Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = antihypoxants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8728 KiB  
Article
Trans-Sodium Crocetinate Ameliorates High-Altitude Acute Lung Injury via Modulating EGFR/PI3K/AKT/NF-κB Signaling Axis
by Keke Liang, Yanlin Ta, Liang Xu, Shuhe Ma, Renjie Wang, Chenrong Xiao, Yue Gao and Maoxing Li
Nutrients 2025, 17(15), 2406; https://doi.org/10.3390/nu17152406 - 23 Jul 2025
Viewed by 374
Abstract
Objectives: Saffron, a traditional Chinese medicine, is renowned for its pharmacological effects in promoting blood circulation, resolving blood stasis, regulating menstruation, detoxification, and alleviating mental disturbances. Trans-crocetin, its principal bioactive component, exhibits significant anti-hypoxic activity. The clinical development and therapeutic efficacy of [...] Read more.
Objectives: Saffron, a traditional Chinese medicine, is renowned for its pharmacological effects in promoting blood circulation, resolving blood stasis, regulating menstruation, detoxification, and alleviating mental disturbances. Trans-crocetin, its principal bioactive component, exhibits significant anti-hypoxic activity. The clinical development and therapeutic efficacy of trans-crocetin are limited by its instability, poor solubility, and low bioavailability. Conversion of trans-crocetin into trans-sodium crocetinate (TSC) enhances its solubility, stability, and bioavailability, thereby amplifying its anti-hypoxic potential. Methods: This study integrates network pharmacology with in vivo and in vitro validation to elucidate the molecular targets and mechanisms underlying TSC’s therapeutic effects against high-altitude acute lung injury (HALI), aiming to identify novel treatment strategies. Results: TSC effectively reversed hypoxia-induced biochemical abnormalities, ameliorated lung histopathological damage, and suppressed systemic inflammation and oxidative stress in HALI rats. In vitro, TSC mitigated CoCl2-induced hypoxia injury in human pulmonary microvascular endothelial cells (HPMECs) by reducing inflammatory cytokines, oxidative stress, and ROS accumulation while restoring mitochondrial membrane potential. Network pharmacology and pathway analysis revealed that TSC primarily targets the EGFR/PI3K/AKT/NF-κB signaling axis. Molecular docking and dynamics simulations demonstrated stable binding interactions between TSC and key components of this pathway. ELISA and RT-qPCR confirmed that TSC significantly downregulated the expression of EGFR, PI3K, AKT, NF-κB, and their associated mRNAs. Conclusions: TSC alleviates high-altitude hypoxia-induced lung injury by inhibiting the EGFR/PI3K/AKT/NF-κB signaling pathway, thereby attenuating inflammatory responses, oxidative stress, and restoring mitochondrial function. These findings highlight TSC as a promising therapeutic agent for HALI. Full article
(This article belongs to the Special Issue Natural Active Compounds in Inflammation and Metabolic Diseases)
Show Figures

Figure 1

26 pages, 1402 KiB  
Review
Exosome Therapy in Stress Urinary Incontinence: A Comprehensive Literature Review
by Manouchehr Nasrollahzadeh Saravi, Mahdi Mohseni, Iman Menbari Oskouie, Jafar Razavi, Ernesto Delgado Cidranes and Masoumeh Majidi Zolbin
Biomedicines 2025, 13(5), 1229; https://doi.org/10.3390/biomedicines13051229 - 19 May 2025
Cited by 1 | Viewed by 1017
Abstract
Stress urinary incontinence (SUI) is characterized by the involuntary leakage of urine when bladder pressure exceeds urethral closing pressure during routine activities such as physical exertion, coughing, exercise, or sneezing. SUI is the most prevalent form of urinary incontinence, with a reported prevalence [...] Read more.
Stress urinary incontinence (SUI) is characterized by the involuntary leakage of urine when bladder pressure exceeds urethral closing pressure during routine activities such as physical exertion, coughing, exercise, or sneezing. SUI is the most prevalent form of urinary incontinence, with a reported prevalence ranging from 10% to 70%, and its incidence increases with age. As the global population continues to age, the prevalence and clinical significance of SUI are expected to rise accordingly. The pathophysiology of SUI is primarily driven by two mechanisms: urethral hypermobility, resulting from compromised supporting structures, and intrinsic urethral sphincter deficiency, characterized by the deterioration of urethral mucosa and muscle tone. Current treatment options for SUI include conservative management strategies, which heavily rely on patient adherence and are associated with high recurrence rates, and surgical interventions, such as sling procedures, which offer effective solutions but are costly and carry the risk of adverse side effects. These limitations highlight the urgent need for more effective and comprehensive treatment modalities. Exosomes, nano-sized (30–150 nm) extracellular vesicles secreted by nearly all cell types, have emerged as a novel therapeutic option due to their regenerative, anti-fibrotic, pro-angiogenic, anti-apoptotic, anti-inflammatory, and anti-hypoxic properties. These biological functions position exosomes as a promising alternative to conventional therapies for SUI. Exosome therapy has the potential to enhance tissue regeneration, restore urethral function, and repair nerve and muscle damage, thereby reducing symptom burden and improving patients’ quality of life. Additionally, exosome-based treatments could offer a less invasive alternative to surgery, potentially decreasing the need for repeated interventions and minimizing complications associated with current procedures. In this literature review, we critically assess the current state of research on the potential use of exosomes in treating SUI, highlighting their therapeutic mechanisms and potential clinical benefits. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

