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Abstract: The Republic of Djibouti has an area of 23,000 km2, a coastline 370 km long and
a population of 820,000 inhabitants. It experiences an arid climate characterized by high daytime
temperatures and low and irregular rainfall (average of 140 mm/year), resulting in continuous periods
of drought. These difficult climatic conditions and the absence of perennial surface water have
progressively led to an intensive exploitation of groundwater to meet increasing water demands in all
sectors (drinking water, agriculture and industries). In coastal areas, seawater intrusion constitutes
a significant additional risk of groundwater degradation. This study is focused on the coastal aquifer
of Tadjourah which supplies water to the city of Tadjourah, currently comprising 21,000 inhabitants.
The main objective of this work is to assess the current resources of this aquifer; its capacity to satisfy,
or not, the projected water demands during coming years; and to analyze its vulnerability to seawater
intrusion within the frame of climate change. Three RCPs (Representative Concentration Pathway)
were used to simulate different climate scenarios up to 2100. The simulated rainfall series allowed
to deduce the aquifer recharge up to 2100. The code Seawat was used to model seawater intrusion into
the aquifer, using the recharge data deduced from the climate scenarios. The results indicate that the
risk of contamination of the Tadjourah coastal aquifer by seawater intrusion is high. The long-term
and sustainable exploitation of this aquifer must take into consideration the impact of climate change.
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1. Introduction

Water resources in coastal aquifers are intensely exploited given the widespread social and
economic development of coastal areas around the world [1]. In these coastal areas, groundwater is
often the only water resource of acceptable quality. When these areas are within arid to semi-arid
climate, groundwater in this context is the only available water resource. This resource is crucial and
unique [2–4] but is already under high pressure given the needs and demands that are constantly
increasing [5–7]. As a result, coastal aquifers experience a very high exploitation of their resources,
often leading to uncontrolled overexploitation, the consequences of which can be dramatic.

All coastal aquifers naturally undergo a saltwater intrusion, due to the difference in density between
freshwater and saltwater [8,9]. When the water budget of coastal aquifers becomes unbalanced due
to various causes (over-exploitation, recharge decrease due to climate change impact, etc.), the seawater
wedge may significantly progress inland and contaminate the exploitation wells [10–14]. So the
most important consequence of any lack of management of these aquifers is the degradation of the
quality of the underground resources due to excessive seawater intrusion. In such cases, the lack
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of management can lead to a limitation of the exploitation of the coastal aquifers, even the cessation
of the exploitation. In these regions, the impact of climate change combined with water scarcity
and quality degradation are aggravating factors [15] and a serious threat to growth and stability
of the regional social system. Effective management strategies are an imperative for optimal water
use in coastal aquifers, in order to control seawater intrusion and respond to water demands in the
framework of social and economic development of these coastal regions. For this purpose, numerical
modeling of aquifers constitutes a critical tool [16] which permits to analyze the aquifers’ reactions
to various stresses.

This problem is analyzed based on the case of the coastal aquifer of Tadjourah located in the
Republic of Djibouti (RoD), in the Horn of Africa. The RoD has an area of 23,000 km2, a coastline
370 km long and a population of 820,000 inhabitants (census 2009) (Figure 1). As generally is the case
in Africa [17], population concentration is increasing in coastal areas in RoD. The RoD experiences an
arid climate characterized by high daytime temperatures and low and irregular rainfall (average of
140 mm/year), resulting in continuous periods of drought. There is no perennial surface water.
These difficult climatic conditions and the absence of perennial surface water have progressively
led to an intensive exploitation of groundwater, with currently around 20 to 22 million m3 per year
in 2015. Signs of such overexploitation are expressed by the drastic lowering of some groundwaters
and the deterioration of their quality [4]. The coastal aquifer under study supplies water to the city
of Tadjourah, currently comprising 21,000 inhabitants [18]. In the near future, the city of Tadjourah
is expected to experience significant development, with a substantial increase in tourist, port and
agricultural activities, with the result that water needs will be increasing considerably. The projections
point to a doubling of water demand by 2030, compared to 2012 [18].
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Figure 1. Location of the Republic of Djibouti and of the Tadjourah coastal aquifer.

