Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = aqueous lubricant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1856 KiB  
Article
Combination Therapy with Trehalose and Hyaluronic Acid Restores Tear Lipid Layer Functionality by Ameliorating Inflammatory Response Protein Markers on the Ocular Surface of Dry Eye Patients
by Natarajan Perumal, Caroline Manicam, Eunjin Jeong, Sarah Runde, Norbert Pfeiffer and Franz H. Grus
J. Clin. Med. 2025, 14(15), 5525; https://doi.org/10.3390/jcm14155525 - 5 Aug 2025
Abstract
Objectives: Topical lubricants are the fundamental treatment for dry eye disease (DED). However, the molecular mechanisms underlying their efficacy remain unknown. Here, the protective effects of Thealoz® Duo with 3% trehalose and 0.15% hyaluronic acid are investigated in DED patients by a [...] Read more.
Objectives: Topical lubricants are the fundamental treatment for dry eye disease (DED). However, the molecular mechanisms underlying their efficacy remain unknown. Here, the protective effects of Thealoz® Duo with 3% trehalose and 0.15% hyaluronic acid are investigated in DED patients by a longitudinal clinical study and subsequent elucidation of the tear proteome and cell signaling changes. Methods: Participants were classified as moderate to severe DED (DRY, n = 35) and healthy (CTRL, n = 23) groups. Specific DED subgroups comprising evaporative (DRYlip) and aqueous-deficient with DRYlip (DRYaqlip) were also classified. Only DED patients received Thealoz® Duo. All participants were clinically examined before (day 0, T1) and after the application of Thealoz® Duo at day 28 (T2) and day 56 (T3). Next, 174 individual tear samples from all groups at three time-points were subjected to proteomics analysis. Results: Clinically, Thealoz® Duo significantly improved the ocular surface disease index at T2 vs. T1 (DRY, p = 1.4 × 10−2; DRYlip, p = 9.2 × 10−3) and T3 vs. T1 (DRY, p = 2.1 × 10−5; DRYlip, p = 1.2 × 10−4), and the tear break-up time at T3 vs. T1 (DRY, p = 3.8 × 10−2; DRYlip, p = 1.4 × 10−2). Thealoz® Duo significantly ameliorated expression of inflammatory response proteins (p < 0.05) at T3, which was observed at T1 (DRY, p = 3.4 × 10−4; DRYlip, p = 7.1 × 10−3; DRYaqlip, p = 2.7 × 10−8). Protein S100-A8 (S100A8), Alpha-1-antitrypsin (SERPINA1), Annexin A1 (ANXA1), and Apolipoprotein A-I (APOA1) were found to be significantly reduced in all the DED subgroups. The application of Thealoz® Duo showed the therapeutic characteristic of the anti-inflammatory mechanism by promoting the expression of (Metalloproteinase inhibitor 1) TIMP1 in all the DED subgroups. Conclusions: Thealoz® Duo substantially improved the DED symptoms and restored the functionality of the tear lipid layer to near normal in DRYlip and DRY patients by ameliorating inflammation. Notably, this study unravels the novel mechanistic alterations underpinning the healing effects of Thealoz® Duo in DED subgroups in a time-dependent manner, which supports the improvement in corresponding clinical attributes. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

