Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = antiherbivory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1457 KiB  
Article
Detailed Profiling of 17-Hydroxygeranyllinalool Diterpene Glycosides from Nicotiana Species Reveals Complex Reaction Networks of Conjugation Isomers
by Alina Ebert, Saleh Alseekh, Lucio D’Andrea, Ute Roessner, Ralph Bock and Joachim Kopka
Metabolites 2024, 14(10), 562; https://doi.org/10.3390/metabo14100562 - 20 Oct 2024
Viewed by 1296
Abstract
Background: Specialised anti-herbivory metabolites are abundant in the solanaceous genus Nicotiana. These metabolites include the large family of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). Many HGL-DTGs occur exclusively within the Nicotiana genus, but information from the molecular model species N. tabacum, N. benthamiana [...] Read more.
Background: Specialised anti-herbivory metabolites are abundant in the solanaceous genus Nicotiana. These metabolites include the large family of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). Many HGL-DTGs occur exclusively within the Nicotiana genus, but information from the molecular model species N. tabacum, N. benthamiana, and the tree tobacco N. glauca is limited. Objectives: We studied HGL-DTG occurrence and complexity in these species with the aim of providing in-depth reference annotations and comprehensive HGL-DTG inventories. Methods: We analysed polar metabolite extracts in comparison to the previously investigated wild reference species N. attenuata using positive ESI(+) and negative ESI(-) mode electrospray ionisation LC-MS and MS/MS. Results: We provide annotations of 66 HGL-DTGs with in-source and MS/MS fragmentation spectra for selected HGL-DTGs with exemplary fragment interpretations of ESI(+) as well as less studied ESI(-) spectra. We assemble a potential biosynthesis pathway comparing the presence of HGL-DTGs in N. tabacum, N. glauca, and N. benthamiana to N. attenuata. Approximately one-third of HGL-DTGs are chromatographically resolved isomers of hexose, deoxyhexose, or malonate conjugates. The number of isomers is especially high for conjugates with low numbers of deoxyhexose moieties. Conclusions: We extend the number of known HGL-DTGs with a focus on Nicotiana model species and demonstrate that the HGL-DTG family of N. tabacum plants can be surprisingly complex. Our study provides an improved basis with detailed references to previous studies of wild Nicotiana species and enables inference of HGL-DTG pathways with required enzymes for the biosynthesis of this important family of specialised defence metabolites. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

21 pages, 6380 KiB  
Article
Combined Metabolome and Transcriptome Analyses of Maize Leaves Reveal Global Effect of Biochar on Mechanisms Involved in Anti-Herbivory to Spodoptera frugiperda
by Tianjun He, Lin Chen, Yingjun Wu, Jinchao Wang, Quancong Wu, Jiahao Sun, Chaohong Ding, Tianxing Zhou, Limin Chen, Aiwu Jin, Yang Li and Qianggen Zhu
Metabolites 2024, 14(9), 498; https://doi.org/10.3390/metabo14090498 - 14 Sep 2024
Cited by 2 | Viewed by 1379
Abstract
Fall armyworm (FAW, Spodoptera frugiperda) has now spread to more than 26 Chinese provinces. The government is working with farmers and researchers to find ways to prevent and control this pest. The use of biochar is one of the economic and environmentally [...] Read more.
Fall armyworm (FAW, Spodoptera frugiperda) has now spread to more than 26 Chinese provinces. The government is working with farmers and researchers to find ways to prevent and control this pest. The use of biochar is one of the economic and environmentally friendly strategies to increase plant growth and improve pest resistance. We tested four v/v combinations of bamboo charcoal with coconut bran [BC1 (10:1), BC2(30:1), BC3(50:1)] against a control (CK) in maize. We found that plant height, stem thickness, fresh weight and chlorophyll content were significantly higher in BC2, in addition to the lowest FAW survival %. We then compared the metabolome and transcriptome profiles of BC2 and CK maize plants under FAW herbivory. Our results show that the levels of flavonoids, amino acids and derivatives, nucleotides and derivatives and most phenolic acids decreased, while terpenoids, organic acids, lipids and defense-related hormones increased in BC-grown maize leaves. Transcriptome sequencing revealed consistent expression profiles of genes enriched in these pathways. We also observed the increased expression of genes related to abscisic acid, jasmonic acid, auxin and MAPK signaling. Based on these observations, we discussed the possible pathways involved in maize against FAW herbivory. We conclude that bamboo charcoal induces anti-herbivory responses in maize leaves. Full article
Show Figures