The main objective of this work is to assess the current resources of this aquifer, its capacity
to satisfy (or not) the projected water demands during coming years, and to analyze its vulnerability
to seawater intrusion within the frame of climate change. The approach developed in this study can be
broken down as follows:

- simulate rainfall series up to 2100 at the scale of RoD using climate scenarios made available
by IPCC;

- deduce groundwater recharge based on the simulated rainfall series;
- model the studied aquifer, using the recharge series as the input;
- analyze the aquifer reaction to the climate scenarios.
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2. Materials and Methods

2.1. Study Area

2.1.1. Geological Setting

The geodynamic context of the RoD is marked by the separation of the tectonic plates of Arabia,
Africa and Somalia delimited by the East African rifts, the Red Sea and the Gulf of Aden. The functioning
of this system for 30 million years has set up many volcanic series. Given this geodynamic situation,
volcanic rocks, consisting mainly of basalts and some rhyolitic formations, cover most of the territory
(80%), with sedimentary formations remaining small (Figure 1). These two types of rock form aquifers
whose water resources are intensively exploited to satisfy the needs of the country.

This work focuses on the alluvial aquifer Tadjourah, located on the north shore of the Gulf
of Tadjourah. The coastal plain is spread over 30 km along the coast with a width varying between
2 and 6 km and has an area of about 80 km2. It is the largest coastal plain in the country after the
Obock plain. To the south, it is bounded by the sea, to the north and west by the Goda Massif formed
of Mabla rhyolites and Dalha basalts, and to the east by outcrops of recent basalts (Figure 2).
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Figure 2. Geology of the coastal alluvial aquifer of Tadjourah. (Extracted from the geological map
of the RoD at 1/100000. Tadjourah sheet [19]. d: Aeolian sands; a: alluvium; l: silt; Qa: Rhyolitic
& basaltic conglomerates. Pliocene-Middle Pleistocene; R: Mabla rhyolites; B: Dalha basalts).

The conglomerates, arranged in terraces at several levels, consist of coarse materials, sand and
gravel. These conglomeratic formations, of Upper Pliocene to Middle Pleistocene, constitute the coastal
aquifer of Tadjourah. The Goda Massif north of Tadjourah is the most watered area in the country,
with an average of 200 mm rainfall per year. On the plain, the water points are spread over the coastal
area and are clustered around Tadjourah, Ambabbo and Kalaf.

2.1.2. Hydrography

The plain of Tadjourah is drained by two main wadis: Dariyyou and Walwale (Figure 2).
Wadi Dariyyou originates in the Goda Massif, draining peaks of nearly 1300 m altitude. After a course
of 30 km it flows into the sea around Ambabbo with a delta of 4–5 km wide. The total watershed
of this wadi is 185 km2 in area. Wadi Walwale has its source on the Dadar Massif at more than 1000 m
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of altitude and flows into the sea to the West of Tadjourah, by a delta of 5 km wide, after a course of more
than 40 km. The watershed of this wadi with an area of 215 km2 is, with that of Dariyyou, the origin
of alluvial terraces characteristic of the plain. Between these two main alluvial cones, flows a series
of small wadis with courses sub-parallel between them and originating on the surrounding mountains.

2.1.3. Hydrogeology

The aquifer is composed of coarse sediments consisting mainly of rhyolitic and basaltic
conglomerates. The thickness of the sedimentary formations was determined by geoelectric
surveys [20–22] validated using the lithological sections of the wells. As a result, the average
thickness of alluvial formations is of the order of 200m. These formations are based on a substratum
formed by volcanic formations. The contact between the sediments of the plain and the Goda Massif
is constituted by a fault. Geophysical prospections also identified the freshwater–seawater interface
in the Ambabbo sector. These investigations showed that the seawater intrusion is relatively important
and could penetrate several hundreds of meters inland. The available piezometric data, collected when
the aquifer is not in exploitation, allowed to map the groundwater flow (Figure 3). The piezometric
map shows quite clearly that the aquifer is supplied from the upstream limit formed by the contact
with the volcanic formations of Mount Goda. The geochemistry of the Tadjourah aquifer pointed out
the relevance of inflow from the volcanic formations of the Goda mountains upstream of the plain [23].
Relatively high hydraulic gradients are displayed along the coastline.
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Figure 3. Piezometry of the alluvial coastal aquifer of Tadjourah when wells are not in exploitation.