25 pages, 1448 KiB  
Review
From Salivary Dysfunction to Prosthetic Challenges in Xerostomia and Denture Retention with Oral Gels
by Dawid Łysik, Joanna Niewęgłowska and Joanna Mystkowska
Materials 2025, 18(13), 3141; https://doi.org/10.3390/ma18133141 - 2 Jul 2025
Viewed by 541
Abstract
Xerostomia significantly compromises oral comfort, mucosal integrity, and denture retention. While topical therapies such as oral gels are commonly used to manage symptoms, their effectiveness remains limited due to an inability to replicate the complex biochemical and mechanical functions of natural saliva. This [...] Read more.
Xerostomia significantly compromises oral comfort, mucosal integrity, and denture retention. While topical therapies such as oral gels are commonly used to manage symptoms, their effectiveness remains limited due to an inability to replicate the complex biochemical and mechanical functions of natural saliva. This review explores the pathophysiology of salivary dysfunction, the structural and functional roles of mucins, and the tribological and rheological demands of the oral environment—particularly in denture wearers. Emphasis is placed on the interplay between mucosal surfaces, salivary films, and prosthetic biomaterials, as well as the importance of mucoadhesion and aqueous boundary lubrication. A rheological comparison of commercially available oral gels and whole human saliva (WHS) reveals that gels are significantly more viscous and elastic, yet fail to mimic the dynamic responsiveness of saliva. Current formulations lack functional standardization and labeling, limiting clinical guidance. The study proposes design principles for next-generation gels that incorporate amphiphilic, biomimetic components and measurable performance benchmarks. Full article
(This article belongs to the Special Issue Advanced Dental Materials for Oral Rehabilitation)
Show Figures

Figure 1

24 pages, 1710 KiB  
Review
Navigating the Dry Eye Therapeutic Puzzle: A Mechanism-Based Overview of Current Treatments
by Jason Betz and Anat Galor
Pharmaceuticals 2025, 18(7), 994; https://doi.org/10.3390/ph18070994 - 2 Jul 2025
Viewed by 819
Abstract
Background/Objectives: Dry eye disease (DED) is a multifactorial condition with complex pathophysiology involving tear film instability, ocular surface inflammation, and nerve dysfunction. This review summarizes current evidence on the different available therapies targeting these mechanisms. Methods: A review of clinical studies [...] Read more.
Background/Objectives: Dry eye disease (DED) is a multifactorial condition with complex pathophysiology involving tear film instability, ocular surface inflammation, and nerve dysfunction. This review summarizes current evidence on the different available therapies targeting these mechanisms. Methods: A review of clinical studies evaluating treatment outcomes for therapies targeting aqueous tear deficiency, Meibomian gland dysfunction, ocular surface inflammation, and ocular pain was conducted, with an emphasis on randomized controlled trials and meta-analyses where available. Results: Artificial tears provide symptomatic relief with limited impact on tear film stability. Punctal plugs improve tear retention but show variable efficacy across studies. Treatments targeting MGD—such as lipid-based lubricants, eyelid hygiene, thermal pulsation (LipiFlow, iLux), and intense pulsed light (IPL)—demonstrate improvements in gland function, though outcomes vary. Anti-inflammatory agents including cyclosporine, lifitegrast, and short-term corticosteroids improve ocular surface signs, with mixed symptom relief. Biologic therapies like autologous serum tears and platelet-rich plasma show promise for both signs and symptoms, but data remain inconsistent. Nerve-targeted therapies, including oral neuromodulators (gabapentin, antidepressants), botulinum toxin, and transcutaneous nerve stimulation, have shown potential for managing neuropathic ocular pain, although randomized data are limited. Overall, variability in study designs, patient populations, and outcome measures highlights the need for more rigorous research. Conclusions: Personalized, mechanism-based treatment strategies are essential for optimizing outcomes in DED. Future research should prioritize well-designed, controlled studies to clarify the role of emerging therapies and guide the individualized management of this heterogeneous condition. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

