Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = arid climate coastal aquifer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2796 KiB  
Article
Processes of Groundwater Contamination in Coastal Aquifers in Sri Lanka: A Geochemical and Isotope-Based Approach
by Movini Sathma Ratnayake, Sachintha Lakshan Senarathne, Saranga Diyabalanage, Chaminda Bandara, Sudeera Wickramarathne and Rohana Chandrajith
Water 2025, 17(11), 1571; https://doi.org/10.3390/w17111571 - 23 May 2025
Viewed by 512
Abstract
Over the last decade, concern has increased about the deterioration of groundwater quality in coastal aquifers due to salinization processes resulting from uncontrolled abstraction and the impacts of global climate change. This study investigated the groundwater geochemistry of a narrow sandy peninsula bounded [...] Read more.
Over the last decade, concern has increased about the deterioration of groundwater quality in coastal aquifers due to salinization processes resulting from uncontrolled abstraction and the impacts of global climate change. This study investigated the groundwater geochemistry of a narrow sandy peninsula bounded by the ocean and brackish water lagoons in northern Sri Lanka. The population of the region has grown rapidly over the last decade with increasing agricultural activities, and therefore, the use of groundwater has increased. To investigate the effects of seawater intrusion and anthropogenic activities, selected water quality parameters and water isotopes (δ2H and δ18O) were measured in 51 groundwater samples. The results showed that selected shallow groundwater wells are vulnerable to contamination from anthropogenic processes and seawater intrusion, mainly indicated by Cl/Br ratios. Iron-rich groundwater (0.11 to 4.2 mg/L) could represent another problem in the studied groundwater. According to Water Quality Index calculations, 41% of shallow wells contained poor and unsuitable water for domestic and irrigation purposes. Most of the groundwater in the region was saturated with Ca and Mg containing mineral phases such as calcite, dolomite, magnesite and gypsum. Water isotopes (δ2H and δ18O) showed that about 50% of the groundwater samples were scattered near the local meteoric water line. This indicates sufficient rainwater infiltration. However, some samples exhibit elevated isotope values due to seawater admixture and secondary evaporation under semi-arid conditions. This study showed the utility of Cl/Br ratios as indicators for distinguishing anthropogenic sources of Cl contributions to groundwater in shallow, permeable aquifer systems. Full article
(This article belongs to the Special Issue Assessment of Groundwater Quality and Pollution Remediation)
Show Figures

Graphical abstract

20 pages, 1334 KiB  
Review
Salinity-Induced Changes in Heavy Metal Behavior and Mobility in Semi-Arid Coastal Aquifers: A Comprehensive Review
by Rakesh Roshan Gantayat and Vetrimurugan Elumalai
Water 2024, 16(7), 1052; https://doi.org/10.3390/w16071052 - 5 Apr 2024
Cited by 9 | Viewed by 3003
Abstract
Semi-arid coastal aquifers face critical challenges characterized by lower rainfall, higher evaporation rates, and looming risk of over-exploitation. These conditions, coupled with climate change, are conducive to seawater intrusion and promote mechanisms associated with it. The understanding of metal behavior in such environments [...] Read more.
Semi-arid coastal aquifers face critical challenges characterized by lower rainfall, higher evaporation rates, and looming risk of over-exploitation. These conditions, coupled with climate change, are conducive to seawater intrusion and promote mechanisms associated with it. The understanding of metal behavior in such environments is limited, and hence, an attempt is made through this review to bridge the knowledge gap. A study on the behavior of trace metals within a specific context of semi-arid coastal aquifers was carried out, and 11 aquifers from 6 different countries were included. The review observed that trace metals within semi-arid coastal aquifers exhibit distinctive behaviors influenced by their surrounding environment. The prevalence of evaporation and continuous seawater intrusion played a pivotal role in shaping trace metal dynamics by curtailing groundwater flux. The findings suggest that the formation of stable Cl and organic ligands under increased alkaline conditions (pH > 8) has higher control over Zn, Pb, and Cd toxicity in a highly ionic reactive condition. In addition, dominant control of Fe/Mn-hydroxide association with Pb and high organic affinity of Zn played a pivotal role in controlling its bioavailability in aquifers such as WFB, Saudi Arabia NW-C and India. On the contrary, under prevailing acidic conditions (pH < 6), carbonate and SO4-ligands become more dominant, controlling the bioavailability/desorption of Cu irrespective of its origin. The behavior of Ni is found to be controlled by stable organic ligands increasing salinity. An increase in salinity in the considered aquifers shows an increase in bioavailability of Ni, except UmC, South Africa, where organic ligands act as a sink for the metal, even at low pH conditions (pH < 5.5). This study indicates that factors such as mineral saturation, carbonate complexes, pH variations (pH > 8), and chloride complexes govern the distribution of trace metals further enhanced by prolonged water residence time. Nonetheless, specific conditions, such as a reducing and acidic environment, could potentially elevate the solubility of highly toxic Cr (VI) released from anthropogenic sources. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogeology: Featured Reviews)
Show Figures