A thorough analysis of aquifer recharge conditions in the RoD, done by the BGR (Bundesanstalt
für Geowissenschaften und Rohstoffe, Germany [21]), showed that the average rate of infiltration
to aquifers ranges between 3% to 5% of the raw precipitations. Due to the arid climate context, the losses
by ET (Evapotranspiration) are very important. This essential outcome of the BGR was confirmed by
later works [24–27]. Based on the results of the BGR, the CERD (Centre d’Etudes et de Recherche de
Djibouti—Center for Studies and Research of Djibouti) was able to estimate some components of the
water balance of the Tadjourah aquifer, including recharge and inputs from the upstream boundary [23]
(Table 1). Recharge was estimated based on an average annual rainfall of 200 mm. Inflow from the
upstream boundary was estimated using the transmissivity of the volcanic rocks.
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Table 1. Components of the aquifer water balance estimated by the CERD [23].

Component (m3/year) Inflow Outflow

Surficial Recharge 4.5 × 105–6.5 × 105 –

Seashore ? ?

Upstream Limit with Mount Goda 1.8 × 106–2.7 × 106 –

?: These components of the water balance could not be estimated in the field.

As we are dealing with a coastal aquifer, the groundwater flow is of variable density and the
seashore does not constitute a simple outflow boundary of the system because of seawater intrusion
into the aquifer. Two components, outflow and inflow, should be differentiated on this boundary.
Field estimation of these components is quite difficult as it would require equipment which are not
available in the RoD (e.g., wells along the coastline drilled up to the aquifer bottom).

The transmissivity of the aquifer was estimated by pumping tests [23] at the wells PK6 and PK9
(Table 2). These transmissivity values (T, m2/d) were used to derive the initial hydraulic conductivities
(K, m/d) for modeling purposes. The hydraulic conductivity field over the entire aquifer was determined
by calibrating the numerical model. The storage parameters (storage coefficient S, specific storage Ss,
porosity n) were estimated by reference to the literature and adjusted during calibration of the model.

Table 2. Transmissivity (T, m2/d) and Hydraulic Conductivity K (m/d) estimated by pumping tests at
the wells PK6-5 and PK9-5 [16].

Well T (m2/d) K (m/d)

PK6 216 1.1

PK9 605 3.0

2.1.4. Exploitation of the Aquifer

The city of Tadjourah is supplied with water by the alluvial aquifer. The well Pk6, 3 kilometers
from Tadjourah, is located on the cone of the Wadi Magalle-Walwallé. This well taps the aquifer at an
average discharge rate of 1440 m3/d, an average annual volume of 450,000 m3. Nine kilometers from
Tadjourah, another well (Pk9), set up for the Tadjourah mineral water plant, is located on the high
alluvial terraces of Wadi Dariyyou and exploits the aquifer at an average discharge of 1200 m3/day.
The cumulative volume abstracted on both wells amounts to approximately 960,000 m3/year.

The exploitation of this aquifer raises the question of the sustainability of the resource, conditioned
in particular by the equilibrium of the freshwater–seawater interface. This condition is vital to avoid
degradation of the quality of groundwater by seawater intrusion, which may be caused by over-exploitation
of the resource and/or by a change in climatic factors.

2.1.5. Meteorological Data

The most complete meteorological data set is measured at the DIA station (Djibouti International
Airport). Annual precipitation values over the period 1961–2014 are shown in Figure 4 and the statistics
in Table 3.

Table 3. Descriptive statistics of the series of annual precipitation values. SD: Standard Deviation, CV:
Coefficient of Variation, CA: Coefficient of Asymmetry.