10 pages, 2135 KiB  
Article
Wear Transition of Silicon-Doped Tetrahedral Amorphous Carbon (ta-C:Si) Under Water Lubrication
by Jae-Il Kim, Ji-Woong Jang, Myung Hyun Kim, Se-Hun Kwon and Young-Jun Jang
Coatings 2025, 15(6), 640; https://doi.org/10.3390/coatings15060640 - 26 May 2025
Viewed by 489
Abstract
Silicon-doped tetrahedral amorphous carbon (ta-C:Si) coatings are promising materials for achieving ultralow friction in water-lubricated environments, attributed to the formation of Si(OH)x-based tribofilms. However, the deposition process via filtered cathodic vacuum arc (FCVA) often introduces large particles into the film, increasing [...] Read more.
Silicon-doped tetrahedral amorphous carbon (ta-C:Si) coatings are promising materials for achieving ultralow friction in water-lubricated environments, attributed to the formation of Si(OH)x-based tribofilms. However, the deposition process via filtered cathodic vacuum arc (FCVA) often introduces large particles into the film, increasing surface roughness and causing accelerated wear during the initial sliding phase, despite the high hardness of the coating. In this study, ball-on-disk tribological tests were performed to investigate the wear behavior of ta-C:Si coatings under water lubrication. Friction coefficients, wear volume, and surface roughness were analyzed over various sliding durations. The Archard wear equation and the plasticity index were used to analyze wear and contact behavior. The friction coefficient decreased from 0.14 to 0.04 within the initial 100 m section, and the surface roughness of ta-C:Si decreased sharply from 0.35 μm to 0.01 μm based on the Rpk parameter during 10 h. Following this period, the plasticity index decreased from an initial value of 1.1 to below 0.6, transitioning to a fully elastic contact stage, marking the onset of steady-state wear after 10 h. These results indicate that the reduction in surface roughness plays a crucial role in stabilizing wear behavior and provide insights into optimizing the long-term performance of ta-C:Si coatings in aqueous environments. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Graphical abstract

13 pages, 2986 KiB  
Article
Prediction of Lubrication Performance of Hyaluronic Acid Aqueous Solutions Using a Bayesian-Optimized BP Network
by Xia Li and Feng Guo
Lubricants 2025, 13(5), 215; https://doi.org/10.3390/lubricants13050215 - 14 May 2025
Viewed by 529
Abstract
The present study proposes a Bayesian-optimized back-propagation (BP) neural network framework for predicting the tribological performance of hyaluronic acid (HA) aqueous solutions under hydrodynamic lubrication conditions. The model addresses the complex rheological behavior of HA and limitations of traditional trial-and-error methods. It integrates [...] Read more.
The present study proposes a Bayesian-optimized back-propagation (BP) neural network framework for predicting the tribological performance of hyaluronic acid (HA) aqueous solutions under hydrodynamic lubrication conditions. The model addresses the complex rheological behavior of HA and limitations of traditional trial-and-error methods. It integrates four operational parameters—applied load, sliding speed, fluid viscosity and contact surface inclination. These enable the simultaneous prediction of two critical lubrication characteristics: film thickness and load-carrying capacity. Bayesian optimization was used to automate hyperparameter tuning. This can significantly improve computational efficiency. The optimized model showed a coefficient of determination (R2) of 0.938 and a mean square error (MSE) of 0.0025 on the test dataset, indicating its ability for accurate prediction. The results indicated a significant positive correlation between HA viscosity and lubrication performance. This framework can be used as a screening tool for HA-based lubricants. The integration of machine learning with biotribology may offer opportunities to improve data-driven approaches to analyzing complex fluid behavior, where traditional models have limitations. Full article
(This article belongs to the Special Issue New Horizons in Machine Learning Applications for Tribology)
Show Figures

Figure 1

18 pages, 4036 KiB  
Article
Development of Oil-Free Lubricants for Cold Rolling of Low-Carbon Steel
by Leon Jacobs, Delphine Rèche, Andreas Bán, Valentina Colla, Orlando Toscanelli, Martin Raulf, Martin Schlupp, Bas Smeulders, Mike Cook and Wim Filemon
Processes 2025, 13(4), 1234; https://doi.org/10.3390/pr13041234 - 18 Apr 2025
Viewed by 567
Abstract
Oil-in-water emulsions (O/W emulsions) are generally used to lubricate the cold rolling process of low-carbon steel. In addition to the obvious advantages of efficient lubrication and cooling of the process, there are also some disadvantages, mainly related to emulsion bath maintenance, subsequent production [...] Read more.
Oil-in-water emulsions (O/W emulsions) are generally used to lubricate the cold rolling process of low-carbon steel. In addition to the obvious advantages of efficient lubrication and cooling of the process, there are also some disadvantages, mainly related to emulsion bath maintenance, subsequent production steps and waste disposal. In some application areas, Oil-Free Lubricants (OFL’s) have been shown to be at least equally effective in decreasing friction and wear as conventional oil-based lubricants, while resulting in benefits related to waste disposal. In 2023, a project named “Transfer of aqueous oil free lubricants into steel cold rolling practice” (acronym ‘RollOilFreeII’) began, with it receiving funding from the Research Fund for Coal and Steel (RFCS). This project aims at an industrial application of Oil-Free Lubricants in the steel cold rolling process. The project builds on the work of the ‘RollOilFree’ project (also carried out in the RFCS-framework). This article briefly recapitulates the findings in the RollOilFree project and describes the objectives, benefits, activities and first results of the RollOilFreeII project. Notably, a pilot mill trial at high speed has been carried out, showing a good performance of the investigated OFLs. Back-calculated friction values were equal to, or even slightly lower than, reference O/W emulsions. The strip cleanliness with OFLs is much better than it is with the reference O/W emulsions. Only for a very thin product, as is the case in tinplate rolling, does the direct application of a conventional O/W dispersion (a high-particle-sized O/W emulsion) give a better performance than the investigated OFLs. Further development of OFLs should focus on this aspect. Full article
Show Figures

