability criterion of the dynamic material model, the power dissipation diagram and the instability diagram were constructed, and the hot working map with a strain of 0.1 was obtained. The results show that the hyperbolic sine relation between the peak stress and Zener–Hollomon parameters can be well satisfied, and the deformation activation energy Q is 242.51 KJ/mol. Finally, the excellent thermo-mechanical processing range is calculated based on the hot working map. The flow instability region is 620–700 K and the strain rate is 2 × 10−3–4 × 10−3 s−1, as well as in the range of 787–873 K and 2 × 10−3–2.73 × 10−2 s−1. The optimum thermo-mechanical window is 850–873 K, ε˙ = 1 × 10−3–2 × 10−3 s−1. Full article
(This article belongs to the Special Issue Feature Papers in Entropic Alloys and Meta-Metals)
Show Figures

Figure 1

23 pages, 26158 KB  
Article
Investigation of the Hot Deformation Behavior and Mechanism of a Medium-Entropy CoCr0.4NiSi0.3 Alloy
by Li Zhang, Hui Zhao, Lijia Chen, Feng Li, Weiqiang Zhang, Ge Zhou, Haoyu Zhang and Ningning Geng
Crystals 2024, 14(1), 3; https://doi.org/10.3390/cryst14010003 - 19 Dec 2023
Cited by 3 | Viewed by 1486
Abstract
The CoCrNi-based medium-entropy alloys (MEA) have been extensively investigated due to their exceptional mechanical properties at both room and cryogenic temperatures. To investigate the hot deformation behavior and the recrystallization mechanism of the CoCr0.4NiSi0.3 medium-entropy alloy, a series of deformation [...] Read more.
The CoCrNi-based medium-entropy alloys (MEA) have been extensively investigated due to their exceptional mechanical properties at both room and cryogenic temperatures. To investigate the hot deformation behavior and the recrystallization mechanism of the CoCr0.4NiSi0.3 medium-entropy alloy, a series of deformation tests was conducted using the MMS-100 thermal simulation tester, with deformation conditions of 0.001–1 s−1/850–1150 °C. During the hot deformation process, the flow stress initially increases up to its peak value before gradually decreasing towards a steady state level. Higher flow stress levels are observed with increasing strain rate and decreasing deformation temperature. The estimated activation energy for hot deformation of this alloy is approximately 423.6602 kJ/mol. The Arrhenius-type constitutive equation is utilized to establish a modified model while incorporating power dissipation theory and the instability criterion of a dynamic material model to construct power dissipation maps and instability maps. By superimposing these maps, hot processing maps with strains of 0.4, 0.5, and 0.7 are derived. In this investigation, it is observed that regions of instability exclusively occur when the true strain exceeds 0.4. These regions of instability on the hot processing map align well with experimental findings. The suitable range of parameters for hot-working decreases as the true strain increases. The microstructure was analyzed using electron backscatter diffraction and transmission electron microscopy (TEM) techniques. The volume fraction of dynamic recrystallization (DRX) decreases with increasing strain rate but diminishes with rising temperature. The TEM characterization elucidated the mechanism of DRX in this MEA. The presence of the long-period stacking ordered (LPSO) phase was observed in both the face-centered cubic matrix and hexagonal close-packed recrystallized grains under different deformation conditions. The LPSO phase originates from the matrix at a low strain rate, whereas it is generated during recrystallization at a high strain rate. The observed increase in flow stress of the as-cast MEA is primarily attributed to the synergistic effects arising from the interaction of the dislocation with twins and the second phase. The onset of instability is effectively suppressed within a limited range through the formation of coherent second phases such as L12, LPSO, and superlattice structures resulting from phase transitions. These second phases serve as nucleation sites for recrystallization and contribute to the strengthening of dispersion. Furthermore, their interaction with dislocations and twins significantly influences both flow stress behavior and recrystallization kinetics under hot deformation. These findings not only deepen our understanding of the underlying deformation mechanisms governing MEA but also offer valuable insights for designing CoCrNi-based alloys with improved mechanical properties at elevated temperatures. Full article
(This article belongs to the Special Issue Deformation and Recrystallization Behaviour of Alloys)
Show Figures