Min (mm) Max (mm) Average (mm) SD (mm) CV (%)

Whole series 1961–2014 3 481 146 122 84

Subseries 1961–2006 3 481 156 121 77

Subseries 2007–2014 3 89 44 28 65
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Figure 4. Annual precipitation and adjusted linear models over the whole period (1961–2014) and two
sub-periods, 1961–2006 and 2007–2014 (Djibouti International Airport Station).

The minimum value of the annual rainfall (3 mm/year) is very low, showing that the RoD has
drastic dry years. The maximum value is 483 mm/year. The coefficient of variation of the whole
series is 84%, revealing a strong inter-annual variability of the precipitation. The downward trend
in precipitation is well marked in Figure 4, when considering the whole series.

The series can be divided in two segments 1961–2006 and 2007–2014, the last 8 years depicting
a dramatic decrease in rainfall. Statistics of these sub-series are given in Table 2. These sub-series
trend lines are shown in Figure 4. Paradoxically, the trend line of the period 1961–2006 shows a slight
increase in precipitation. This positive trend in precipitation is caused by a few extreme high rainfalls.
These extreme events in rainfall, which reverse the general downward trend, were noted in other
areas under arid/semi-arid climate, like Algeria [28]. The role of such extreme events in enhancing
groundwater recharge in arid/semi-arid environments has been commented on in several studies [29–32].
Accordingly, these extreme events should be taken into account as their role in groundwater recharge
in an arid context can be significant.

The temperature data show a marked upward trend (Figure 5).
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2.2. Climate Change Scenarios

In general, climate predictions (P, T) are established at large scales using global climate models
(GCMs) that incorporate the components required for climate representation: (i) Atmospheric
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component; (ii) Oceanic component; and (iii) External components (forcings) to the climate system:
greenhouse gases and aerosols. This last component (forcings) is uncertain because it is linked
to human activities. Several climate scenarios were thus elaborated based on projected greenhouse
gases emissions. The issue of uncertainty associated with the global scenarios is widely debated in the
literature related to Water Sciences [33–36].

On a global scale, it is difficult to consider local weather phenomena. However, scenarios on
future climate change at the local level are essential for socio-economic actors to conduct impact
studies of climate change (hydrology, agriculture, ...). There are different methods of downscaling
that can reduce the results of GCMs (Global Climate Models) to a finer scale. These results can then
be used in climate change impact studies. In this study, the downscaling of global climate scenarios
at the RoD scale was done in collaboration with the IGAD-CPAC (Inter-Governmental Authority on
Development—Climate Prediction and Application Center) in Nairobi (Kenya).

Three RCPs (Representative Concentration Pathway) scenarios for the evolution of greenhouse
gas concentration in the 21st century (RCP2.6, RCP4.5, RCP8.5) were simulated. A RCP scenario is
used to model the future climate. In AR5 (IPCC 5th Assessment Report, [37]), based on different
hypotheses concerning the quantity of greenhouse gases that will be emitted in the coming years
(period 2000–2100), each RCP scenario gives a probabilistic variant of the climate that would result
from the emission level chosen as the working hypothesis. The statistics of the three scenarios are
reported in Table 4.

Table 4. Annual rainfall statistics predicted by climate scenarios RCP 2.6, RCP 4.5 and RCP 8.5. CI:
Confidence Interval; SD: Standard Deviation.

Scenario RCP 2.6 RCP 4.5 RCP 8.5

Average (mm)
CI (95%)

243.7
224 < m < 263

245.3
224 < m < 265

263.8
242 < m < 285

Minimum (mm) 91.7 102.2 111.3

Maximum (mm) 841.2 758.8 716.3

SD (mm) 100.6 105.1 108.9

CV (%) 41.3 42.8 41.3

These results show that statistically the three scenarios are comparable. The statistics remain close
for the three scenarios. In particular, the arithmetic averages of the three scenarios show no significant
difference (the confidence intervals overlap widely). The simulated maximums are very high for the
three scenarios. The results of the three scenarios are shown in Figure 6. It can be noted that all the
three scenarios generate very exceptional rains greater than 500 mm (return period > 100 years).