Figure 1

15 pages, 7956 KiB  
Article
A Study on the Surfactant and Tribological Properties of Water-Based Nano-Rolling Lubricants on Non-Ferrous Metal Surfaces
by Yuchuan Zhu, Zixuan Li and Changyu Han
Lubricants 2025, 13(4), 152; https://doi.org/10.3390/lubricants13040152 - 31 Mar 2025
Viewed by 544
Abstract
This study proposes a composite-surfactant-assisted method for preparing Fe3O4 water-based nanolubricants to enhance environmental and tribological performance in rolling applications. The dispersion stability of nanoparticles in the suspension was analyzed. The optimal concentration of the nanolubricant was identified. In addition, [...] Read more.
This study proposes a composite-surfactant-assisted method for preparing Fe3O4 water-based nanolubricants to enhance environmental and tribological performance in rolling applications. The dispersion stability of nanoparticles in the suspension was analyzed. The optimal concentration of the nanolubricant was identified. In addition, the reaction mechanism between nanoparticles and water-based nanolubricants was discussed. The experimental results demonstrated that the lubricant containing 6 wt% Fe3O4 nanoparticles exhibited the best anti-friction and anti-wear performance. The aqueous lubricant with composite surfactants showed improved dispersion stability, with its Zeta potential increasing to −43.45 mV, and the intensity curve exhibited a single peak. Through contact angle measurements, wettability was also significantly improved. The molecular interactions of composite surfactants in the prepared water-based nanolubricants were investigated using numerical simulations. The water-based nanolubricant containing composite surfactants displayed enhanced adsorption capacity on Fe3O4 crystals. Compared to other surfactants, the Fe3O4 water-based nanolubricant prepared with composite surfactants exhibited stable dispersion properties. Therefore, composite surfactants can enhance the stability and wettability of water-based nanolubricants. This method enables the preparation of high-performance water-based rolling nanolubricants. Full article
Show Figures

Figure 1

18 pages, 14556 KiB  
Article
Novel Water-Based Biolubricants Using Choline Ionic Liquids
by Paloma Mostaza, María-Dolores Avilés, Pablo M. Martínez-Rubio, María-Dolores Bermúdez and Francisco J. Carrión-Vilches
Lubricants 2025, 13(3), 122; https://doi.org/10.3390/lubricants13030122 - 12 Mar 2025
Viewed by 807
Abstract
Ionic liquid molecules exhibit a variety of properties that are well suited for use as lubricants or additives for lubricants, since they form tribolayers that reduce friction and wear. As additives in the design of new water-based biolubricants, ionic liquids present the advantages [...] Read more.
Ionic liquid molecules exhibit a variety of properties that are well suited for use as lubricants or additives for lubricants, since they form tribolayers that reduce friction and wear. As additives in the design of new water-based biolubricants, ionic liquids present the advantages of polar nature to use in aqueous lubrication, whilst being biocompatible and with null toxicity, opening up the opportunity to develop novel biolubricants. Choline is a cation present in numerous ionic liquids and is widely recognized for its water solubility, biodegradability, low toxicity, and role as a green solvent in different applications. This work presents the comparative studies of several water-based biolubricants and thin-layer films on stainless steel using a low proportion of Choline-based ionic liquids. The results of friction and wear using water-based biolubricants with 1 wt% of different Choline-based ionic liquids showed good tribological performance. In addition, Choline Lysinate, an amino-acid ionic liquid which is biocompatible, nontoxic, and biodegradable, presented excellent performance and was used as a precursor of thin-layer films on stainless steel showing outstanding behavior in pin-on-disc configuration and sapphire/stainless-steel contacts. Subsequent X-ray photoelectron spectroscopy confirmed the presence of a tribolayer containing the amino acid compound on the metallic surface. Full article
(This article belongs to the Special Issue Advances in Ionic Liquids as New Lubricant Materials)
Show Figures