23 pages, 2007 KiB  
Review
Targeting Tumor Hypoxia with Nanoparticle-Based Therapies: Challenges, Opportunities, and Clinical Implications
by Sujit Kumar Debnath, Monalisha Debnath, Arnab Ghosh, Rohit Srivastava and Abdelwahab Omri
Pharmaceuticals 2024, 17(10), 1389; https://doi.org/10.3390/ph17101389 - 18 Oct 2024
Cited by 10 | Viewed by 3589
Abstract
Hypoxia is a crucial factor in tumor biology, affecting various solid tumors to different extents. Its influence spans both early and advanced stages of cancer, altering cellular functions and promoting resistance to therapy. Hypoxia reduces the effectiveness of radiotherapy, chemotherapy, and immunotherapy, making [...] Read more.
Hypoxia is a crucial factor in tumor biology, affecting various solid tumors to different extents. Its influence spans both early and advanced stages of cancer, altering cellular functions and promoting resistance to therapy. Hypoxia reduces the effectiveness of radiotherapy, chemotherapy, and immunotherapy, making it a target for improving therapeutic outcomes. Despite extensive research, gaps persist, necessitating the exploration of new chemical and pharmacological interventions to modulate hypoxia-related pathways. This review discusses the complex pathways involved in hypoxia and the associated pharmacotherapies, highlighting the limitations of current treatments. It emphasizes the potential of nanoparticle-based platforms for delivering anti-hypoxic agents, particularly oxygen (O2), to the tumor microenvironment. Combining anti-hypoxic drugs with conventional cancer therapies shows promise in enhancing remission rates. The intricate relationship between hypoxia and tumor progression necessitates novel therapeutic strategies. Nanoparticle-based delivery systems can significantly improve cancer treatment efficacy by targeting hypoxia-associated pathways. The synergistic effects of combined therapies underscore the importance of multimodal approaches in overcoming hypoxia-mediated resistance. Continued research and innovation in this area hold great potential for advancing cancer therapy and improving patient outcomes. Full article
(This article belongs to the Special Issue Tumor Therapy and Drug Delivery)
Show Figures

