Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = aqueous iterations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2093 KB  
Article
Coupling Bayesian Optimization with Generalized Linear Mixed Models for Managing Spatiotemporal Dynamics of Sediment PFAS
by Fatih Evrendilek, Macy Hannan and Gulsun Akdemir Evrendilek
Processes 2026, 14(3), 413; https://doi.org/10.3390/pr14030413 - 24 Jan 2026
Viewed by 159
Abstract
Conventional descriptive statistical approaches in per- and polyfluoroalkyl substance (PFAS) environmental forensics often fail under small-sample, ecosystem-level complexity, challenging the optimization of sampling, monitoring, and remediation strategies. This study presents an advance from passive description to adaptive decision-support for complex PFAS contamination. By [...] Read more.
Conventional descriptive statistical approaches in per- and polyfluoroalkyl substance (PFAS) environmental forensics often fail under small-sample, ecosystem-level complexity, challenging the optimization of sampling, monitoring, and remediation strategies. This study presents an advance from passive description to adaptive decision-support for complex PFAS contamination. By integrating Bayesian optimization (BO) via Gaussian Processes (GP) with a Generalized Linear Mixed Model (GLMM), we developed a signal-extraction framework for both understanding and action from limited data (n = 18). The BO/GP model achieved strong predictive performance (GP leave-one-out R2 = 0.807), while the GLMM confirmed significant overdispersion (1.62), indicating a patchy contamination distribution. The integrated analysis suggested a dominant spatiotemporal interaction: a transient, high-intensity perfluorooctane sulfonate (PFOS) plume that peaked at a precise location during early November (the autumn recharge period). Concurrently, the GLMM identified significant intra-sample variance (p = 0.0186), suggesting likely particulate-bound (colloid/sediment) transport, and detected n-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA) as a critical precursor (p < 0.0001), thus providing evidence consistent with the source as historic 3M aqueous film-forming foam. This coupled approach creates a dynamic, iterative decision-support system where signal-based diagnosis informs adaptive optimization, enabling mission-specific actions from targeted remediation to monitoring design. Full article
Show Figures

Figure 1

19 pages, 12656 KB  
Article
Automatic Detection of TiO2 Nanoparticles Using Dual-Coupled Microresonators and Deep Learning
by Andrés F. Calvo-Salcedo, Marin B. Marinov, Neil Guerrero González and Jose A. Jaramillo-Villegas
Technologies 2026, 14(1), 65; https://doi.org/10.3390/technologies14010065 - 15 Jan 2026
Viewed by 208
Abstract
The detection of titanium dioxide (TiO2) nanoparticles is a significant challenge due to their extensive industrial use and potential health and environmental impacts, which demand accurate, label-free approaches. This work presents an automatic detection system based on spectroscopy with optical [...] Read more.
The detection of titanium dioxide (TiO2) nanoparticles is a significant challenge due to their extensive industrial use and potential health and environmental impacts, which demand accurate, label-free approaches. This work presents an automatic detection system based on spectroscopy with optical frequency combs (OFC) in dual-coupled microresonators. The OFC generation was modeled through the Lugiato-Lefever equation, while propagation in distilled water containing TiO2 was simulated using the finite element method (FEM). The water–TiO2 mixture was described with the Yamaguchi model in a 5 × 5 mesh to represent non-uniform concentrations. From the norm of the electric field at a probe, a database of 11 classes (0–100%) with controlled Gaussian noise was constructed. A Transformer-based classifier was trained and compared with 1D-CNN and SVM under Monte Carlo validation (100 random 70/30 splits). The Transformer achieved 99.84 ± 0.01% accuracy with an inference time of 0.793 ± 0.05 s, while the 1D-CNN reached 99.64 ± 0.09% and the SVM 84.73 ± 1.48%. A repeatability test with 200 iterations confirmed deterministic DKS trajectories. The results demonstrate that combining dual-coupled microresonators, FEM, and Transformer architectures enables precise and efficient detection of TiO2 nanoparticles in aqueous solutions. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2025)
Show Figures