Figure 1

13 pages, 4225 KiB  
Article
Enrichment and Temporal Trends of Groundwater Salinity in Central Mexico
by Claudia Patricia Colmenero-Chacón, Heriberto Morales-deAvila, Mélida Gutiérrez, Maria Vicenta Esteller-Alberich and Maria Teresa Alarcón-Herrera
Hydrology 2023, 10(10), 194; https://doi.org/10.3390/hydrology10100194 - 30 Sep 2023
Cited by 2 | Viewed by 2531
Abstract
Groundwater salinization is a major threat to the water supply in coastal and arid areas, a threat that is expected to worsen by increased groundwater withdrawals and by global warming. Groundwater quality in Central Mexico may be at risk of salinization due to [...] Read more.
Groundwater salinization is a major threat to the water supply in coastal and arid areas, a threat that is expected to worsen by increased groundwater withdrawals and by global warming. Groundwater quality in Central Mexico may be at risk of salinization due to its arid climate and since groundwater is the primary source for drinking and agriculture water. Only a handful of studies on groundwater salinization have been reported for this region, most constrained to a small area and without trend analyses. To determine the extent of salinization, total dissolved solids (TDS), sodium (Na+), nitrate as nitrogen (NO3-N) and sodium adsorption ratio (SAR) are commonly used. Available water quality data for about 200 wells, sampled annually between 2012 and 2021, were used to map the spatial distribution of NO3-N, TDS, Na+, and SAR. Upward trends and Spearman correlation were also determined. The study area was subdivided into three sections to estimate the impact of climate and lithologies on groundwater salinity. The results showed that human activities (agriculture) and dissolution of carbonate and evaporite rocks were major sources of salinity, and evaporation an enriching factor. Temporal trends occurred in only a few (about 7%) wells, primarily in NO3-N. The water quality for irrigation was generally good, (SAR < 10 in 95% of samples); however, eight wells contained water hazardous to soil (TDS > 1750 mg L−1 and SAR > 9). The results detected one aquifer with consistently high concentrations and upward trends and eight lesser impacted aquifers. Identifying the wells with upward trends is important in narrowing down the possible causes of their concentration increase with time and to develop strategies that will infuse sustainability to groundwater management. Full article
(This article belongs to the Special Issue Advances in Groundwater Salinization Assessment)
Show Figures

Figure 1

20 pages, 4005 KiB  
Article
Numerical Modeling of Seawater Intrusion in Wadi Al-Jizi Coastal Aquifer in the Sultanate of Oman
by Javed Akhtar, Ahmad Sana, Syed Mohammed Tauseef and Hitoshi Tanaka
Hydrology 2022, 9(12), 211; https://doi.org/10.3390/hydrology9120211 - 27 Nov 2022
Cited by 7 | Viewed by 3869
Abstract
The Sultanate of Oman is an arid country in the Arabian Peninsula suffering from insufficient freshwater supplies and extremely hot weather conditions. The only source of recharge is rainfall, which is scarce and varies with space and time, for the aquifers being overexploited [...] Read more.
The Sultanate of Oman is an arid country in the Arabian Peninsula suffering from insufficient freshwater supplies and extremely hot weather conditions. The only source of recharge is rainfall, which is scarce and varies with space and time, for the aquifers being overexploited for the last few decades. This has led to depleting groundwater levels and seawater intrusion into coastal aquifers. In the present study, Ground Modeling System (GMS) was employed in Wadi Al-Jizi, which is one of the important aquifers in the Al Batinah coastal plain that caters to the needs of the country’s 70% agriculture. MODFLOW and MT3DMS were used to simulate the groundwater levels and solute transport, respectively. These models were calibrated under steady and transient conditions using observed data from twenty monitoring wells for a period of seventeen years (year 2000–2016). After validation, the model was utilized to predict the salinity intrusion due to changes in groundwater abstraction rates and sea level rise owing to climatic change. These predictions show that, by the year 2040, salinity intrusion (TDS > 12,800 mg/L) will transgress by 0.80 km inland if the current abstraction rates are allowed to be maintained. Further deterioration of groundwater quality is anticipated in the following years due to the increased pumping rates. The models and the results from the present study may be utilized for the effective management of groundwater resources in the Wadi Al-Jizi aquifer. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