Figure 1

19 pages, 6470 KiB  
Article
Sodium Hydrosulfide Protects Rats from Hypobaric-Hypoxia-Induced Acute Lung Injury
by Renjie Wang, Shuhe Ma, Jun Yang, Kai Luo, Qingyuan Qian, Jinchao Pan, Keke Liang, Yihao Wang, Yue Gao and Maoxing Li
Int. J. Mol. Sci. 2024, 25(19), 10734; https://doi.org/10.3390/ijms251910734 - 5 Oct 2024
Cited by 4 | Viewed by 2034
Abstract
Hydrogen sulfide (H2S), as a key gas signaling molecule, plays an important role in regulating various diseases, with appropriate concentrations providing antioxidative, anti-inflammatory, and anti-apoptotic effects. The specific role of H2S in acute hypoxic injury remains to be clarified. [...] Read more.
Hydrogen sulfide (H2S), as a key gas signaling molecule, plays an important role in regulating various diseases, with appropriate concentrations providing antioxidative, anti-inflammatory, and anti-apoptotic effects. The specific role of H2S in acute hypoxic injury remains to be clarified. This study focuses on the H2S donor sodium hydrosulfide (NaHS) and explores its protective effects and mechanisms against acute hypoxic lung injury. First, various mouse hypoxia models were established to evaluate H2S’s protection in hypoxia tolerance. Next, a rat model of acute lung injury (ALI) induced by hypoxia at 6500 m above sea level for 72 h was created to assess H2S’s protective effects and mechanisms. Evaluation metrics included blood gas analysis, blood routine indicators, lung water content, and lung tissue pathology. Additionally, LC-MS/MS and bioinformatic analyses were combined in performing quantitative proteomics on lung tissues from the normoxic control group, the hypoxia model group, and the hypoxia model group with NaHS treatment to preliminarily explore the protective mechanisms of H2S. Further, enzyme-linked immunosorbent assays (ELISA) were used to measure oxidative stress markers and inflammatory factors in rat lung tissues. Lastly, Western blot analysis was performed to detect Nrf2, HO-1, P-NF-κB, NF-κB, HIF-1α, Bcl-2, and Bax proteins in lung tissues. Results showed that H2S exhibited significant anti-hypoxic effects in various hypoxia models, effectively modulating blood gas and blood routine indicators in ALI rats, reducing pulmonary edema, improving lung tissue pathology, and alleviating oxidative stress, inflammatory responses, and apoptosis levels. Full article
(This article belongs to the Special Issue Natural Products and Synthetic Compounds for Drug Development 2.0)
Show Figures

Figure 1

22 pages, 7552 KiB  
Article
Evaluation of Crocetin as a Protective Agent in High Altitude Hypoxia-Induced Organ Damage
by Jun Yang, Kai Luo, Ziliang Guo, Renjie Wang, Qingyuan Qian, Shuhe Ma, Maoxing Li and Yue Gao
Pharmaceuticals 2024, 17(8), 985; https://doi.org/10.3390/ph17080985 - 25 Jul 2024
Cited by 3 | Viewed by 1691
Abstract
Crocetin is an aglycone of crocin naturally occurring in saffron and has been proved to have antioxidant, anti-inflammatory, and antibacterial activities. In this experiment, the protective effect of crocetin on vital organs in high-altitude hypoxia rats was studied. Crocetin was prepared from gardenia [...] Read more.
Crocetin is an aglycone of crocin naturally occurring in saffron and has been proved to have antioxidant, anti-inflammatory, and antibacterial activities. In this experiment, the protective effect of crocetin on vital organs in high-altitude hypoxia rats was studied. Crocetin was prepared from gardenia by the alkaline hydrolysis method, and its reducing ability and free radical scavenging ability were tested. The in vitro anti-hypoxia vitality was studied on PC12 cells. The anti-hypoxic survival time of mice was determined in several models. The acute hypoxic injury rat model was established by simulating the hypoxic environment of 8000 m-high altitude for 24 h, and the anti-hypoxia effect of crocetin was evaluated by intraperitoneal injection with the doses of 10, 20, and 40 mg/kg. The water contents of the brain and lung were determined, and the pathological sections in the brain, lung, heart, liver, and kidney were observed by HE staining. The levels of oxidative stress (SOD, CAT, H2O2, GSH, GSH-Px, MDA) and inflammatory factors (IL-1β, IL-6, TNF-α, VEGF) in rat brain, lung, heart, liver, and kidney tissues were detected by ELISA. The results indicated that crocetin exhibited strong reducing ability and free radical scavenging ability and could improve the activity of PC12 cells under hypoxia. After intraperitoneal injection with crocetin, the survival time of mice was prolonged, and the pathological damage, oxidative stress, and inflammation in rats’ tissue were ameliorated. The protective activity of crocetin on vital organs in high-altitude hypoxia rats may be related to reducing oxidative stress and inhibiting inflammatory response. Full article
(This article belongs to the Special Issue Bioactive Compounds Derived from Plants and Their Medicinal Potential)
Show Figures