Figure 1

21 pages, 2352 KB  
Article
Evaluating the Effectiveness of Reference Solvent Solubility Calculations for Binary Mixtures Based on Pure Solvent Solubility: The Case of Phenolic Acids
by Piotr Cysewski, Tomasz Jeliński, Rafal Rozalski, Fabian Lesniewski and Maciej Przybyłek
Molecules 2025, 30(22), 4444; https://doi.org/10.3390/molecules30224444 - 18 Nov 2025
Viewed by 1027
Abstract
Predicting the solubility of active pharmaceutical ingredients (APIs) in binary solvent mixtures is a major challenge in formulation science, as physics-based models often fail to capture complex, non-additive mixing effects. This study presents a robust machine learning (ML) framework to overcome this limitation, [...] Read more.
Predicting the solubility of active pharmaceutical ingredients (APIs) in binary solvent mixtures is a major challenge in formulation science, as physics-based models often fail to capture complex, non-additive mixing effects. This study presents a robust machine learning (ML) framework to overcome this limitation, enabling accurate predictions from pure solvent data alone and molecular descriptors derived from COSMO-RS (computed with COSMOtherm). Firstly, our experimental knowledge of binary solvent mixtures solubility was expanded through newly measured data of caffeic and ferulic acids in aqueous mixtures of DMF, DMSO, and 4-formylmorpholine (4-FM). These new data, combined with values in the literature, formed a comprehensive dataset of 1636 points for ten phenolic and benzoic acids. To build a predictive model, a systematic methodology was developed, with the acronym of DOO-IT (Dual-Objective Optimization with ITerative features pruning), which automates descriptor selection and hyperparameter optimization to yield a maximally parsimonious and generalizable model. An exhaustive, multi-run stability analysis identified a final 10-descriptor nuSVR model as the optimal solution. This model demonstrated outstanding predictive power, achieving an R2 of 0.988 and MAE equal to 0.0514 on a held-out test set, vastly outperforming standard COSMO-RS approaches. Interpretation of the selected descriptors revealed that the model successfully learns to correct for non-ideal mixing by integrating a baseline solubility reference with specific solute–solvent and solvent–solvent interaction terms. This work delivers both a practical tool for reducing experimental screening and a powerful, transferable methodology for developing robust QSPR models for complex chemical systems. Full article
(This article belongs to the Special Issue Molecular Modeling: Advancements and Applications, 3rd Edition)
Show Figures

Figure 1

39 pages, 4360 KB  
Article
Phenomenon of Post-Vibration Interactions
by Anastasia Petrova, Sergey Tarasov, Evgeniy Gorbunov, German Stepanov, Olga Fartushnaya, Evgenii Zubkov, Irina Molodtsova, Vladimir Boriskin, Anastasia Zatykina, Alexey Smirnov, Svetlana Zakharova, Sabina Yaroshenko, Anna Ponomareva, Nataliya Petrova, Elena Kardash, Ksenia Ganina, Natalia Rodionova, Alexander Kovalchuk and Oleg Epstein
Symmetry 2024, 16(8), 958; https://doi.org/10.3390/sym16080958 - 27 Jul 2024
Cited by 15 | Viewed by 2856
Abstract
During the preparation of high dilutions, repeated external vibration (shaking) is used. We hypothesized that it was the vibration treatment, and not the negligible content of the initial substance, that underlies the activity of highly diluted preparations. In order to test this, the [...] Read more.
During the preparation of high dilutions, repeated external vibration (shaking) is used. We hypothesized that it was the vibration treatment, and not the negligible content of the initial substance, that underlies the activity of highly diluted preparations. In order to test this, the vibration was separated from the dilution process. After vibrating two tubes together on a vortex mixer (one containing water and the other the initial substance) the electrical conductivity and radio frequency radiation intensity of water differed from the unvibrated control, and the ability to exert a modifying effect on the target solution appeared, as assessed using ELISA and terahertz spectroscopy, appeared. Thus, the properties of the neutral carrier (water) changed after non-contact exposure to the initial substance. We have named this process ‘crossing’ and its products ‘aqueous iterations of the initial substance’. Several aqueous iterations with different physical properties were obtained, some of which have a modifying effect and others cause various chemical (catalytic) and biological (antiviral) effects similar to those of the initial substance. This indicates that during crossing, substances enter into post-vibration supramolecular interactions. At the nanoscale level, aqueous iterations and the initial substance are structurally symmetrical, which allows us to assume that the preservation of the symmetry of substances subjected to vibration treatment is the basis of the post-vibration interaction phenomenon. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry: Feature Review Papers 2024)
Show Figures