Graphical abstract

25 pages, 7148 KiB  
Article
Biosynthesis Scale-Up Process for Magnetic Iron-Oxide Nanoparticles Using Eucalyptus globulus Extract and Their Separation Properties in Lubricant–Water Emulsions
by Yacu Vicente Alca-Ramos, Noemi-Raquel Checca-Huaman, Renzo Rueda-Vellasmin, Edson Caetano Passamani and Juan A. Ramos-Guivar
Nanomaterials 2025, 15(5), 382; https://doi.org/10.3390/nano15050382 - 1 Mar 2025
Cited by 1 | Viewed by 1161
Abstract
The use of natural organic extracts in nanoparticle synthesis can reduce environmental impacts and reagent costs. With that purpose in mind, a novel biosynthesis procedure for the formation of magnetic iron-oxide nanoparticles (IONPs) using Eucalyptus globulus extract in an aqueous medium has been [...] Read more.
The use of natural organic extracts in nanoparticle synthesis can reduce environmental impacts and reagent costs. With that purpose in mind, a novel biosynthesis procedure for the formation of magnetic iron-oxide nanoparticles (IONPs) using Eucalyptus globulus extract in an aqueous medium has been systematically carried out. First, the biosynthesis was optimized for various extract concentrations, prepared by decoction and infusion methods, and yielded IONPs with sizes from 4 to 9 nm. The optimum concentration was found at 5% w/v, where the biosynthesis reaction time and ammonium hydroxide amount were the lowest of all samples. This extract concentration was tested, including in replicated samples, for a scale-up process, yielded a total mass of 70 g. It was found by Rietveld and electron microscopy analyses that the structural and morphological properties, such as crystalline and particle sizes (9 nm), are equivalent when scaling the synthesis process. 57Fe Mössbauer spectroscopy results indicated that Fe ions are atomically ordered and in a trivalent state in all samples, corroborating with structural results found by X-ray diffraction. Magnetic analysis showed that the scale-up sample exhibited ferrimagnetic-like behavior suitable for magnetic remediation performance (55 emu g−1). The eucalyptus functionalization was demonstrated by thermogravimetric measurements, whereas the colloidal analysis supported the stability of the magnetic suspensions at pH = 7 (zeta potential > −20 mV). The kinetic adsorption performance indicated a fast kinetic adsorption time of 40 min and remarkable removal efficiency of 96% for lubricant removal from water (emulsion systems). The infrared analysis confirmed the presence of the eucalyptus chemical groups even after the removal experiments. These results suggest that the scale-up sample can be recovered for future and sustainable magnetic remediation processes. Full article
(This article belongs to the Special Issue Nanoscale Materials for Detection and Remediation of Water Pollutants)
Show Figures