Graphical abstract

15 pages, 1859 KiB  
Review
Biological Activity of Hexaazaisowurtzitane Derivatives
by Daria A. Kulagina, Sergey V. Sysolyatin, Svetlana G. Krylova, Elena A. Kiseleva, Tatiana N. Povetyeva, Elena P. Zueva, Valeria V. Eremina, Natalia A. Alekseeva, Svetlana V. Strokova, Nikolai I. Suslov and Vadim V. Zhdanov
Molecules 2023, 28(24), 8084; https://doi.org/10.3390/molecules28248084 - 14 Dec 2023
Cited by 4 | Viewed by 1854
Abstract
Biologically active compounds of natural or synthetic origin have a complex structure and generally contain various structural groups among which polycyclic cage amines are found. Hexaazaisowurtzitanes are representatives of these amines and studies on their biological activity began less than two decades ago, [...] Read more.
Biologically active compounds of natural or synthetic origin have a complex structure and generally contain various structural groups among which polycyclic cage amines are found. Hexaazaisowurtzitanes are representatives of these amines and studies on their biological activity began less than two decades ago, starting with research on the environmental impact of CL-20. This research helped to evaluate the risks of potential pollution in the habitat environments of living organisms and determine whether the chemical compounds in question could be utilized in pesticides, herbicides, fungicides, or medicinal drugs. The nomenclature of hexaazaisowurtzitane compounds has recently been expanded significantly, and some of them have demonstrated promise in the design of medicinal drugs. This paper review studies the pharmacological activity of the acyl derivatives of hexaazaisowurtzitane. Most of the compounds have been found to possess a high analgesic activity, providing a solution to the pressing issue of pain management in current pharmacology. Analgesic drugs currently used in the clinical practice do not meet all of the efficacy and safety requirements (gastro-, nephro-, hepato-, haematotoxicity, etc.). The material presented in the seven sections of this paper highlights information about hexaazaisowurtzitane derivatives. Furthermore, they have been observed to exhibit anti-inflammatory, anticonvulsant, antihypoxic, and antimetastatic activities, which render them highly promising for evaluation in various fields of medicinal practice. Full article
Show Figures

Graphical abstract

28 pages, 6431 KiB  
Article
Extracellular Vesicles Derived from Osteogenic-Differentiated Human Bone Marrow-Derived Mesenchymal Cells Rescue Osteogenic Ability of Bone Marrow-Derived Mesenchymal Cells Impaired by Hypoxia
by Chenglong Wang, Sabine Stöckl, Girish Pattappa, Daniela Schulz, Korbinian Hofmann, Jovana Ilic, Yvonne Reinders, Richard J. Bauer, Albert Sickmann and Susanne Grässel
Biomedicines 2023, 11(10), 2804; https://doi.org/10.3390/biomedicines11102804 - 16 Oct 2023
Cited by 1 | Viewed by 1872
Abstract
In orthopedics, musculoskeletal disorders, i.e., non-union of bone fractures or osteoporosis, can have common histories and symptoms related to pathological hypoxic conditions induced by aging, trauma or metabolic disorders. Here, we observed that hypoxic conditions (2% O2) suppressed the osteogenic differentiation [...] Read more.
In orthopedics, musculoskeletal disorders, i.e., non-union of bone fractures or osteoporosis, can have common histories and symptoms related to pathological hypoxic conditions induced by aging, trauma or metabolic disorders. Here, we observed that hypoxic conditions (2% O2) suppressed the osteogenic differentiation of human bone marrow-derived mesenchymal cells (hBMSC) in vitro and simultaneously increased reactive oxygen species (ROS) production. We assumed that cellular origin and cargo of extracellular vesicles (EVs) affect the osteogenic differentiation capacity of hBMSCs cultured under different oxygen pressures. Proteomic analysis revealed that EVs isolated from osteogenic differentiated hBMSC cultured under hypoxia (hypo-osteo EVs) or under normoxia (norm-osteo EVs) contained distinct protein profiles. Extracellular matrix (ECM) components, antioxidants and pro-osteogenic proteins were decreased in hypo-osteo EVs. The proteomic analysis in our previous study revealed that under normoxic culture conditions, pro-osteogenic proteins and ECM components have higher concentrations in norm-osteo EVs than in EVs derived from naïve hBMSCs (norm-naïve EVs). When selected for further analysis, five anti-hypoxic proteins were significantly upregulated (response to hypoxia) in norm-osteo EVs. Three of them are characterized as antioxidant proteins. We performed qRT-PCR to verify the corresponding gene expression levels in the norm-osteo EVs’ and norm-naïve EVs’ parent cells cultured under normoxia. Moreover, we observed that norm-osteo EVs rescued the osteogenic ability of naïve hBMSCs cultured under hypoxia and reduced hypoxia-induced elevation of ROS production in osteogenic differentiated hBMSCs, presumably by inducing expression of anti-hypoxic/ antioxidant and pro-osteogenic genes. Full article
(This article belongs to the Special Issue Extracellular Vesicles and Exosomes as Therapeutic Agents)
Show Figures