The trends (linear model) calculated on the results of the three scenarios show a slight decrease
for the RCP 2.6 scenario. On the other hand, there is an upward trend for scenarios 4.5 and 8.4.
Such a paradoxical trend in the context of the RoD is caused by the exceptional rains generated by
these scenarios. The maximum rainfall observed during 1961 to 2014 is 481 mm/year. Scenario RCP
2.6 generates a single exceptional annual rainfall (P = 820 mm in 2088), while scenarios RCP 4.5 and
RCP 8.5 generate several such exceptional annual rainfalls.

As exceptional rain events have a significant role in the recharge of arid zone aquifers, the climate
scenarios (RCP 4.5 and RCP 8.6) generating several extreme episodes have not been retained.
The scenario RCP 2.6, generating a single extreme episode, was used in forthcoming modeling.
The recharge series deduced from the rainfall series simulated under the scenarion RCP 2.6. was used
in the numerical simulation of the Tadjourah coastal aquifer to analyze the impact of climate change.
The code used in this study to model the aquifer is the SEAWAT code. This approach which combines
climate scenarios and hydrologic models is more and more applied to assess the future behaviour
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of groundwater [38–41] as groundwater requirements for drinking, agriculture and industrial uses are
dramatically increasing worldwide.
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2.3. The SEAWAT Software

The coastal Tadjourah aquifer has been modeled using Seawat software [42]. Seawat is used
to simulate three-dimensional, variable-density, transient ground-water flow in porous media. It was
designed by combining the well-known flow code Modflow [43] and mass-transport code MT3DMS [44]
to solve the coupled flow and solute-transport equations. The code uses the concept of Equivalent
Freshwater Head in a groundwater salted environment. A thorough description of this concept
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is provided by the authors of this code [42]. Briefly, at any point N in the 3D salted groundwater
environment, the freshwater head is defined as:

hf =
PN

ρfg
+ Zn (1)

where hf is equivalent freshwater head (L), PN is pressure at point N (ML−1T−2), ρf is density of
freshwater (ML−3), g is acceleration due to gravity (LT−2), and ZN is elevation of point N (L). At the
same point N, the actual head expressed in terms of the salted aquifer is written:

h =
PN

ρg
+ Zn (2)

where h is head (L), and ρ is density of saline groundwater at point N (ML−3). Flow and mass transport
equations are written in SEAWAT in terms of equivalent fresh water (see [42]). Solving these equations
provides solutions in terms of equivalent fresh water. Conversion is required between field data (h)
and equivalent fresh data and can be made with the use of the following expressions:

hf =
ρ

ρf
h−

ρ− ρf

ρf
Z and h =

ρf

ρ
hf +

ρ− ρf

ρ
Z (3)

where Z is elevation (L). These equations are obtained by eliminating pressure between Equations (1) and
(2) and solving for the respective head value [42]). The Seawat code has been successfully used to simulate
and solve the issue of seawater intrusion in freshwater aquifers in many cases worldwide [45–52].

3. Results and Discussions

3.1. Conceptual Model of the Aquifer

The alluvial aquifer of Tadjourah is unconfined, characterized by an unsaturated zone and
a saturated zone constituting the groundwater. The groundwater is of variable density, given the
seawater intrusion. The top of the aquifer is represented by the topographic surface of the plain.
An ASTER DEM, with a resolution of 90m × 90m, was used to obtain this topography. An average
value of 200 m, derived from geophysical prospecting, was used to represent the thickness of the
aquifer. Numerical models of coastal aquifers are 3D multi-layered models to simulate seawater
intrusion. They are thus discretized jointly on the horizontal and vertical planes. Vertical discretization
is performed at a finer scale than horizontal discretization in order to correctly simulate seawater
intrusion. In the case of the Tadjourah aquifer, the discretization scales are as follows: (i) For the
horizontal discretization, the precision of the ASTER DEM has been kept, i.e., elementary cells
of dimensions 90m × 90m; (ii) For vertical discretization, a cell height of 10m was selected, except for
the first layer of the model, whose top is represented by the topographic surface. The model has
18 layers and is discretized with a total of 109,441 cells. The boundary conditions (BC) are shown
in Figure 7: (i) The contact with Mount Goda in layer 1 is represented by an inflow BC. For layers 2
to 18, the upstream BC is also an inflow BC; (ii) the downstream limit with the sea is a fixed head
BC (sea level) and constant concentration BC (35 kg/m3); (iii) the lateral limits are represented by no
flow BCs and correspond to flowlines. The wadis, given their particularity (intermittent streams),
are integrated as recharge areas. Figure 8 shows a NS vertical section through the model.
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3.2. Calculation of the Equilibrium State