Figure 1

12 pages, 2090 KiB  
Article
Study of Non-Newtonian Fluids’ Load-Carrying Capacity for Polyoxyethylene Oxide Water-Based Lubricants
by Huaping Yao, Jimei Niu, Ruihua Zhang and Ping Huang
Adhesives 2025, 1(1), 2; https://doi.org/10.3390/adhesives1010002 - 24 Dec 2024
Cited by 1 | Viewed by 1062
Abstract
Water-based lubricants have become increasingly prevalent across various fields due to their accessibility, cooling properties, and environmentally friendly characteristics. This study investigated the non-Newtonian properties of polyoxyethylene oxide (PEO) aqueous solutions. The rheological behaviors of 1%, 2%, and 3% PEO aqueous solutions were [...] Read more.
Water-based lubricants have become increasingly prevalent across various fields due to their accessibility, cooling properties, and environmentally friendly characteristics. This study investigated the non-Newtonian properties of polyoxyethylene oxide (PEO) aqueous solutions. The rheological behaviors of 1%, 2%, and 3% PEO aqueous solutions were assessed using a flat plate rheometer. Shear strain responses were comprehensively analyzed, resulting in the derivation of the corresponding power law functions. The total loads of 1%, 2%, and 3% PEO aqueous solutions can be obtained by the numerical integration of Reynolds equations. Results indicate that at high shear strain rates, load-carrying capacity increased; however, the rate of increase gradually diminished as the shear strain rate rose. In practical applications, shear stress is subject to fluctuations; negative viscosity occurs resulting in reduced hydrodynamic pressure and potential lubrication failure. Full viscosity and incremental viscosity are introduced, with the latter being identified as a crucial factor that provides a more direct characterization of the relationship between shear stress and shear strain rate. This factor significantly influences the load-bearing capacity of the lubrication film in non-Newtonian fluids. Full article
Show Figures

Figure 1

17 pages, 4437 KiB  
Article
Fabrication of Polytetrafluoroethylene-Reinforced Fluorocarbon Composite Coatings and Tribological Properties Under Multi-Environment Working Conditions
by Changqing Xi, Bochao Zhang, Xiangdong Ye and Honghua Yan
Polymers 2024, 16(24), 3595; https://doi.org/10.3390/polym16243595 - 22 Dec 2024
Cited by 1 | Viewed by 1073
Abstract
Currently, few studies have been conducted on the use of fluorocarbon resin (FEVE) and polytetrafluoroethylene (PTFE) as adhesive substrates and lubricating and anti-corrosion fillers, respectively, for the fabrication of PTFE-reinforced fluorocarbon composite coatings. In this paper, the tribological properties of polytetrafluoroethylene-reinforced fluorocarbon composite [...] Read more.
Currently, few studies have been conducted on the use of fluorocarbon resin (FEVE) and polytetrafluoroethylene (PTFE) as adhesive substrates and lubricating and anti-corrosion fillers, respectively, for the fabrication of PTFE-reinforced fluorocarbon composite coatings. In this paper, the tribological properties of polytetrafluoroethylene-reinforced fluorocarbon composite coatings were investigated through orthogonal tests under various operating conditions. The optimal configuration for coating preparation under dry friction and aqueous lubrication was thus obtained: the optimal filler particle size, mass ratio of FEVE to PTFE, spraying pressure, and curing agent content were 50 μm, 3:4.5, 0.3 MPa, and 0.3, respectively. Under oil lubrication, the corresponding optimal values were 5 μm, 3:4.5, 0.3 MPa, and 0.3, respectively. Tribological tests revealed that the best overall performance of the FEVE/PTFE coating was obtained when the mass ratio of FEVE to PTFE was 3:4.5, and the filler particle size also significantly affected the tribological properties under different environments, including the friction coefficients of the FEVE/50 μm-PTFE coating under both dry friction and aqueous lubrication, as well as the friction coefficient of the FEVE/5 μm-PTFE coating under oil lubrication. These coefficients were 0.067, 0.062, and 0.055, representing decreases of 86%, 92%, and 56%, respectively, compared to those of the pure FEVE coating under the same working conditions. This research was conducted with the goal of expanding the application of fluorocarbon coatings in the field of tribology. Full article
Show Figures