Figure 1

24 pages, 2641 KiB  
Review
The Effectiveness of L-arginine in Clinical Conditions Associated with Hypoxia
by Natalia Kurhaluk
Int. J. Mol. Sci. 2023, 24(9), 8205; https://doi.org/10.3390/ijms24098205 - 3 May 2023
Cited by 27 | Viewed by 9041
Abstract
The review summarises the data of the last 50 years on the effectiveness of the amino acid L-arginine in therapeutic practice in conditions accompanied by different-origin hypoxia. The aim of this review was to analyse the literature and our research data on the [...] Read more.
The review summarises the data of the last 50 years on the effectiveness of the amino acid L-arginine in therapeutic practice in conditions accompanied by different-origin hypoxia. The aim of this review was to analyse the literature and our research data on the role of nitric oxide in the modulation of individual physiological reactivity to hypoxia. The review considers the possibility of eliminating methodological conflicts in the case of L-arginine, which can be solved by taking into account individual physiological reactivity (or the hypoxia resistance factor). Considerable attention is paid to genetic and epigenetic mechanisms of adaptation to hypoxia and conditions of adaptation in different models. The article presents data on the clinical effectiveness of L-arginine in cardiovascular system diseases (hypertension, atherosclerosis, coronary heart disease, etc.) and stress disorders associated with these diseases. The review presents a generalised analysis of techniques, data on L-arginine use by athletes, and the ambiguous role of NO in the physiology and pathology of hypoxic states shown via nitric oxide synthesis. Data on the protective effects of adaptation in the formation of individual high reactivity in sportsmen are demonstrated. The review demonstrates a favourable effect of supplementation with L-arginine and its application depending on mitochondrial oxidative phosphorylation processes and biochemical indices in groups of individuals with low and high capacity of adaptation to hypoxia. In individuals with high initial anti-hypoxic reserves, these favourable effects are achieved by the blockade of NO-dependent biosynthesis pathways. Therefore, the methodological tasks of physiological experiments and the therapeutic consequences of treatment should include a component depending on the basic level of physiological reactivity. Full article
Show Figures

Graphical abstract

18 pages, 14486 KiB  
Article
New Anti-Hypoxic Metabolites from Co-Culture of Marine-Derived Fungi Aspergillus carneus KMM 4638 and Amphichorda sp. KMM 4639
by Elena B. Belousova, Olesya I. Zhuravleva, Ekaterina A. Yurchenko, Galina K. Oleynikova, Alexandr S. Antonov, Natalya N. Kirichuk, Viktoria E. Chausova, Yuliya V. Khudyakova, Alexander S. Menshov, Roman S. Popov, Ekaterina S. Menchinskaya, Evgeny A. Pislyagin, Valery V. Mikhailov and Anton N. Yurchenko
Biomolecules 2023, 13(5), 741; https://doi.org/10.3390/biom13050741 - 25 Apr 2023
Cited by 8 | Viewed by 2347
Abstract
The KMM 4639 strain was identified as Amphichorda sp. based on two molecular genetic markers: ITS and β-tubulin regions. Chemical investigation of co-culture marine-derived fungi Amphichorda sp. KMM 4639 and Aspergillus carneus KMM 4638 led to the identification of five new quinazolinone alkaloids [...] Read more.
The KMM 4639 strain was identified as Amphichorda sp. based on two molecular genetic markers: ITS and β-tubulin regions. Chemical investigation of co-culture marine-derived fungi Amphichorda sp. KMM 4639 and Aspergillus carneus KMM 4638 led to the identification of five new quinazolinone alkaloids felicarnezolines A–E (15), a new highly oxygenated chromene derivative oxirapentyn M (6) and five previously reported related compounds. Their structures were established using spectroscopic methods and by comparison with related known compounds. The isolated compounds showed low cytotoxicity against human prostate and breast cancer cells but felicarnezoline B (2) protected rat cardiomyocytes H9c2 and human neuroblastoma SH-SY5Y cells against CoCl2-induced damage. Full article
(This article belongs to the Special Issue Marine Natural Compounds with Biomedical Potential: 2nd Edition)
Show Figures