18 pages, 2281 KiB  
Article
The Importance of Prevention in Tackling Desertification: An Approach to Anticipate Risks of Degradation in Coastal Aquifers
by Javier Ibáñez, Rolando Gartzia, Francisco Javier Alcalá and Jaime Martínez-Valderrama
Land 2022, 11(10), 1626; https://doi.org/10.3390/land11101626 - 22 Sep 2022
Cited by 5 | Viewed by 3463
Abstract
Groundwater degradation is a major issue on an increasingly hot and thirsty planet. The problem is critical in drylands, where recharge rates are low and groundwater is the only reliable resource in a context of water scarcity and stress. Aquifer depletion and contamination [...] Read more.
Groundwater degradation is a major issue on an increasingly hot and thirsty planet. The problem is critical in drylands, where recharge rates are low and groundwater is the only reliable resource in a context of water scarcity and stress. Aquifer depletion and contamination is a process of desertification. Land Degradation Neutrality is regarded as the main initiative to tackle land degradation and desertification. It is embedded in target 15.3 of the Sustainable Development Goals and focused on preventing these dynamics. Within this framework, we present an approach to assess risks of degradation and desertification in coastal basins with aquifers threatened by seawater intrusion. The approach utilizes an integrated system dynamics model representing the main relationships between the aquifer and an intensively irrigated area (greenhouses) driven by short- and medium-term profitability. The study area is located in a semi-arid region in Southern Spain, the Gualchos stream basin, which contains the Castell de Ferro aquifer. We found that the risk of salinization of the aquifer is 73%, while there is a 70% risk that the system would increases its demand for surface water in the future, and the chance of doubling the current demand is almost 50%. If the current system of reservoirs in the area were not able to satisfy such an increase in demand because of climate change, the basin would be at a serious risk of desertification. Full article
Show Figures

Figure 1

17 pages, 25181 KiB  
Article
Delineating MAR Sites Using GIS-MCDA for Nuweiba Alluvial Fan Aquifer, Sinai, Egypt
by Karim Soliman, Osama M. Sallam and Christoph Schüth
Water 2022, 14(3), 475; https://doi.org/10.3390/w14030475 - 5 Feb 2022
Cited by 10 | Viewed by 3720
Abstract
In the last few decades, groundwater has been the main water supply to the Nuweiba alluvial fan. However, currently, the main water supply is a desalination plant. The desalination plant might be vulnerable to malfunctions resulting in a severe drought. In addition, the [...] Read more.
In the last few decades, groundwater has been the main water supply to the Nuweiba alluvial fan. However, currently, the main water supply is a desalination plant. The desalination plant might be vulnerable to malfunctions resulting in a severe drought. In addition, the aquifer type in the fan is coastal. Hence, replenishing the groundwater is necessary on a long-term basis to overcome drought events in the case of emergency. To replenish the groundwater using flash-flood water, a Managed Aquifer Recharge (MAR) system could be installed. This study applies the Geo-Information System–Multi-Criteria Decision Analysis (GIS-MCDA) method to delineate the feasible locations for installing a MAR system. To delineate the feasible MAR sites via a potential map, four steps were performed: problem definition, constraint mapping, suitability mapping, and sensitivity analysis. The results show that nearly 52% of the study area is suitable for installing MAR. Additionally, around 6% of the study area shows high potential for installing MAR, whereas nearly 20% falls under the moderate potential class. The potential map shows that the high-potential MAR sites are located at the western portion of the study area, near the ephemeral stream outlet. The map could be utilized as a tool for decision-makers to plan a future sustainable development strategy. Full article
(This article belongs to the Topic Water Management in the Era of Climatic Change)
Show Figures

Figure 1

21 pages, 3642 KiB  
Article
Drought Index as Indicator of Salinization of the Salento Aquifer (Southern Italy)
by Maria Rosaria Alfio, Gabriella Balacco, Alessandro Parisi, Vincenzo Totaro and Maria Dolores Fidelibus
Water 2020, 12(7), 1927; https://doi.org/10.3390/w12071927 - 6 Jul 2020
Cited by 26 | Viewed by 3854
Abstract
Salento peninsula (Southern Italy) hosts a coastal carbonate and karst aquifer. The semi-arid climate is favourable to human settlement and the development of tourism and agricultural activities, which involve high water demand and groundwater exploitation rates, in turn causing groundwater depletion and salinization. [...] Read more.
Salento peninsula (Southern Italy) hosts a coastal carbonate and karst aquifer. The semi-arid climate is favourable to human settlement and the development of tourism and agricultural activities, which involve high water demand and groundwater exploitation rates, in turn causing groundwater depletion and salinization. In the last decades these issues worsened because of the increased frequency of droughts, which emerges from the analysis of Standardized Precipitation Index (SPI), calculated during 1949–2011 on the base of monthly precipitation. Groundwater level series and chloride concentrations, collected over the extreme drought period 1989–1990, allow a qualitative assessment of groundwater behaviour, highlighting the concurrent groundwater drought and salinization. Full article
Show Figures