An equilibrium state of the freshwater-saltwater interface was first sought corresponding to the
situation prevailing before exploitation of the wells Pk6 and Pk9. The equilibrium state of the
freshwater–saltwater interface was investigated by introducing zero initial concentration throughout
the aquifer and running the model over a long period of time (100 years) to reach a steady state
of concentrations in the aquifer. Two fictitious monitoring piezometers, P1 and P6 (Figure 7),
were placed near the coast along flowlines passing by PK6 and PK9 wells to follow the evolution
of the concentrations in the aquifer. The diagrams Concentration vs. Time below (Figure 9) show the
evolutions of the concentrations on these piezometers in the first layer of the model.

It is plausible to consider that equilibrium is reached as the concentration stabilizes at P1
and P6 piezometers located very close to the shore. The concentrations can still evolve because
of dispersion/diffusion phenomena, but do not call into question the freshwater–saltwater equilibrium.
The wells Pk6 and Pk9 are not affected.
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Figure 9. Simulated concentration change in P1 and P6 piezometers during the freshwater–saltwater
equilibrium research phase.

The simulated piezometry related to this pseudo-steady equilibrium status and the water balance
of the aquifer are shown in Figure 10 and Table 5 respectively. The simulated piezometry corresponds
well to the observed piezometry. In particular, the gradients are well respected. The high gradients
existing near the shore are correctly simulated. For further evaluation of the model calibration,
additional measures [52] are provided in Appendix A: The scatterplot of measured heads vs. simulated
heads (Figure A1), the determination coefficient (R2), the mean error (ME), the mean absolute error
(MAE), and the root mean squared error (RMSE) (Table A1). The frequency distribution of the errors is
given in Figure A2. The determination coefficient is high (R2 = 0.94) indicating that measured and
simulated heads are well correlated. Values of other calibration measures (ME = 0.16 m; MAE = 0.45 m;
RMSE = 0.54 m) indicate that the average error in calibrating the model is low. The distribution
diagram (Figure A2) shows that the errors are random. Overall, the model is quite well calibrated on
the observed general flow pattern.
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Figure 10. Simulated piezometry corresponding to the equilibrium state of the seawater intrusion.

The annual surface recharge represents a volume of 648,000 m3/year which is in adequation with field
estimation (see Table 1). The average annual rainfall over the Tadjourah aquifer in 2000 is 182 mm/year.
The recharge therefore represents a rate of 4.9% of the average annual precipitation. This is in the order
of magnitude of the estimates for other areas of the RoD. The upstream limit inflow is 2.26 × 106 m3/year
and agrees with field estimation (see Table 1). This component contributes significantly to the aquifer
water balance. The inflows and outflows on the boundary corresponding to the sea, caused by the
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difference in density, are well differentiated in this water balance. The groundwater is in pseudo-steady
state (Sum of the inputs # sum of the outputs).

Table 5. Annual water balance of the aquifer, simulated by the model and corresponding to the
equilibrium state of the seawater intrusion.