Figure 1

12 pages, 1007 KiB  
Article
Large-Scale Production of Isocitric Acid Using Yarrowia lipolytica Yeast with Further Down-Stream Purification
by Svetlana V. Kamzolova, Vladimir A. Samoilenko, Julia N. Lunina and Igor G. Morgunov
BioTech 2023, 12(1), 22; https://doi.org/10.3390/biotech12010022 - 13 Mar 2023
Cited by 2 | Viewed by 3847
Abstract
Isocitric acid (ICA) refers to a group of promising regulators of energy metabolism which has antistress, antihypoxic, and antioxidant activities. In this paper, we reported a process of ICA production from rapeseed oil using yeast Yarrowia lipolytica VKM Y-2373 in a 500-L fermentor. [...] Read more.
Isocitric acid (ICA) refers to a group of promising regulators of energy metabolism which has antistress, antihypoxic, and antioxidant activities. In this paper, we reported a process of ICA production from rapeseed oil using yeast Yarrowia lipolytica VKM Y-2373 in a 500-L fermentor. The producer synthesized 64.1 g/L ICA with a product yield of 0.72 g/g and a productivity 0.54 g/L·h. We also developed an effective purification method, including a cell separation, clarification, concentration, acidification, and crystallization process, which resulted in the formation of the crystals of monopotassium salt of ICA with a purity of 99.0–99.9%. To the best of our knowledge, this is the first report on an ICA production process at an upscaled bioreactor level. Full article
Show Figures

Figure 1

19 pages, 2861 KiB  
Article
Resveratrol, a New Allosteric Effector of Hemoglobin, Enhances Oxygen Supply Efficiency and Improves Adaption to Acute Severe Hypoxia
by Zongtang Chu, Weidan Li, Guoxing You, Yuzhi Chen, Dong Qin, Peilin Shu, Yujing Wang, Ying Wang, Lian Zhao and Hong Zhou
Molecules 2023, 28(5), 2050; https://doi.org/10.3390/molecules28052050 - 22 Feb 2023
Cited by 4 | Viewed by 3831
Abstract
Acute altitude hypoxia represents the cause of multiple adverse consequences. Current treatments are limited by side effects. Recent studies have shown the protective effects of resveratrol (RSV), but the mechanism remains unknown. To address this, the effects of RSV on the structure and [...] Read more.
Acute altitude hypoxia represents the cause of multiple adverse consequences. Current treatments are limited by side effects. Recent studies have shown the protective effects of resveratrol (RSV), but the mechanism remains unknown. To address this, the effects of RSV on the structure and function of hemoglobin of adult (HbA) were preliminarily analyzed using surface plasmon resonance (SPR) and oxygen dissociation assays (ODA). Molecular docking was conducted to specifically analyze the binding regions between RSV and HbA. The thermal stability was characterized to further validate the authenticity and effect of binding. Changes in the oxygen supply efficiency of HbA and rat RBCs incubated with RSV were detected ex vivo. The effect of RSV on the anti-hypoxic capacity under acute hypoxic conditions in vivo was evaluated. We found that RSV binds to the heme region of HbA following a concentration gradient and affects the structural stability and rate of oxygen release of HbA. RSV enhances the oxygen supply efficiency of HbA and rat RBCs ex vivo. RSV prolongs the tolerance times of mice suffering from acute asphyxia. By enhancing the oxygen supply efficiency, it alleviates the detrimental effects of acute severe hypoxia. In conclusion, RSV binds to HbA and regulates its conformation, which enhances oxygen supply efficiency and improves adaption to acute severe hypoxia. Full article
(This article belongs to the Special Issue Channels and Transporters as Drug Targets)
Show Figures