Figure 1

24 pages, 1575 KiB  
Article
An Overview of Managed Aquifer Recharge in Mexico and Its Legal Framework
by Mary Belle Cruz-Ayala and Sharon B. Megdal
Water 2020, 12(2), 474; https://doi.org/10.3390/w12020474 - 10 Feb 2020
Cited by 26 | Viewed by 9293
Abstract
In Mexico, one hundred of the 188 most important aquifers dedicated to agriculture and human consumption are over-exploited and 32 are affected by seawater intrusion in coastal areas. Considering that Mexico relies on groundwater, it is vital to develop a portfolio of alternatives [...] Read more.
In Mexico, one hundred of the 188 most important aquifers dedicated to agriculture and human consumption are over-exploited and 32 are affected by seawater intrusion in coastal areas. Considering that Mexico relies on groundwater, it is vital to develop a portfolio of alternatives to recover aquifers and examine policies and programs regarding reclaimed water and stormwater. Managed Aquifer Recharge (MAR) may be useful for increasing water availability and adapting to climate change in semi-arid regions of Mexico. In this paper, we present an overview of water recharge projects that have been conducted in Mexico in the last 50 years, their methods for recharge, water sources, geographical distribution, and the main results obtained in each project. We found three types of MAR efforts: (1) exploratory and suitability studies for MAR, (2) pilot projects, and (3) MAR facilities that currently operate. This study includes the examination of the legal framework for MAR to identify some challenges and opportunities that Mexican regulation contains in this regard. We find that beyond the technical issues that MAR projects normally address, the regulatory framework is a barrier to increasing MAR facilities in Mexico. Full article
(This article belongs to the Special Issue Managed Aquifer Recharge for Water Resilience)
Show Figures

Figure 1

24 pages, 13850 KiB  
Article
Simulation of Climate Change Impact on A Coastal Aquifer under Arid Climate. The Tadjourah Aquifer (Republic of Djibouti, Horn of Africa)
by Moumtaz Razack, Mohamed Jalludin and Abdourahman Houmed-Gaba
Water 2019, 11(11), 2347; https://doi.org/10.3390/w11112347 - 8 Nov 2019
Cited by 11 | Viewed by 5255
Abstract
The Republic of Djibouti has an area of 23,000 km2, a coastline 370 km long and a population of 820,000 inhabitants. It experiences an arid climate characterized by high daytime temperatures and low and irregular rainfall (average of 140 mm/year), resulting [...] Read more.
The Republic of Djibouti has an area of 23,000 km2, a coastline 370 km long and a population of 820,000 inhabitants. It experiences an arid climate characterized by high daytime temperatures and low and irregular rainfall (average of 140 mm/year), resulting in continuous periods of drought. These difficult climatic conditions and the absence of perennial surface water have progressively led to an intensive exploitation of groundwater to meet increasing water demands in all sectors (drinking water, agriculture and industries). In coastal areas, seawater intrusion constitutes a significant additional risk of groundwater degradation. This study is focused on the coastal aquifer of Tadjourah which supplies water to the city of Tadjourah, currently comprising 21,000 inhabitants. The main objective of this work is to assess the current resources of this aquifer; its capacity to satisfy, or not, the projected water demands during coming years; and to analyze its vulnerability to seawater intrusion within the frame of climate change. Three RCPs (Representative Concentration Pathway) were used to simulate different climate scenarios up to 2100. The simulated rainfall series allowed to deduce the aquifer recharge up to 2100. The code Seawat was used to model seawater intrusion into the aquifer, using the recharge data deduced from the climate scenarios. The results indicate that the risk of contamination of the Tadjourah coastal aquifer by seawater intrusion is high. The long-term and sustainable exploitation of this aquifer must take into consideration the impact of climate change. Full article
(This article belongs to the Special Issue Groundwater Resilience to Climate Change and High Pressure)
Show Figures