Figure 1

17 pages, 2920 KB  
Article
A Coupling Calculation Method of Desorption Energy Distribution Applied to CO2 Capture by Chemical Absorption
by Dongliang Wang, Li Liu, Jiangpeng Xie, Yong Yang, Huairong Zhou and Xueying Fan
Processes 2024, 12(1), 187; https://doi.org/10.3390/pr12010187 - 15 Jan 2024
Cited by 7 | Viewed by 3567
Abstract
The pursuit of low-energy-consumption CO2 capture technology has promoted the renewal and iteration of absorbents for chemical absorption. In order to evaluate the regeneration energy consumption of absorbents and obtain the distribution of energy consumption, a coupling method combining rigorous energy balance [...] Read more.
The pursuit of low-energy-consumption CO2 capture technology has promoted the renewal and iteration of absorbents for chemical absorption. In order to evaluate the regeneration energy consumption of absorbents and obtain the distribution of energy consumption, a coupling method combining rigorous energy balance and simple estimation is proposed in this study. The data regarding energy balance and material balance from process simulation are transformed into the model parameters required in the simple estimation model. Regenerative energy consumption and distribution are determined by the empirical estimation formula. Two CO2 capture processes of an MEA aqueous solution and MEA–n-propanol aqueous solution (phase-change absorbent) were used to verify the feasibility and applicability of the coupling method. The effects of n-propanol concentration, CO2 loading in the lean solution, and temperature on energy consumption were discussed. The results show that the energy consumption of 30 wt% MEA aqueous solution is the lowest at 3.92 GJ·t−1-CO2 when CO2 load in the lean solution is 0.2 mol CO2·mol−1-MEA, and the reaction heat Qrec, sensible heat Qsen, and latent heat Qlatent were 1.97 GJ·t−1-CO2, 1.09 GJ·t−1-CO2, and 0.86 GJ·t−1-CO2, respectively. The lowest energy consumption of the phase-change absorbent with CO2 loading of 0.35 mol CO2·mol−1-MEA in the lean solution is 2.32 GJ·t−1-CO2. Qrec, Qsen, and Qlatent were 1.9 GJ·t−1-CO2, 0.29 GJ·t−1-CO2, and 0.14 GJ·t−1-CO2, respectively. This study provides a simple and meaningful method for accurately assessing absorber performance and process improvement, which can accelerate the development of economically viable, absorption-based CO2 capture processes. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

28 pages, 6974 KB  
Article
Novel High-Precision and High-Robustness Localization Algorithm for Underwater-Environment-Monitoring Wireless Sensor Networks
by Junling Ma, Jiangfeng Xian, Huafeng Wu, Yongsheng Yang, Xiaojun Mei, Yuanyuan Zhang, Xinqiang Chen and Chao Zhou
J. Mar. Sci. Eng. 2023, 11(9), 1713; https://doi.org/10.3390/jmse11091713 - 30 Aug 2023
Cited by 8 | Viewed by 2311
Abstract
In marine ecological environment monitoring, the acquisition of node location information is crucial, and the absence of location information can render the collected data meaningless. Compared to the rest of the distance-based localization methods, the received signal strength (RSS)-based localization technique has gained [...] Read more.
In marine ecological environment monitoring, the acquisition of node location information is crucial, and the absence of location information can render the collected data meaningless. Compared to the rest of the distance-based localization methods, the received signal strength (RSS)-based localization technique has gained significant interest due to its low cost and the absence of time synchronization. However, the acoustic signal propagates in the complex and changeable aqueous medium, and, in addition to the time-varying path loss factor (PLF), there is often a certain absorption loss, which seriously deteriorates the localization accuracy of the RSS-based technique. To address the above challenges, we propose a novel high-precision and high-robustness localization (NHHL) algorithm that introduces an estimation parameter to conjointly estimate the marine node location and the ambient PLF. Firstly, the original non-convex localization problem is converted into an alternating nonnegative constrained least squares (ANCLS) framework with the unknown PLF and absorption loss, and a two-step localization method based on the primitive dual interior point method and block co-ordinate update method is presented to find the optimal solution. In the first step, the penalty function is utilized to reformulate the localization problem and find an approximate solution. Nevertheless, due to inherent errors, it is unable to approximate the constraint boundary and the global optimum solution. Subsequently, in the second step, the original localization problem is further transformed into a generalized trust region sub-problem (GTRS) framework, and the approximate solution of the interior point method is utilized as the initial estimation, and then iteratively solved by block co-ordinate update to obtain the precise location and PLF conjointly. Furthermore, the closed-form expression of the Cramér–Rao lower bound (CRLB) for the case of the unknown path loss factor and absorption loss is derived to evaluate the our NHHL algorithm. Finally, the simulation results demonstrate the superiority of the presented NHHL algorithm compared with the selected benchmark methods in various marine simulation scenarios. Full article
(This article belongs to the Special Issue Underwater Acoustic Communication and Network)
Show Figures