Figure 1

13 pages, 5120 KiB  
Article
Rotational Barriers in N-Benzhydrylformamides: An NMR and DFT Study
by Madina Zh. Sadvakassova, Andrei I. Khlebnikov, Abdigali A. Bakibaev, Oleg A. Kotelnikov, Rakhmetulla Sh. Erkassov, Madeniyet A. Yelubay and Manar A. Issabayeva
Molecules 2023, 28(2), 535; https://doi.org/10.3390/molecules28020535 - 5 Jan 2023
Cited by 3 | Viewed by 3067
Abstract
N-Benzhydrylformamides are pharmacologically active compounds with anticonvulsant, enzyme-inducing, antihypoxic, and other types of biological activity. The conformational behavior of benzhydrylformamides is determined to a great extent by the presence of substituents at the nitrogen atom and in the ortho-position(s) of the diphenylmethane [...] Read more.
N-Benzhydrylformamides are pharmacologically active compounds with anticonvulsant, enzyme-inducing, antihypoxic, and other types of biological activity. The conformational behavior of benzhydrylformamides is determined to a great extent by the presence of substituents at the nitrogen atom and in the ortho-position(s) of the diphenylmethane moiety. Particularly, the NMR spectra of these compounds often contain two sets of signals originating from different orientations of the formyl group. With the use of the dynamic NMR method and DFT calculations, we investigated the internal rotations of aromatic and formyl fragments and estimated the corresponding rotational barriers in N-benzhydrylformamide (BHFA), N-methyl-N-benzhydrylformamide (BHFA-NMe), and in a series of ortho-halogen-substituted N-benzhydrylformamides. It was found that the DFT method at M06-2X/6-311+G* level of theory satisfactorily reproduces the experimental barrier ΔG298(Formyl) of the formyl group rotation in BHFA-NMe. In BHFA, BHFA-NMe, and in the ortho-halogen derivatives, the calculated ΔG298(Formyl) values are close to each other and lie within 20–23 kcal/mol. On the other hand, the ortho-substituents significantly hinder the rotation of aryl fragment with ΔG298(Aryl) values varying from 2.5 kcal/mol in BHFA to 9.8 kcal/mol in ortho-iodo-N-benzhydrylformamide. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

12 pages, 2460 KiB  
Article
Chebulic Acid Prevents Hypoxia Insult via Nrf2/ARE Pathway in Ischemic Stroke
by Rong Zhou, Kuan Lin, Changlong Leng, Mei Zhou, Jing Zhang, Youwei Li, Yujing Liu, Xiansheng Ye, Xiaoli Xu, Binlian Sun, Xiji Shu and Wei Liu
Nutrients 2022, 14(24), 5390; https://doi.org/10.3390/nu14245390 - 19 Dec 2022
Cited by 3 | Viewed by 4372
Abstract
Excessive reactive oxygen species (ROS) production contributes to brain ischemia/reperfusion (I/R) injury through many mechanisms including inflammation, apoptosis, and cellular necrosis. Chebulic acid (CA) isolated from Terminalia chebula has been found to have various biological effects, such as antioxidants. In this study, we [...] Read more.
Excessive reactive oxygen species (ROS) production contributes to brain ischemia/reperfusion (I/R) injury through many mechanisms including inflammation, apoptosis, and cellular necrosis. Chebulic acid (CA) isolated from Terminalia chebula has been found to have various biological effects, such as antioxidants. In this study, we investigated the mechanism of the anti-hypoxic neuroprotective effect of CA in vitro and in vivo. The results showed that CA could protect against oxygen-glucose deprivation/reoxygenation (OGD/R) induced neurotoxicity in SH-SY5Y cells, as evidenced by the enhancement of cell viability and improvement of total superoxide dismutase (T-SOD) in SH-SY5Y cells. CA also attenuated OGD/R-induced elevations of malondialdehyde (MDA) and ROS in SH-SY5Y cells. Nuclear factor-E2-related factor 2 (Nrf2) is one of the key regulators of endogenous antioxidant defense. CA acted as antioxidants indirectly by upregulating antioxidant-responsive-element (ARE) and Nrf2 nuclear translocation to relieve OGD/R-induced oxidative damage. Furthermore, the results showed that CA treatment resulted in a significant decrease in ischemic infarct volume and improved performance in the motor ability of mice 24 h after stroke. This study provides a new niche targeting drug to oppose ischemic stroke and reveals the promising potential of CA for the control of ischemic stroke in humans. Full article
Show Figures