Component (m3/year) Inflow Outflow Inflow−Outflow

Surficial Recharge 6.48 × 105 6.48 × 105

Limit corresponding to the sea 1.41 × 106 4.27 × 106
−2.86 × 106

Upstream Limit with Mount Goda 2.26 × 106 2.26 × 106

Storage 4.88 × 102 1.42 × 104
−1.37 × 104

TOTAL 4.32 × 106 4.29 × 106 3.14 × 104

Figure 11 shows the status of this interface in the aquifer in the Ambabbo area. The aquifer is
contaminated by seawater for several hundred meters inland, which is consistent with the results
of the geophysical survey [22]. One should keep in mind that this equilibrium state is calculated
in the absence of any exploitation of the aquifer. Areas of PK6 and PK9 wells are not affected by
seawater intrusion.
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Adding the inflow through the upstream boundary and the surface recharge gives an average
annual renewable resources of this aquifer of: 2,910,000 m3/year. Present water requirements, as stated
above, amount on average to 960,000 m3/year, which represent 33% of the aquifer renewable resources.
This ratio is reasonable and theoretically the aquifer has the potential to provide such a quantity
of water without being in a state of overexploitation. However, the impact of climate change must be
taken into account before drawing any conclusion regarding the sustainability of the aquifer.

3.3. Simulation of Climate Change Impact up to 2100 under RCP Scenarios 2.6, 4.5 and 8.5.

The exploitation rates of the aquifer at the wellfields Pk6 and Pk9 were kept constant throughout
the simulation period 2001 to 2100. The objective is therefore to test the sustainability of the exploitation
of the aquifer at these exploitation rates: Pk6 at 1440 m3/d and Pk9 at 1200 m3/d.

The concentration evolution from 2001 to 2100, on piezometers P1, P6 (100m from the coast),
and at the wells Pk9 and Pk6 are represented in Figures 12 and 13 for RCP 2.6, in Appendix B for RCP
4.5 (Figures A3 and A4) and Appendix C for RCP 8.5 (Figures A10 and A11). Under all three scenarios,
near the coast (P1 and P6 piezometers), the concentration trend is increasing in both piezometers and
the seawater intrusion continues to advance during the simulation period (2001–2100), over the entire
height of the aquifer (Figures 12, A3 and A10). There is no stabilization of the concentrations. The well
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Pk9 remains untouched (Figures 13, A4 and A11). The well Pk6 is affected by saltwater contamination.
The concentration trend is increasing at this well and its value at the end of the simulation time is about
18 g/m3 under all scenarios.
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Figure 13. Concentrations variation at wells Pk6 and Pk9 under RCP scenario 2.6.

Piezometric variations at Pk9 and Pk6 are shown in Figure 14 (RCP 2.6), B3 and C3 (scenarios RCP
4.5 and 8.5). In both wells, the pumping provokes a large drawdown at the beginning of the simulation.
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Impacts of the exceptional rainfalls simulated in each scenario are clearly depicted in these figures,
as they provoke significant piezometric rising. However, the drawdowns tend towards a stabilization
at both wells under all three scenarios. At the end of the simulation time, the hydraulic head at both
sites is low and is only a few meters above sea level (3 m at Pk9 and < 1 m at Pk6). All three scenarios
lead to the same conclusion. It is clear that under these conditions, no increase in the exploitation of the
groundwater can be recommended.
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Figure 14. Piezometric variations at wells Pk9 and Pk6 from 2001 to 2100 under scenario RCP 2.6.

The variation of the aquifer reserves and the balance inputs/outputs on the coastline are shown
in Figures 15 and 16 (RCP 2.6), B4 and B5 (RCP 4.5), and C4 and C5 (RCP 8.5). Under all three
scenarios, the reserves fluctuate around zero value, showing that the aquifer is not in permanent
destocking situation. Reserves are stored during exceptional recharge episodes but run out quickly.
Figure 16 shows that the inputs/outputs that occur on the coast, which are caused (in part) by the
difference in density between freshwater and saltwater, play an important role in the variation
of the aquifer reserves. The same remark can be drawn from Figure A7 (RCP 4.5) and C5 (RCP 8.5).
The situation of the seawater intrusion in 2100, in the area near Ambabbo, is reproduced in Figure 17
(RCP 2.6), B6 (RCP 4.5), C6 (RCP 8.5). Comparing these Figures with Figure 11, clearly shows that the
seawater intrusion worsened during the period 2001–2100. In all three scenarios, the penetration of the
deep salted wedge marks an advance inland of more than 300 m. The groundwater piezometry in 2100
and the concentration at the surface (Layer 1) are reproduced in Figure 18 (RCP 2.6), B7 (RCP 4.5),
and C7 (RCP 8.5). The piezometric depressions due to pumping are well evidenced. The seawater
intrusion at the surface also appears clearly under the three scenarios.
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scenarios is due to the appearance of exceptional rainfall events whose number and years of occurrence
are not the same for the three scenarios. These results show that climate change will have negative
impacts on this aquifer and that seawater intrusion poses a real threat to the sustainability of these
resources. In this work, we mainly considered the impact of climate change on precipitation and
thus on the recharge of the aquifer system. It should be noted that at this stage some uncertainties
are involved in the calculation of global warming within climate scenarios. The rise in sea level due
to climate change should also be taken into account.