Figure 1

25 pages, 9679 KB  
Article
Thermo-Mechanical Fluid–Structure Interaction Numerical Modelling and Experimental Validation of MEMS Electrothermal Actuators for Aqueous Biomedical Applications
by Thomas Sciberras, Marija Demicoli, Ivan Grech, Bertram Mallia, Pierluigi Mollicone and Nicholas Sammut
Micromachines 2023, 14(6), 1264; https://doi.org/10.3390/mi14061264 - 17 Jun 2023
Cited by 8 | Viewed by 2263
Abstract
Recent developments in MEMS technologies have made such devices attractive for use in applications that involve precision engineering and scalability. In the biomedical industry, MEMS devices have gained popularity in recent years for use as single-cell manipulation and characterisation tools. A niche application [...] Read more.
Recent developments in MEMS technologies have made such devices attractive for use in applications that involve precision engineering and scalability. In the biomedical industry, MEMS devices have gained popularity in recent years for use as single-cell manipulation and characterisation tools. A niche application is the mechanical characterisation of single human red blood cells, which may exhibit certain pathological conditions that impart biomarkers of quantifiable magnitude that are potentially detectable via MEMS devices. Such applications come with stringent thermal and structural specifications wherein the potential device candidates must be able to function with no exceptions. This work presents a state-of-the-art numerical modelling methodology that is capable of accurately predicting MEMS device performance in various media, including aqueous ones. The method is strongly coupled in nature, whereby thermal as well as structural degrees of freedom are transferred to and from finite element and finite volume solvers at every iteration. This method therefore provides MEMS design engineers with a reliable tool that can be used in design and development stages and helps to avoid total reliability on experimental testing. The proposed numerical model is validated via a series of physical experiments. Four MEMS electrothermal actuators with cascaded V-shaped drivers are presented. With the use of the newly proposed numerical model as well as the experimental testing, the MEMS devices’ suitability for biomedical applications is confirmed. Full article
(This article belongs to the Special Issue MEMS Microgrippers and Their Applications)
Show Figures

Figure 1

18 pages, 4683 KB  
Article
Comparison of the Mechanical Properties and Corrosion Resistance of the Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN Coatings
by He Tao, Valery Zhylinski, Alexey Vereschaka, Vadzim Chayeuski, Huo Yuanming, Filipp Milovich, Catherine Sotova, Anton Seleznev and Olga Salychits
Coatings 2023, 13(4), 750; https://doi.org/10.3390/coatings13040750 - 8 Apr 2023
Cited by 34 | Viewed by 5073
Abstract
In this work, the mechanical properties and corrosion resistance of Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN coatings deposited by the physical vapor deposition (PVD) method on Ti-6Al-4V alloy were compared. The phase composition of the coatings, their hardness and fracture resistance in scratch tests [...] Read more.
In this work, the mechanical properties and corrosion resistance of Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN coatings deposited by the physical vapor deposition (PVD) method on Ti-6Al-4V alloy were compared. The phase composition of the coatings, their hardness and fracture resistance in scratch tests were determined, and their structural characteristics were also studied using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). The diffraction spectra were made using an automatic X-ray diffractometer. The value of the adhesive component of the friction coefficient fadh of the pair “coated and uncoated Ti-6Al-4V alloy” was investigated in the temperature range of 20–900 °C. The lowest value of fadh was detected for the Zr-ZrN coating at temperatures below 400 °C, while for the Mo-MoN coating it was observed at temperatures above 700 °C. The polarization curves of the coated and uncoated samples were performed in a 3% aqueous NaCl solution. The level of corrosion of the Ti-6Al-4V alloy samples with Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN coatings was evaluated using the Tafel extrapolation method, the iteration method, and the polarization resistance method. The results obtained with these methods indicate that the Zr-ZrN coated sample has the best corrosion resistance in the 3 wt.% NaCl solution, with a corrosion current density of 0.123 μA/cm2. Full article
(This article belongs to the Special Issue Corrosion Effects and Smart Coatings of Corrosion Protection)
Show Figures