Figure 1

19 pages, 5456 KiB  
Article
Coastal Runoff in the United Arab Emirates—The Hazard and Opportunity
by Khameis Al Abdouli, Khalid Hussein, Dawit Ghebreyesus and Hatim O. Sharif
Sustainability 2019, 11(19), 5406; https://doi.org/10.3390/su11195406 - 29 Sep 2019
Cited by 25 | Viewed by 6953
Abstract
Properly quantifying the potential exposure of hyper-arid regions to climate extremes is fundamental to developing frameworks that can be used to manage these extremes. In the United Arab Emirates (UAE), rapid growth may exacerbate the impacts of climate extremes through urbanization (increased runoff), [...] Read more.
Properly quantifying the potential exposure of hyper-arid regions to climate extremes is fundamental to developing frameworks that can be used to manage these extremes. In the United Arab Emirates (UAE), rapid growth may exacerbate the impacts of climate extremes through urbanization (increased runoff), population and industrial development (more water demand). Water resources management approaches such as Managed Aquifer Recharge (MAR) application may help mitigate both extremes by storing more water from wet periods for use during droughts. In this study, we quantified the volumes of runoff from coastal watersheds discharging to the Gulf of Oman and the Arabian Gulf that could potentially be captured to replenish depleted aquifers along the coast and help reduce the adverse impacts of urban flooding. To this aim, we first downloaded and processed the Integrated Multi-satellite Retrievals for Global Precipitation Measurement Mission (IMERG) rainfall data for a recent wide-spread storm event. The rainfall product was then used as input to hydrologic models of coastal watersheds for estimating the resulting runoff. A multi-criteria decision analysis technique was used to identify areas most prone to runoff accumulation. Lastly, we quantified the volumes of runoff that could potentially be captured from frequency storms of different return periods and how rapid urbanization in the region may increase these runoff volumes creating more opportunities for the replenishment of depleted aquifers. Our results indicate that the average runoff from watersheds discharging to the ocean ranges between 0.11 km3 and 0.48 km3 for the 5-year and 100-year storms, respectively. We also found that these amounts will substantially increase due to rapid urbanization in the coastal regions of the UAE. In addition to water supply augmentation during droughts, potential benefits of application of MAR techniques in the UAE coastal regions may include flood control, mitigation against sea-level rise through subsidence control, reduction of aquifer salinity, rehabilitation of ecosystems, cleansing polluted runoff and preventing excessive runoff into the Gulf that can contribute to red tide events. Full article
(This article belongs to the Special Issue Hydrometeorological Hazards and Disasters)
Show Figures

Figure 1

15 pages, 5368 KiB  
Article
Future of Coastal Lagoons in Arid Zones under Climate Change and Anthropogenic Pressure. A Case Study from San Jose Lagoon, Mexico
by Miguel Angel Imaz-Lamadrid, Jobst Wurl and Ernesto Ramos-Velázquez
Resources 2019, 8(1), 57; https://doi.org/10.3390/resources8010057 - 25 Mar 2019
Cited by 11 | Viewed by 5720
Abstract
In arid and semiarid zones, groundwater plays a key role in the ecology and availability of freshwater. Coastal lagoons in arid zones have great importance as a refuge for species of flora and fauna, as a source of freshwater, and for recreational purposes [...] Read more.
In arid and semiarid zones, groundwater plays a key role in the ecology and availability of freshwater. Coastal lagoons in arid zones have great importance as a refuge for species of flora and fauna, as a source of freshwater, and for recreational purposes for local communities and tourism. In addition, as environments under natural stress, they are suffering pressure from anthropogenic activities and climate change, especially in zones with intense touristic development as in the case of the Baja California Peninsula in northwest Mexico. In this paper, we analyze the future of a coastal lagoon impacted by climate change and anthropogenic pressures. We constructed a groundwater MODFLOW-SWI2 model to predict changes in freshwater–saltwater inputs and correlated them with the geospatial analysis of the distribution and evolution of the water body and surrounding vegetation. The methodology was applied to the San Jose lagoon, one of the most important wetlands in the Baja California peninsula, which had been affected by anthropogenic activities and endangered by climate change. According to our water balance, the deficit of the San Jose aquifer will increase by 2040 as a result of climate change. The water table north of the lagoon will drop, affecting the amount of freshwater inflow. This reduction, together with an increase of evapotranspiration and the sea-level rise, will favor an increase of mineralization, reducing the surface water and groundwater quality and in consequence affecting the vegetation cover. Without proper management and adequate measures to mitigate these impacts, the lagoon may disappear as a freshwater ecosystem. Results of this research indicate that the use of a groundwater flow model, together with a geospatial analysis provide effective tools to predict scenarios for the future of coastal lagoons, and serve as a basis for land planning, nature conservation, and sustainable management of these ecosystems. Full article
Show Figures

Figure 1

Back to TopTop