Graphical abstract

28 pages, 3496 KiB  
Review
The Ethnopharmacological Uses, Metabolite Diversity, and Bioactivity of Rhaponticum uniflorum (Leuzea uniflora): A Comprehensive Review
by Daniil N. Olennikov
Biomolecules 2022, 12(11), 1720; https://doi.org/10.3390/biom12111720 - 20 Nov 2022
Cited by 14 | Viewed by 3182
Abstract
Rhaponticum uniflorum (L.) DC. (syn. Leuzea uniflora (L.) Holub) is a plant species of the Compositae (Asteraceae) family that is widely used in Asian traditional medicines in China, Siberia, and Mongolia as an anti-inflammatory and stimulant remedy. Currently, R. uniflorum is [...] Read more.
Rhaponticum uniflorum (L.) DC. (syn. Leuzea uniflora (L.) Holub) is a plant species of the Compositae (Asteraceae) family that is widely used in Asian traditional medicines in China, Siberia, and Mongolia as an anti-inflammatory and stimulant remedy. Currently, R. uniflorum is of scientific interest to chemists, biologists, and pharmacologists, and this review includes information from the scientific literature from 1991 to 2022. The study of the chemodiversity of R. uniflorum revealed the presence of 225 compounds, including sesquiterpenes, ecdysteroids, triterpenes, sterols, thiophenes, hydroxycinnamates, flavonoids, lignans, nucleosides and vitamins, alkanes, fatty acids, and carbohydrates. The most studied groups of substances are phenolics (76 compounds) and triterpenoids (69 compounds). Information on the methods of chromatographic analysis of selected compounds, as well as on the quantitative content of some components in various organs of R. uniflorum, is summarized in this work. It has been shown that the extracts and some compounds of R. uniflorum have a wide range of biological activities, including anti-inflammatory, antitumor, immunostimulatory, anxiolytic, stress-protective, actoprotective, antihypoxic, anabolic, hepatoprotective, inhibition of PPARγ receptors, anti-atherosclerotic, and hypolipidemic. Published research on the metabolites and bioactivity of R. uniflorum does not include clinical studies of extracts and pure compounds; therefore, an accurate study of this traditional medicinal plant is needed. Full article
(This article belongs to the Special Issue Plant Polyphenols in the Immune and Inflammatory Responses)
Show Figures

Figure 1

18 pages, 6387 KiB  
Article
Unravelling Contributions of Astrocytic Connexin 43 to the Functional Activity of Brain Neuron–Glial Networks under Hypoxic State In Vitro
by Tatiana A. Mishchenko, Roman S. Yarkov, Mariia O. Saviuk, Mikhail I. Krivonosov, Alexey D. Perenkov, Sergey V. Gudkov and Maria V. Vedunova
Membranes 2022, 12(10), 948; https://doi.org/10.3390/membranes12100948 - 28 Sep 2022
Cited by 3 | Viewed by 2398
Abstract
Brain hypoxia remains an Achilles’ heel for public health that must be urgently addressed. Hypoxic damage affects both neurons and glial cells, particularly astrocytes, which are in close dynamic bi-directional communication, and are organized in plastic and tightly regulated networks. However, astroglial networks [...] Read more.
Brain hypoxia remains an Achilles’ heel for public health that must be urgently addressed. Hypoxic damage affects both neurons and glial cells, particularly astrocytes, which are in close dynamic bi-directional communication, and are organized in plastic and tightly regulated networks. However, astroglial networks have received limited attention regarding their influence on the adaptive functional rearrangements of neural networks to oxygen deficiency. Herein, against the background of astrocytic Cx43 gap junction blockade by the selective blocker Gap19, we evaluated the features of spontaneous calcium activity and network characteristics of cells in primary cultures of the cerebral cortex, as well as the expression levels of metabotropic glutamate receptors 2 (mGluR2) and 5 (mGluR5) in the early and late periods after simulated hypoxia in vitro. We showed that, under normoxic conditions, blockade of Cx43 leads to an increase in the expression of metabotropic glutamate receptors mGluR2 and mGluR5 and long-term modulation of spontaneous calcium activity in primary cortical cultures, primarily expressed in the restructuring of the functional architectonics of neuron–glial networks through reducing the level of correlation between cells in the network and the percentage of existing correlated connections between cells. Blocking Cx43 during hypoxic injury has a pronounced neuroprotective effect. Together with the increased expression of mGluR5 receptors, a decrease in mGluR2 expression to the physiological level was found, which suggests the triggering of alternative molecular mechanisms of cell adaptation to hypoxia. Importantly, the blockade of Cx43 in hypoxic damage contributed to the maintenance of both the main parameters of the spontaneous calcium activity of primary cortical cultures and the functional architectonics of neuron–glial networks while maintaining the profile of calcium oscillations and calcium signal communications between cells at a highly correlated level. Our results demonstrate the crucial importance of astrocytic networks in functional brain adaptation to hypoxic damage and could be a promising target for the development of rational anti-hypoxic therapy. Full article
(This article belongs to the Special Issue Membrane Permeability and Channels)
Show Figures

Figure 1

Back to TopTop