Figure 1

14 pages, 2615 KB  
Article
Chelating Silicone Dendrons: Trying to Impact Organisms by Disrupting Ions at Interfaces
by Miguel Melendez-Zamudio, Kevina Chavda and Michael A. Brook
Molecules 2022, 27(6), 1869; https://doi.org/10.3390/molecules27061869 - 14 Mar 2022
Cited by 9 | Viewed by 2712
Abstract
The viability of pathogens at interfaces can be disrupted by the presence of (cationic) charge and chelating groups. We report on the synthesis of silicone dendrimers and linear polymers based on a motif of hexadentate ligands with the ability to capture and deliver [...] Read more.
The viability of pathogens at interfaces can be disrupted by the presence of (cationic) charge and chelating groups. We report on the synthesis of silicone dendrimers and linear polymers based on a motif of hexadentate ligands with the ability to capture and deliver metal ions. Mono-, di- or trialkoxysilanes are converted in G1 to analogous vinylsilicones and then, iteratively using the Piers-Rubinsztajn reaction and hydrosilylation, each vinyl group is transformed into a trivinyl cluster at G2. The thiol-ene reaction with cysteamine or 3-mercaptopropionic acid and the trivinyl cluster leads to hexadentate ligands 3 × N–S or 3 × HOOC–S. The compounds were shown to effectively capture a variety of metals ions. Copper ion chelation was pursued in more detail, because of its toxicity. On average, metal ions form chelates with 2.4 of the three ligands in a cluster. Upon chelation, viscous oils are converted to (very) soft elastomers. Most of the ions could be stripped from the elastomers using aqueous EDTA solutions, demonstrating the ability of the silicones to both sequester and deliver ions. However, complete ion removal is not observed; at equilibrium, the silicones remain ionically crosslinked. Full article
(This article belongs to the Special Issue Dendrimers for Biomedical Applications)
Show Figures

Graphical abstract

13 pages, 3309 KB  
Article
ABC-Type Triblock Copolyacrylamides via Copper-Mediated Reversible Deactivation Radical Polymerization
by Fehaid M. Alsubaie, Othman Y. Alothman, Hassan Fouad and Abdel-Hamid I. Mourad
Polymers 2022, 14(1), 116; https://doi.org/10.3390/polym14010116 - 29 Dec 2021
Cited by 1 | Viewed by 2158
Abstract
The aqueous Cu(0)-mediated reversible deactivation radical polymerization (RDRP) of triblock copolymers with two block sequences at 0.0 °C is reported herein. Well-defined triblock copolymers initiated from PHEAA or PDMA, containing (A) 2-hydroxyethyl acrylamide (HEAA), (B) N-isopropylacrylamide (NIPAM) and (C) N, N-dimethylacrylamide (DMA), were [...] Read more.
The aqueous Cu(0)-mediated reversible deactivation radical polymerization (RDRP) of triblock copolymers with two block sequences at 0.0 °C is reported herein. Well-defined triblock copolymers initiated from PHEAA or PDMA, containing (A) 2-hydroxyethyl acrylamide (HEAA), (B) N-isopropylacrylamide (NIPAM) and (C) N, N-dimethylacrylamide (DMA), were synthesized. The ultrafast one-pot synthesis of sequence-controlled triblock copolymers via iterative sequential monomer addition after full conversion, without any purification steps throughout the monomer additions, was performed. The narrow dispersities of the triblock copolymers proved the high degree of end-group fidelity of the starting macroinitiator and the absence of any significant undesirable side reactions. Controlled chain length and extremely narrow molecular weight distributions (dispersity ~1.10) were achieved, and quantitative conversion was attained in as little as 52 min. The full disproportionation of CuBr in the presence of Me6TREN in water prior to both monomer and initiator addition was crucially exploited to produce a well-defined ABC-type triblock copolymer. In addition, the undesirable side reaction that could influence the living nature of the system was investigated. The ability to incorporate several functional monomers without affecting the living nature of the polymerization proves the versatility of this approach. Full article
Show Figures

Figure 1

30 pages, 13413 KB  
Article
Effect of Computational Schemes on Coupled Flow and Geo-Mechanical Modeling of CO2 Leakage through a Compromised Well
by Mohammad Islam, Nicolas Huerta and Robert Dilmore
Computation 2020, 8(4), 98; https://doi.org/10.3390/computation8040098 - 13 Nov 2020
Cited by 4 | Viewed by 3827
Abstract
Carbon capture, utilization, and storage (CCUS) describes a set of technically viable processes to separate carbon dioxide (CO2) from industrial byproduct streams and inject it into deep geologic formations for long-term storage. Legacy wells located within the spatial domain of new [...] Read more.
Carbon capture, utilization, and storage (CCUS) describes a set of technically viable processes to separate carbon dioxide (CO2) from industrial byproduct streams and inject it into deep geologic formations for long-term storage. Legacy wells located within the spatial domain of new injection and production activities represent potential pathways for fluids (i.e., CO2 and aqueous phase) to leak through compromised components (e.g., through fractures or micro-annulus pathways). The finite element (FE) method is a well-established numerical approach to simulate the coupling between multi-phase fluid flow and solid phase deformation interactions that occur in a compromised well system. We assumed the spatial domain consists of a three-phases system: a solid, liquid, and gas phase. For flow in the two fluids phases, we considered two sets of primary variables: the first considering capillary pressure and gas pressure (PP) scheme, and the second considering liquid pressure and gas saturation (PS) scheme. Fluid phases were coupled with the solid phase using the full coupling (i.e., monolithic coupling) and iterative coupling (i.e., sequential coupling) approaches. The challenge of achieving numerical stability in the coupled formulation in heterogeneous media was addressed using the mass lumping and the upwinding techniques. Numerical results were compared with three benchmark problems to assess the performance of coupled FE solutions: 1D Terzaghi’s consolidation, Liakopoulos experiments, and the Kueper and Frind experiments. We found good agreement between our results and the three benchmark problems. For the Kueper and Frind test, the PP scheme successfully captured the observed experimental response of the non-aqueous phase infiltration, in contrast to the PS scheme. These exercises demonstrate the importance of fluid phase primary variable selection for heterogeneous porous media. We then applied the developed model to the hypothetical case of leakage along a compromised well representing a heterogeneous media. Considering the mass lumping and the upwinding techniques, both the monotonic and the sequential coupling provided identical results, but mass lumping was needed to avoid numerical instabilities in the sequential coupling. Additionally, in the monolithic coupling, the magnitude of primary variables in the coupled solution without mass lumping and the upwinding is higher, which is essential for the risk-based analyses. Full article
(This article belongs to the Special Issue Computational Models for Complex Fluid Interfaces across Scales)
Show Figures

Figure 1

18 pages, 3082 KB  
Article
Numerical Simulation of Non-Linear Models of Reaction—Diffusion for a DGT Sensor
by Joan Cecilia Averós, Jaume Puy Llorens and Ramiro Uribe-Kaffure
Algorithms 2020, 13(4), 98; https://doi.org/10.3390/a13040098 - 20 Apr 2020
Cited by 9 | Viewed by 3998
Abstract
In this work, we present a novel strategy for the numerical solution of a coupled system of partial differential equations that describe reaction–diffusion processes of a mixture of metals and ligands that can be absorbed by a sensor or a microorganism, in an [...] Read more.
In this work, we present a novel strategy for the numerical solution of a coupled system of partial differential equations that describe reaction–diffusion processes of a mixture of metals and ligands that can be absorbed by a sensor or a microorganism, in an aqueous medium. The novelty introduced in this work consisted of an adequate database management in conjunction with a direct iterative schema, which allowed the construction of simple, fast and efficient algorithms. Except in really adverse conditions, the calculation is converging and satisfactory solutions were reached. Computing times showed to be better than those obtained with some commercial programs. Although we concentrate on the solution for a particular system (Diffusive Gradients in Thin Films [DGT] sensors), the proposed algorithm does not require major modifications to consider new theoretical or experimental configurations. Since the quality of numerical simulations of reaction–diffusion problems often faces some drawbacks as the values of reaction rate constants increase, some additional effort has been invested in obtaining proper solutions in those cases. Full article
Show Figures