Figure 1

16 pages, 1084 KB  
Article
Scott Blair Fractional-Type Viscoelastic Behavior of Thermoplastic Polyurethane
by Christian Pichler, Stefan Oberparleiter and Roman Lackner
Polymers 2023, 15(18), 3770; https://doi.org/10.3390/polym15183770 - 14 Sep 2023
Cited by 1 | Viewed by 1639
Abstract
In this paper, the experimental characterization of the viscoelastic properties of thermoplastic polyurethane (TPU) samples through creep experiments is presented. Experiments were conducted at different constant temperature levels (15, 25, and 35 C), for three different tensile stress levels (0.3, 0.5, and [...] Read more.
In this paper, the experimental characterization of the viscoelastic properties of thermoplastic polyurethane (TPU) samples through creep experiments is presented. Experiments were conducted at different constant temperature levels (15, 25, and 35 C), for three different tensile stress levels (0.3, 0.5, and 0.7 MPa), and at different physisorbed water contents, providing access to: (i) the temperature dependency of creep parameters and (ii) the assessment, if behavior is indeed viscoelastic. The physisorbed water content was achieved by exposing virgin samples to environments with relative humidity ranging from 0 to 80 percent until mass stability was reached. Creep tests were conducted immediately afterwards with this particular humidity level. The main results of this study are as follows. The temperature dependency of the obtained creep parameters is well described in Arrhenius plots. With regard to water content, two prototype material responses were observed in the experimental program and accurately modeled using the following fractional-type models: (i) Scott Blair-type (i.e., power-law-type) only behavior, pronounced for the combination of low water content/low temperature; (ii) combined Scott Blair plus Lomnitz (i.e., log-type) behavior for high water content/high temperature. This change in behavior associated with certain thresholds for the specified environmental conditions (temperature and relative humidity) may indicate the initiation of hydrogen bond breakage and rearrangement (carbamate H-bonds and physisorbed water H-bonds). Regarding the short-term or quasi-instantaneous behavior, the Scott Blair element seems highly appropriate and may be better suited than the standard elastic model: the Hookean spring. We associated Scott Blair behavior with the load-induced, quasi-instantaneous re-arrangement of polymer network chains. The secondary viscoelastic mechanism associated with the Lomnitz element, hydrogen bond breakage and rearrangement, comes into play for higher temperatures and/or higher physisorbed water contents. In this case, the contribution of the two constitutive elements is well separated due to the large number of the characteristic time of the Lomnitz element, much larger than the respective value for the Scott Blair element. Full article
Show Figures

Figure 1

16 pages, 7047 KB  
Article
Application of Constitutive Models and Machine Learning Models to Predict the Elevated Temperature Flow Behavior of TiAl Alloy
by Rui Zhao, Jianchao He, Hao Tian, Yongjuan Jing and Jie Xiong
Materials 2023, 16(14), 4987; https://doi.org/10.3390/ma16144987 - 13 Jul 2023
Cited by 7 | Viewed by 2099
Abstract
The hot deformation behaviors of a Ti46Al2Cr2Nb alloy were investigated at strain rates of 0.001–0.1 s−1 and temperatures of 910–1060 °C. Under given deformation conditions, the activation energy of the TiAl alloy could be estimated as 319 kJ/mol. The experimental results were [...] Read more.
The hot deformation behaviors of a Ti46Al2Cr2Nb alloy were investigated at strain rates of 0.001–0.1 s−1 and temperatures of 910–1060 °C. Under given deformation conditions, the activation energy of the TiAl alloy could be estimated as 319 kJ/mol. The experimental results were predicted by different predictive models including three constitutive models and three data-driven models. The most accurate data-driven model and constitutive model were an artificial neural network (ANN) and an Arrhenius type strain-compensated Sellars (SCS) model, respectively. In addition, the generalization capability of ANN model and SCS model was examined under different deformation conditions. Under known deformation conditions, the ANN model could accurately predict the flow stress of TiAl alloys at interpolated and extrapolated strains with a coefficient of determination (R2) greater than 0.98, while the R2 value of the SCS model was smaller than 0.5 at extrapolated strains. However, both ANN and SCS models performed poorly under new deformation conditions. A hybrid model based on the SCS model and ANN predictions was shown to have a wider generalization capability. The present work provides a comprehensive study on how to choose a predictive model for the flow stress of TiAl alloys under different conditions. Full article
(This article belongs to the Special Issue Phase and Structure Analysis of Alloys and Metal Matrix Composites)
Show Figures

Figure 1

Back to TopTop