In some parts of the world, predictions of sea level rise can be quite large. In the United States,
on the California coast, the sea-level rise forecasts, depending on the scenarios, can reach 1.5 m/century
compared to 1990 [53,54]. On the Djiboutian coast, simulations of climate scenarios predict a sea level
rise of 8 cm to 39 cm [55], much less important than in other regions of the globe. The uncertainty
associated with these forecasts also remains important. In addition, the impact of sea level rise
occurs away from the coastline, where the water table is more affected by pumping and recharge
rates than the increase or decrease in the sea level [56]. Given these considerations and in order not
to exaggerate the uncertainty associated with modeling results, sea level rise has not been considered
in the modeling work.

4. Summary and Conclusions

The objective of this work was to analyze the response of the Tadjourah coastal aquifer
(Republic of Djibouti) to climate change over the period 2001–2100 and to predict its potential to meet
water demands. This aquifer is used for drinking water supply in the city of Tadjourah. Given the
future development of the urban population and the economic activities of this region, water needs will
increase drastically. To study the impact of climate change on the functioning of this coastal aquifer,
three scenarios of the IPCC have been implemented: RCP 2.6, RCP 4.5 and RCP 8.5. The scenario RCP
2.6 simulates, during 2001–2100, a rainfall series with a downward trend, comparable to what one
observes currently. Scenarios RCP 4.5 and 8.5 simulate rainfall with a slight upward trend. The three
scenarios simulate exceptional rainfall events. These exceptional events are more numerous in scenarios
RCP 4.5 and RCP 8.5, causing this paradoxical upward trend. The precipitations simulated by these
scenarios were used to estimate the recharge of the aquifer and simulate its functioning over the period
2001–2100, using a 3D numerical model integrating the freshwater–saltwater interface. The aquifer
is exploited using two wells, Pk6 and Pk9. At equilibrium, the model reproduces well the observed
piezometry of the aquifer in steady state and without exploitation. Running the model under the
three scenarios resulted in the same conclusions. The simulations showed that seawater intrusion
does not stabilize but continues to advance. There is no stabilization of the concentrations in the
aquifer. In 2100, the exploitation of well Pk9 is still spared by the seawater intrusion. On the other
hand, Pk6 well is affected by salt contamination. All these results show that the aquifer is in a critical
situation. No increase in the exploitation of the groundwater can be envisaged. Maintaining current
exploitation by both Pk6 and Pk9 wells requires a thorough monitoring of the seawater intrusion
advance. For this purpose, the situation of Pk6 well is more serious than that of Pk9 well.

The results of this study demonstrate that understanding the impacts of climate changes on
groundwater resources, and specifically in coastal aquifers, is crucial for water resources management.
Although these results are not entirely certain, given the uncertainties associated with climate scenarios,
such an approach, associating climate scenarios and numerical modeling of aquifers, proves useful
for understanding the future reactions of hydrogeological systems and to envisage measurements
of adaptation and protection of the water resources. For the coastal aquifer of Tadjourah, the study
shows that the risk of contamination of this system by seawater intrusion is high. It is expected that
end-users will positively consider this study to preserve the long-term exploitation of this aquifer as
part of the sustainable management of its water resources.
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