Figure 1

24 pages, 5596 KiB  
Review
Visual-, Olfactory-, and Nectar-Taste-Based Flower Aposematism
by Simcha Lev-Yadun
Plants 2024, 13(3), 391; https://doi.org/10.3390/plants13030391 - 29 Jan 2024
Cited by 7 | Viewed by 2704
Abstract
Florivory, i.e., flower herbivory, of various types is common and can strongly reduce plant fitness. Flowers suffer two very different types of herbivory: (1) the classic herbivory of consuming tissues and (2) nectar theft. Unlike the non-reversibility of consumed tissues, nectar theft, while [...] Read more.
Florivory, i.e., flower herbivory, of various types is common and can strongly reduce plant fitness. Flowers suffer two very different types of herbivory: (1) the classic herbivory of consuming tissues and (2) nectar theft. Unlike the non-reversibility of consumed tissues, nectar theft, while potentially reducing a plant’s fitness by lowering its attraction to pollinators, can, in various cases, be fixed quickly by the production of additional nectar. Therefore, various mechanisms to avoid or reduce florivory have evolved. Here, I focus on one of the flowers’ defensive mechanisms, aposematism, i.e., warning signaling to avoid or at least reduce herbivory via the repelling of herbivores. While plant aposematism of various types was almost ignored until the year 2000, it is a common anti-herbivory defense mechanism in many plant taxa, operating visually, olfactorily, and, in the case of nectar, via a bitter taste. Flower aposematism has received only very little focused attention as such, and many of the relevant publications that actually demonstrated herbivore repellence and avoidance learning following flower signaling did not refer to repellence as aposematism. Here, I review what is known concerning visual-, olfactory-, and nectar-taste-based flower aposematism, including some relevant cases of mimicry, and suggest some lines for future research. Full article
Show Figures

Figure 1

13 pages, 1829 KiB  
Article
Transposon Polymorphism and Its Potential Impacts on Brown Planthopper (Nilaparvata lugens Stål) Resistance in Rice (Oryza sativa L.)
by Huanhuan Wang, Zhenyang Liao, Yingying Gao, Lingge Zhang, Wenlong Lei, Hantang Huang, Siru Lei, Mengwei Jiang, Shuai Chen and Longqing Shi
Agronomy 2023, 13(7), 1699; https://doi.org/10.3390/agronomy13071699 - 25 Jun 2023
Cited by 1 | Viewed by 1771
Abstract
The brown planthopper (BPH) is a major pest in rice cultivation, significantly affecting both yield and quality; accordingly, exploring and utilizing anti-herbivory genes to enhance rice’s inherent resistance to BPH can be an effective strategy for mitigating infestation. The effects of transposon insertion [...] Read more.
The brown planthopper (BPH) is a major pest in rice cultivation, significantly affecting both yield and quality; accordingly, exploring and utilizing anti-herbivory genes to enhance rice’s inherent resistance to BPH can be an effective strategy for mitigating infestation. The effects of transposon insertion polymorphisms (TIPs) on rice’s resistance to insect pests have not been reported. In this study, through the identification of transposon insertion sites in susceptible and resistant rice varieties, a total of six possible candidate insect resistance genes were potentially located. Among them, a segment of the LTR/Copia transposon insertion was verified in the promoter of LOC_Os04g02720, which carries a cis-acting element binding site in rice involved in the abscisic acid reaction. Quantitative analysis showed a significant difference of the gene expression between insect-resistant and insect-susceptible varieties (p < 0.05). This study provides insights into the functional analysis of transposons and population transposon polymorphisms, whereas the identification of candidate insect resistance genes offers a theoretical foundation for the development of insect-resistant rice varieties. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

8 pages, 1312 KiB  
Communication
Plant Tannins and Essential Oils Have an Additive Deterrent Effect on Diet Choice by Kangaroos
by Christine Rafferty and Byron B. Lamont
Forests 2021, 12(12), 1639; https://doi.org/10.3390/f12121639 - 26 Nov 2021
Cited by 3 | Viewed by 2299
Abstract
Tannins and essential oils are well recognised as antiherbivore compounds. We investigated the relative effectiveness of the polyphenol, tannin, and the essential oils, 1,8-cineole and pine oil, as feeding deterrents against western grey kangaroos. Both groups of secondary metabolites are naturally abundant in [...] Read more.
Tannins and essential oils are well recognised as antiherbivore compounds. We investigated the relative effectiveness of the polyphenol, tannin, and the essential oils, 1,8-cineole and pine oil, as feeding deterrents against western grey kangaroos. Both groups of secondary metabolites are naturally abundant in many Australian plants. These three metabolite groups were incorporated separately or together into standard pellets for presentation to kangaroos, and their behaviour (sequence of food choice and feeding time) and amounts consumed were observed. The control (with no secondary metabolites) was much preferred. There was a sharp reduction in the ingestion of pellets containing tannins, 1,8-cineole or pine oil. Combinations of the metabolites resulted in almost no consumption. In association with tannin, pellets containing either 1,8-cineole or pine oil were as effective deterrents as both combined. There was a strong correlation between time spent feeding on the different diets and the amount of food consumed, although the rate of intake was markedly slower when secondary metabolites were present. Behavioural observations showed that the amount of food ingested is initially guided by the presence/absence of essential oils, apparently detected by smell, and later by the presence/absence of tannins, by taste. Both groups of secondary metabolites work in concert by stimulating different senses that minimise herbivory by marsupials, such as the western grey kangaroo, and help to explain their abundance in the Australian flora. Full article
(This article belongs to the Special Issue Ecology of Plant-Herbivore Interactions)
Show Figures