Figure 1

12 pages, 5147 KiB  
Article
Tribological Properties of Polydimethylsiloxane Grafted with Poly(Ethylene Glycol) Methyl Ether Methacrylate Under Water Lubrication
by Tae-Hyeong Kim and Dae-Eun Kim
Lubricants 2024, 12(12), 426; https://doi.org/10.3390/lubricants12120426 - 2 Dec 2024
Viewed by 1046
Abstract
Polydimethylsiloxane (PDMS) is a polymer material characterized by its flexibility, biocompatibility, non-toxicity, excellent stability, and high transparency. It is also easy to process and allows for control over its physical properties. However, its inherent hydrophobicity limits its application in certain fields. To address [...] Read more.
Polydimethylsiloxane (PDMS) is a polymer material characterized by its flexibility, biocompatibility, non-toxicity, excellent stability, and high transparency. It is also easy to process and allows for control over its physical properties. However, its inherent hydrophobicity limits its application in certain fields. To address this limitation, research is being conducted to modify the surface properties of PDMS through polymer grafting. In this work, poly(ethylene glycol) methyl ether methacrylate (mPEG-MA) was grafted onto the PDMS surface to convert its hydrophobic characteristics to hydrophilicity. The tribological properties of the modified PDMS were then evaluated under conditions of hydrophilicity and water lubrication. Polymer grafting was performed by generating radicals on the surface of PDMS through ultraviolet (UV) irradiation using a photoinitiator, followed by grafting with mPEG-MA. The water contact angle, which serves as an indicator of hydrophilicity, was measured and revealed a decrease in the contact angle as the conditions for mPEG-MA grafting were intensified, signifying an increase in hydrophilicity. Additionally, the tribological properties under water lubrication improved with a higher degree of mPEG-MA grafting. Notably, PDMS grafted with a 20 wt.% mPEG-MA aqueous solution via UV irradiation for 12 h consistently maintained a coefficient of friction (COF) of less than 0.02 under water lubrication. Surface damage was observed locally in the dimples only under a load of 3 N. Full article
Show Figures

Figure 1

11 pages, 2870 KiB  
Article
Safety and Effectiveness of a Novel Liposomal Intra-Articular Lubricant in Symptomatic Knee Osteoarthritis: A First-in-Human Study
by Shai Shemesh, Oleg Dolkart, Ronit Goldberg, Sabrina Jahn, Amal Khoury, Yaniv Warschawski, Haggai Schermann, Moshe Salai, Gaby Agar and Michael Drexler
J. Clin. Med. 2024, 13(22), 6956; https://doi.org/10.3390/jcm13226956 - 18 Nov 2024
Cited by 2 | Viewed by 1321
Abstract
Background/Objectives: Osteoarthritis (OA) is a common disease that affects almost half the population at some point in their lives, causing pain and decreased functional capacity. New conservative treatment modalities are being proposed to provide symptomatic relief and delay surgical intervention. This study aimed [...] Read more.
Background/Objectives: Osteoarthritis (OA) is a common disease that affects almost half the population at some point in their lives, causing pain and decreased functional capacity. New conservative treatment modalities are being proposed to provide symptomatic relief and delay surgical intervention. This study aimed at evaluating the safety of the novel liposomal boundary lubricant, injected intra-articularly in patients with moderate knee OA. Additionally, the effect on the functionality and life quality was assessed. Methods: Eighteen of the twenty screened subjects met inclusion criteria and were enrolled in the study. After receiving a single IA injection of AqueousJoint, patients were prospectively evaluated at baseline and at 2, 4, 8, 12, and 26 weeks. Numeric Pain Rating Scale (NRS), Knee injury and Osteoarthritis Outcome Score (KOOS), Short Form Health Survey (SF12) and range of motion were also recorded. Results: The final analysis was conducted on 18 subjects. No adverse events related to the investigational product were observed in the study. No serious adverse events were observed at all. A significant decrease in pain was demonstrated at all time points vs. baseline (Friedman X2 = 35.08, p < 0.001). Significant improvement was demonstrated in KOOS pain, symptoms, sports, and ADL subscales (p < 0.001). Conclusions: Despite a relatively small sample, it was demonstrated that single IA AqueousJoint injection is a safe procedure, resulting in significant pain reduction, higher ADL score, and higher KOOS sport scores. The effects lasted up to 6 months. Full article
Show Figures

Figure 1

21 pages, 1766 KiB  
Review
Advanced Biomaterials for Lacrimal Tissue Engineering: A Review
by Kevin Y. Wu, Archan Dave, Patrick Daigle and Simon D. Tran
Materials 2024, 17(22), 5425; https://doi.org/10.3390/ma17225425 - 6 Nov 2024
Cited by 2 | Viewed by 2169
Abstract
The lacrimal gland (LG) is vital for ocular health, producing tears that lubricate and protect the eye. Dysfunction of the LG leads to aqueous-deficient dry eye disease (DED), significantly impacting quality of life. Current treatments mainly address symptoms rather than the underlying LG [...] Read more.
The lacrimal gland (LG) is vital for ocular health, producing tears that lubricate and protect the eye. Dysfunction of the LG leads to aqueous-deficient dry eye disease (DED), significantly impacting quality of life. Current treatments mainly address symptoms rather than the underlying LG dysfunction, highlighting the need for regenerative therapies. Tissue engineering offers a promising solution, with biomaterials playing crucial roles in scaffolding and supporting cell growth for LG regeneration. This review focuses on recent advances in biomaterials used for tissue engineering of the lacrimal gland. We discuss both natural and synthetic biomaterials that mimic the extracellular matrix and provide structural support for cell proliferation and differentiation. Natural biomaterials, such as Matrigel, decellularized extracellular matrices, chitosan, silk fibroin hydrogels, and human amniotic membrane are evaluated for their biocompatibility and ability to support lacrimal gland cells. Synthetic biomaterials, like polyethersulfone, polyesters, and biodegradable polymers (PLLA and PLGA), are assessed for their mechanical properties and potential to create scaffolds that replicate the complex architecture of the LG. We also explore the integration of growth factors and stem cells with these biomaterials to enhance tissue regeneration. Challenges such as achieving proper vascularization, innervation, and long-term functionality of engineered tissues are discussed. Advances in 3D bioprinting and scaffold fabrication techniques are highlighted as promising avenues to overcome current limitations. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

16 pages, 6813 KiB  
Article
Study on the Wear Performance of Surface Alloy Coating of Inner Lining Pipe under Different Load and Mineralization Conditions
by Yuntao Xi, Yucong Bi, Yang Wang, Lan Wang, Shikai Su, Lei Wang, Liqin Ding, Shanna Xu, Haitao Liu, Xinke Xiao, Ruifan Liu and Jiangtao Ji
Coatings 2024, 14(10), 1274; https://doi.org/10.3390/coatings14101274 - 4 Oct 2024
Viewed by 1319
Abstract
Testing was carried out in this study to evaluate the friction and wear performance of 45# steel inner liner pipes with cladding, along with four different types of centralizing materials (45# steel, nylon, polytetrafluoroethylene (PTFE), and surface alloy coating) in oil field conditions. [...] Read more.
Testing was carried out in this study to evaluate the friction and wear performance of 45# steel inner liner pipes with cladding, along with four different types of centralizing materials (45# steel, nylon, polytetrafluoroethylene (PTFE), and surface alloy coating) in oil field conditions. Under dry-friction conditions, the coefficients of friction and rates of wear are significantly higher than their counterparts in aqueous solutions. This is attributed to the lubricating effect provided by the aqueous solution, which reduces direct friction between contact surfaces, thereby lowering wear. As the degree of mineralization in the aqueous solution increases, the coefficient of friction tends to decrease, indicating that an elevated level of mineralization enhances the lubricating properties of the aqueous solution. The wear pattern in an aqueous solution is similar to that in dry-friction conditions under different loads, but with a lower friction coefficient and wear rate. The coating has played an important role in protecting the wear process of 45# steel, and the friction coefficient and wear rate of tubing materials under various environmental media have been significantly reduced. In terms of test load, taking into account the friction coefficient and wear rate, the suggested order for centralizing materials for lining oil pipes with the surface alloy coating is as follows: (i) surface alloy coating, (ii) nylon, (iii) PTFE, and (iv) 45# steel. Full article
Show Figures

Figure 1

Back to TopTop