Figure 1

30 pages, 830 KB  
Article
Theoretical in-Solution Conformational/Tautomeric Analyses for Chain Systems with Conjugated Double Bonds Involving Nitrogen(s)
by Peter I. Nagy
Int. J. Mol. Sci. 2015, 16(5), 10767-10796; https://doi.org/10.3390/ijms160510767 - 13 May 2015
Cited by 3 | Viewed by 7363
Abstract
Conformational/tautomeric transformations for X=CH–CH=Y structures (X = CH2, O, NH and Y = NH) have been studied in the gas phase, in dichloromethane and in aqueous solutions. The paper is a continuation of a former study where s-cis/s-trans conformational [...] Read more.
Conformational/tautomeric transformations for X=CH–CH=Y structures (X = CH2, O, NH and Y = NH) have been studied in the gas phase, in dichloromethane and in aqueous solutions. The paper is a continuation of a former study where s-cis/s-trans conformational equilibria were predicted for analogues. The s-trans conformation is preferred for the present molecules in the gas phase on the basis of its lowest internal free energy as calculated at the B97D/aug-cc-pvqz and CCSD(T)CBS (coupled-cluster singles and doubles with non-iterative triples extrapolated to the complete basis set) levels. Transition state barriers are of 29–36 kJ/mol for rotations about the central C–C bonds. In solution, an s-trans form is still favored on the basis of its considerably lower internal free energy compared with the s-cis forms as calculated by IEF-PCM (integral-equation formalism of the polarizable continuum dielectric solvent model) at the theoretical levels indicated. A tetrahydrate model in the supermolecule/continuum approach helped explore the 2solute-solvent hydrogen bond pattern. The calculated transition state barrier for rotation about the C–C bond decreased to 27 kJ/mol for the tetrahydrate. Considering explicit solvent models, relative solvation free energies were calculated by means of the free energy perturbation method through Monte Carlo simulations. These calculated values differ remarkably from those by the PCM approach in aqueous solution, nonetheless the same prevalent conformation was predicted by the two methods. Aqueous solution structure-characteristics were determined by Monte Carlo. Equilibration of conformers/tautomers through water-assisted double proton-relay is discussed. This mechanism is not viable, however, in non-protic solvents where the calculated potential of mean force curve does not predict remarkable solute dimerization and subsequent favorable orientation. Full article
(This article belongs to the Special Issue Solution Chemical Kinetics)
Show Figures

Figure 1

21 pages, 541 KB  
Article
Possible Time-Dependent Effect of Ions and Hydrophilic Surfaces on the Electrical Conductivity of Aqueous Solutions
by Nada Verdel, Igor Jerman, Rok Krasovec, Peter Bukovec and Marija Zupancic
Int. J. Mol. Sci. 2012, 13(4), 4048-4068; https://doi.org/10.3390/ijms13044048 - 27 Mar 2012
Cited by 11 | Viewed by 7987
Abstract
The purpose of this work was to determine the influence of mechanical and electrical treatment on the electrical conductivity of aqueous solutions. Solutions were treated mechanically by iteration of two steps: 1:100 dilution and vigorous shaking. These two processes were repeated until extremely [...] Read more.
The purpose of this work was to determine the influence of mechanical and electrical treatment on the electrical conductivity of aqueous solutions. Solutions were treated mechanically by iteration of two steps: 1:100 dilution and vigorous shaking. These two processes were repeated until extremely dilute solutions were obtained. For electrical treatment the solutions were exposed to strong electrical impulses. Effects of mechanical (as well as electrical) treatment could not be demonstrated using electrical conductivity measurements. However, significantly higher conductivity than those of the freshly prepared chemically analogous solutions was found in all aged solutions except for those samples stored frozen. The results surprisingly resemble a previously observed weak gel-like behavior in water stored in closed flasks. We suggest that ions and contact with hydrophilic glass surfaces could be the determinative conditions for the occurrence of this phenomenon. Full article
(This article belongs to the Section Physical Chemistry, Theoretical and Computational Chemistry)
Show Figures

Back to TopTop