Figure 1

10 pages, 228 KiB  
Review
Silicon and Plant–Animal Interactions: Towards an Evolutionary Framework
by Ofir Katz
Plants 2020, 9(4), 430; https://doi.org/10.3390/plants9040430 - 1 Apr 2020
Cited by 9 | Viewed by 3126
Abstract
Herbivory is fundamental in ecology, being a major driver of ecosystem structure and functioning. Plant Si and phytoliths play a significant antiherbivory role, the understanding of which and of its evolutionary context will increase our understanding of this phenomenon, its origins, and its [...] Read more.
Herbivory is fundamental in ecology, being a major driver of ecosystem structure and functioning. Plant Si and phytoliths play a significant antiherbivory role, the understanding of which and of its evolutionary context will increase our understanding of this phenomenon, its origins, and its significance for past, extant, and future ecosystems. To achieve this goal, we need a superdisciplinary evolutionary framework connecting the role of Si in plant–herbivore interactions, in global processes, and in plant and herbivore evolution. To do this properly, we should acknowledge and incorporate into our work some basic facts that are too often overlooked. First, there is great taxonomic variance both in plant Si contents, forms, and roles, but also in herbivore responses, dietary preferences, and in fossil evidence. Second, species and their traits, as well as whole ecosystems, should be seen in the context of their entire evolutionary history and may therefore reflect not only adaptations to extant selective factors but also anachronistic traits. Third, evolutionary history and evolutionary transitions are complex, resulting in true and apparent asynchronisms. Fourth, evolution and ecology are multiscalar, in which various phenomena and processes act at various scales. Taking these issues into consideration will improve our ability to develop this needed theoretical framework and will bring us closer to gaining a more complete understanding of one of the most exciting and elusive phenomena in plant biology and ecology. Full article
(This article belongs to the Special Issue The Role of Silicon in Plant Defences)
13 pages, 1997 KiB  
Article
A Wheat β-Patchoulene Synthase Confers Resistance against Herbivory in Transgenic Arabidopsis
by Qingyu Pu, Jin Liang, Qinqin Shen, Jingye Fu, Zhien Pu, Jiang Liu, Xuegui Wang and Qiang Wang
Genes 2019, 10(6), 441; https://doi.org/10.3390/genes10060441 - 10 Jun 2019
Cited by 8 | Viewed by 7459
Abstract
Terpenoids play important roles in plant defense. Although some terpene synthases have been characterized, terpenoids and their biosynthesis in wheat (Triticum aestivum L.) still remain largely unknown. Here, we describe the identification of a terpene synthase gene in wheat. It encodes a [...] Read more.
Terpenoids play important roles in plant defense. Although some terpene synthases have been characterized, terpenoids and their biosynthesis in wheat (Triticum aestivum L.) still remain largely unknown. Here, we describe the identification of a terpene synthase gene in wheat. It encodes a sesquiterpene synthase that catalyzes β-patchoulene formation with E,E-farnesyl diphosphate (FPP) as the substrate, thus named as TaPS. TaPS exhibits inducible expression in wheat in response to various elicitations. Particularly, alamethicin treatment strongly induces TaPS gene expression and β-patchoulene accumulation in wheat. Overexpression of TaPS in Arabidopsis successfully produces β-patchoulene, verifying the biochemical function of TaPS in planta. Furthermore, these transgenic Arabidopsis plants exhibit resistance against herbivory by repelling beet armyworm larvae feeding, thereby indicating anti-herbivory activity of β-patchoulene. The catalytic mechanism of TaPS is also explored by homology modeling and site-directed mutagenesis. Two key amino acids are identified to act in protonation and stability of intermediates and product formation. Taken together, one wheat sesquiterpene synthase is identified as β-patchoulene synthase. TaPS exhibits inducible gene expression and the sesquiterpene β-patchoulene is involved in repelling insect infestation. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop