Silicon and Plant–Animal Interactions: Towards an Evolutionary Framework
Abstract
:1. Introduction
2. Taxonomic Variances
3. Anachronisms
4. Asynchronisms
5. Scales
6. Towards an Evolutionary Framework
Funding
Acknowledgments
Conflicts of Interest
References
- Katz, O. Silica phytoliths in angiosperms: Phylogeny and early evolutionary history. New Phytol. 2015, 208, 642–646. [Google Scholar] [CrossRef]
- Katz, O. Beyond grasses: The potential benefits of studying silicon accumulation in non-grass species. Front. Plant Sci. 2014, 5, 376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodson, M.J.; White, P.J.; Mead, A.; Broadley, M.R. Phylogenetic variation in the silicon composition of plants. Ann. Bot. 2005, 96, 1027–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, O.; Lev-Yadun, S.; Bar (Kutiel), P. Plant silicon and phytolith contents as affected by water availability and herbivory: Integrating laboratory experimentation and natural habitat studies. Silicon 2018, 10, 2387–2389. [Google Scholar] [CrossRef]
- Hartley, S.E.; DeGabriel, J.L. The ecology of herbivore-induced silicon defences in grasses. Funct. Ecol. 2016, 30, 1311–1322. [Google Scholar] [CrossRef] [Green Version]
- Faisal, S.; Callis, K.L.; Slot, M.; Kitajima, K. Transpiration-dependent passive silica accumulation in cucumber (Cucumis sativus) under varying soil silicon availability. Botany 2013, 90, 1058–1064. [Google Scholar] [CrossRef] [Green Version]
- Cooke, J.; Leishman, M.R. Consistent alleviation of abiotic stress with silicon addition: A meta-analysis. Funct. Ecol. 2016, 30, 1340–1357. [Google Scholar] [CrossRef]
- Fauteaux, F.; Remus-Borel, W.; Menzies, J.G.; Belanger, R.R. Silicon and plant resistance against pathogenic fungi. FEMS Microbiol. Lett. 2005, 249, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Van Bockhaven, J.; De Vleesschauer, D.; Höfte, M. Towards establishing broad-spectrum disease resistance in plants: Silicon leads the way. J. Exp. Bot. 2013, 64, 1281–1293. [Google Scholar] [CrossRef]
- Massey, F.P.; Hartley, S.E. Experimental demonstration of the antiherbivore effects of silica in grasses: Impacts on foliage digestibility and vole growth rates. Proc. R. Soc. Lond. B 2006, 273, 2299–2304. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, M.; Zub, K.; Szafrańska, P.A.; Książek, A.; Konarzewski, M. Plant-herbivore interactions: Silicon concentration in tussock sedges and population dynamics of root voles. Funct. Ecol. 2015, 29, 187–194. [Google Scholar] [CrossRef]
- Massey, F.P.; Hartley, S.E. Physical defences wear you down: Progressive and irreversible impacts of silica on insect herbivores. J. Appl. Ecol. 2009, 78, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Massey, F.P.; Smith, M.J.; Lambin, X.; Hartley, S.E. Are silica defences in grasses driving vole population cycles? Biol. Lett. 2008, 4, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Hartley, S.E. Round and round in cycles? Silicon-based plant defences and vole population dynamics. Funct. Ecol. 2015, 29, 151–153. [Google Scholar] [CrossRef]
- Cooke, J.; Leishman, M.R. Is plant ecology more siliceous than we realise? Trends Plant Sci. 2011, 16, 61–68. [Google Scholar] [CrossRef]
- Carey, J.C.; Fulweiler, R.W. The terrestrial silicon pump. PLoS ONE 2012, 7, e52932. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Liu, H.; Strömberg, C.A.E.; Yang, X.; Zhang, X. Phytolith carbon sequestration in global terrestrial biomes. Sci. Total Environ. 2017, 603–604, 502–509. [Google Scholar] [CrossRef]
- Schaller, J.; Struyf, E. Silicon controls microbial decay and nutrient release of grass litter during aquatic decomposition. Hydrobiologia 2013, 709, 201–212. [Google Scholar] [CrossRef]
- Katz, O. Silicon content is a plant functional trait: Implications in a changing world. Flora 2019, 254, 88–94. [Google Scholar] [CrossRef]
- Cooke, J.; DeGabriel, J.L.; Hartley, S.E. The functional ecology of plant silicon: Geosciences to genes. Funct. Ecol. 2016, 30, 1270–1276. [Google Scholar] [CrossRef] [Green Version]
- Schoelynck, J.; Struyf, E. Silicon in aquatic vegetation. Funct. Ecol. 2016, 30, 1323–1330. [Google Scholar] [CrossRef] [Green Version]
- Schoelynck, J.; Müller, F.; Vandevenne, F.; Bal, K.; Barão, A.L.; Smis, A.; Opdekamp, W.; Meire, P.; Struyf, E. Silicon-vegetation interaction in multiple ecosystems: A review. J. Veg. Sci. 2014, 25, 301–313. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Katz, O. Plant silicon and phytolith research and the Earth-Life superdiscipline. Front. Plant Sci. 2018, 9, 1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawley, M.J. Herbivory: The Dynamics of Animal-Plant Interactions; Blackwell: Oxford, UK, 1983. [Google Scholar]
- Crawley, M.J. Insect herbivores and plant population dynamics. Ann. Rev. Entomol. 1989, 34, 531–564. [Google Scholar] [CrossRef]
- Marquis, R.J. Selective impact of herbivores. In Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics; Fritz, R.S., Simms, E.L., Eds.; University of Chicago Press: Chicago, IL, USA, 1992; pp. 301–325. [Google Scholar]
- Traveset, A. Effect of seed passage through vertebrate frugivores’ guts on germination: A review. Perspect. Plant Ecol. Evol. Syst. 1998, 1, 151–190. [Google Scholar] [CrossRef] [Green Version]
- Detling, J.K. Grasslands and Savannas: Regulation of energy flow and nutrient cycling by herbivores. In Concepts of Ecosystem Ecology; Pomeroy, L.R., Alberts, J.J., Eds.; Springer: New York, NY, USA, 1998; pp. 131–148. [Google Scholar]
- Belovsky, G.E.; Slade, J.B. Insect herbivory accelerates nutrient cycling and increases plant production. Proc. Natl. Acad. Sci. USA 2000, 97, 14412–14417. [Google Scholar] [CrossRef] [Green Version]
- Metcalfe, D.B.; Asner, G.P.; Martin, R.E.; Silva Espejo, J.E.; Huaraca Huasco, W.; Farfan Amezquita, F.F.; Carranza-Jimenez, L.; Galiano Cabrera, D.F.; Durand Baca, L.; Sinca, F.; et al. Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecol. Lett. 2014, 17, 324–332. [Google Scholar] [CrossRef]
- Falkowski, P.G.; Katz, M.E.; Knoll, A.H.; Quigg, A.; Raven, J.A.; Schofield, O.; Taylor, F.J.R. The evolution of modern eukaryotic phytoplankton. Science 2004, 305, 354–360. [Google Scholar] [CrossRef] [Green Version]
- Vandevenne, F.I.; Barão, A.L.; Schoelynck, J.; Smis, A.; Ryken, N.; Van Damme, S.; Meire, P.; Struyf, E. Grazers: Biocatalysts of terrestrial silicon cycling. Proc. R. Soc. Lond. B 2013, 280, 20132083. [Google Scholar] [CrossRef] [Green Version]
- Katz, O. Extending the scope of Darwin’s ‘abominable mystery’: Integrative approaches to understanding angiosperm origins and species richness. Ann. Bot. 2018, 121, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mitani, N.; Ma, J.F. Uptake system of silicon in different plant species. J. Exp. Bot. 2005, 56, 1255–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoelynck, J.; Bal, K.; Backx, H.; Okruszko, T.; Meire, P.; Struyf, E. Silica uptake in aquatic and wetland macrophytes: A strategic choice between silica, lignin and Cellulose? New Phytol. 2010, 186, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Cooke, J.; Leishman, M.R. Tradeoffs between foliar silicon and carbon-based defences: Evidence from vegetation communities of contrasting soil types. Oikos 2012, 121, 2052–2060. [Google Scholar] [CrossRef]
- Raven, J.A. The transport and function of silicon in plants. Biol. Rev. 1983, 58, 179–207. [Google Scholar] [CrossRef]
- Stebbins, G.L. Coevolution of grasses and herbivores. Ann. Mo. Bot. Gard. 1981, 68, 75–86. [Google Scholar] [CrossRef]
- Strömberg, C.A.E. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. Proc. Natl. Acad. Sci. USA 2005, 102, 11980–11984. [Google Scholar] [CrossRef] [Green Version]
- Strömberg, C.A.E. The evolution of hypsodonty in equids: Testing a hypothesis of adaptation. Paleobiology 2006, 32, 236–258. [Google Scholar] [CrossRef]
- Strömberg, C.A.E.; Dunn, R.E.; Madden, R.H.; Kohn, M.L.; Carlini, A.A. Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nat. Commun. 2015, 4, 1478. [Google Scholar] [CrossRef]
- Dunn, R.E.; Strömberg, C.A.E.; Madden, R.H.; Kohn, M.J.; Carlini, A.A. Linked canopy, climate and faunal evolution in the Cenozoic of Patagonia. Science 2015, 347, 258–261. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; You, H.L.; Li, X.Q. Dinosaur-associated Poaceae epidermis and phytoliths from the Early Cretaceous of China. Natl. Sci. Rev. 2018, 5, 721–727. [Google Scholar] [CrossRef] [Green Version]
- Prasad, V.; Strömberg, C.A.E.; Alimohammadian, H.; Sahni, A. Dinosaur coprolites and the early evolution of grasses and grazers. Science 2005, 310, 1177–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labandeira, C. The origins of herbivory on land: Initial patterns of plant tissue consumption by arthropods. Insect Sci. 2007, 14, 259–275. [Google Scholar] [CrossRef]
- Williams, V.S.; Barrett, P.M.; Purnell, M.A. Quantitative analysis of dental microwear in hadrosaurid dinosaurs, and the implications for hypotheses of jaw mechanics and feeding. Proc. Natl. Acad. Sci. USA 2009, 106, 11194–11199. [Google Scholar] [CrossRef] [Green Version]
- Reinhard, K.J.; Bryant, V.M., Jr. Coprolite analysis: A biological perspective on archaeology. Archaeol. Method Theory 1992, 4, 245–288. [Google Scholar]
- Kohn, M.J.; Cerling, T.E. Stable isotope compositions of biological apatite. In Phosphates. Geochemical, Geobiological, and Materials Importance. Reviews in Mineralogy and Geochemistry; Kohn, M.J., Rakovan, J., Hughes, J.M., Eds.; Mineralogical Society of America: Washington, DC, USA, 2002; Volume 48, pp. 455–488. [Google Scholar]
- Shahack-Gross, R. Herbivorous livestock dung: Formation, taphonomy, methods for identification, and archaeological significance. J. Archaeol. Sci. 2011, 38, 205–218. [Google Scholar] [CrossRef]
- Mihlbachler, M.C.; Beatty, B.L.; Caldera-Siu, A.; Chan, D.; Lee, R. Error rates and observer bias in dental microwear analysis using light microscopy. Palaeontol. Electron. 2012, 15, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, T.M.; Müller, D.W.H.; Fortelius, M.; Schulz, E.; Codron, D.; Claus, M. Hypsodonty and tooth facet development in relation to diet and habitat in herbivorous ungulates: Implications for understanding tooth wear. Mamm. Rev. 2013, 43, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Bendrey, R.; Vella, D.; Zazzo, A.; Balasse, M.; Lepetz, S. Exponentially decreasing tooth growth rate in horse teeth: Implications for isotopic analyses. Archaeometry 2015, 57, 1104–1124. [Google Scholar] [CrossRef]
- Janzen, D.H. New horizons in the biology of plant defenses. In Herbivores: Their Interactions with Secondary Metabolites; Rosenthal, G.A., Janzen, D.H., Eds.; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Barlow, C.C. The Ghosts of Evolution: Nonsensical Fruit, Missing Partners, and Other Ecological Anachronisms; Basic Books: New York, NY, USA, 2000. [Google Scholar]
- Galetti, M.; Moleon, M.; Jordano, P.; Pires, M.M.; Guimarães, P.R., Jr.; Pape, T.; Nichols, E.; Hansen, D.; Olesen, J.M.; Munk, M.; et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 2018, 93, 845–862. [Google Scholar] [CrossRef]
- Bond, W.J.; Silander, J.A. Springs and wire plants: Anachronistic defences against Madagascar’s extinct elephant birds. Proc. R. Soc. B 2007, 274, 1985–1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.G.; Wood, J.R.; Rogers, G.M. Legacy of avian-dominated plant–herbivore systems in New Zealand. N. Z. J. Ecol. 2010, 34, 28–47. [Google Scholar]
- Crowley, B.E.; Godfrey, L.R. Why all those spines? Anachronistic defences in the Didiereoideae against now extinct lemurs. S. Afr. J. Sci. 2013, 109, 1346. [Google Scholar] [CrossRef]
- Katz, O. Biogeography of spiny species in Israel. Negev Dead Sea Arava Stud. 2017, 9, 15–22. [Google Scholar]
- Channing, A.; Zamuner, A.; Edwards, W.; Guido, D. Equisetum thermal sp. Nov. (Equisetales) from the Jurassic San Augustin hot spring deposit, Patagonia: Anatomy, paleoecology, and inferred paleoaecophysiology. Am. J. Bot. 2011, 98, 680–697. [Google Scholar] [CrossRef]
- Mazumdar, J. Phytoliths in pteridophytes. S. Afr. J. Bot. 2011, 77, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Katz, O.; Lev-Yadun, S.; Bar (Kutiel), P. Do phytoliths play an antiherbivory role in southwest Asian Asteraceae species and to what extent? Flora 2014, 209, 349–358. [Google Scholar] [CrossRef]
- Cid, M.S.; Detling, J.K.; Brizuela, M.A.; Whicker, A.D. Patterns in grass silicification: Response to grazing history and defoliation. Oecologia 1989, 80, 268–271. [Google Scholar] [CrossRef]
- Massey, F.P.; Ennos, A.R.; Hartley, S.E. Herbivore specific induction of silica-based plant defences. Oecologia 2007, 152, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Quigley, K.M.; Anderson, T.M. Leaf silica concentrations in Serengeti grasses increases with watering but not clipping: Insights from a common garden study and literature survey. Front. Plant Sci. 2014, 5, 568. [Google Scholar] [CrossRef] [Green Version]
- Soininen, E.M.; Bråthen, K.A.; Herranz Jusdado, J.G.; Reidinger, S.; Hartley, S.E. More than herbivory: Levels of silica-based defences in grasses vary with plant species, genotype and location. Oikos 2013, 122, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Katz, O. Conflict and complementarity of paleontological and molecular chronologies? Paleobiology 2019, 45, 7–20. [Google Scholar] [CrossRef]
- Laland, K.N.; Uller, T.; Feldman, M.W.; Sterelny, K.; Müller, G.B.; Moczek, A.; Jablonka, E.; Odling-Smee, J. The extended evolutionary synthesis: Its structure, assumptions and predictions. Proc. R. Soc. B 2015, 282, 20151019. [Google Scholar] [CrossRef] [PubMed]
- Pigliucci, M.; Müller, G.B. Evolution—The Extended Synthesis; MIT Press: Boston, MA, USA, 2010. [Google Scholar]
- Sanderson, M.J. Back to the past: A new take on the timing of flowering plant diversification. New Phytol. 2015, 207, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Trembath-Reichert, E.; Wilson, J.P.; McGlynn, S.E.; Fischer, W.W. Four hundred million years of silica biomineralization in land plants. PNAS 2015, 112, 5449–5454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strömberg, C.A.E. Evolution of grasses and grassland ecosystems. Ann. Rev. Earth Planet. Sci. 2011, 39, 517–544. [Google Scholar] [CrossRef]
- Edwards, E.J.; Osborne, C.P.; Strömberg, C.A.E.; Smith, S.A. The origins of C4 grasslands: Integrating evolutionary and ecosystem science. Science 2010, 328, 587–591. [Google Scholar] [CrossRef] [Green Version]
- McFadden, B.J. Origin and evolution of the grazing guild in New World terrestrial mammals. Trends Ecol. Evol. 1997, 12, 182–187. [Google Scholar] [CrossRef]
- Mihlbachler, M.C.; Rivals, F.; Solounias, N.; Semprebon, G.N. Dietary change and evolution of horses in North America. Science 2011, 331, 1178–1181. [Google Scholar] [CrossRef]
- Strömberg, C.A.E.; Di Stilio, V.S.; Song, Z. Functions of phytoliths in vascular plants: An evolutionary perspective. Funct. Ecol. 2016, 30, 1286–1297. [Google Scholar] [CrossRef] [Green Version]
- Jablonski, D. Biotic interactions and macroevolution: Extensions and mismatches across scales and levels. Evolution 2008, 62, 715–739. [Google Scholar] [CrossRef] [PubMed]
- Benton, M.J. The Red Queen and the Court Jester: Species diversity and the role of biotic and abiotic factors through time. Science 2009, 323, 728–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnosky, A.D. Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. J. Vertebr. Paleontol. 2001, 21, 172–185. [Google Scholar] [CrossRef]
- Voje, K.L.; Holen, Ø.H.; Liow, L.H.; Stenseth, N.C. The role of biotic forces in driving macroevolution: Beyond the Red Queen. Proc. R. Soc. B 2015, 282, 20150186. [Google Scholar] [CrossRef] [PubMed]
- Ezard, T.H.G.; Aze, T.; Pearson, P.N.; Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 2011, 332, 349–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezard, T.H.G.; Quental, T.B.; Benton, M.J. The challenges of inferring the regulators of biodiversity in deep time. Philos. Trans. R. Soc. B 2016, 371, 20150216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, O. The role of the Levant in 135 million years of angiosperm evolution: A review. Isr. J. Plant Sci. 2017, 64, 163–169. [Google Scholar] [CrossRef]
- Erwin, D.H. Macroevolution of ecosystem engineering, niche construction and diversity. Trends Ecol. Evol. 2008, 23, 304–310. [Google Scholar] [CrossRef]
- Erwin, D.H. Evolutionary uniformitarianism. Dev. Biol. 2011, 357, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Benton, M.J. The origins of modern biodiversity on land. Philos. Trans. R. Soc. B 2010, 365, 3667–3679. [Google Scholar] [CrossRef]
- Sahney, S.; Benton, M.J.; Ferry, P.A. Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land. Biol. Lett. 2010, 6, 544–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sues, H.D.; Reisz, R.R. Origins and early evolution of herbivory in tetrapods. Trends Ecol. Evol. 1998, 13, 141–145. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katz, O. Silicon and Plant–Animal Interactions: Towards an Evolutionary Framework. Plants 2020, 9, 430. https://doi.org/10.3390/plants9040430
Katz O. Silicon and Plant–Animal Interactions: Towards an Evolutionary Framework. Plants. 2020; 9(4):430. https://doi.org/10.3390/plants9040430
Chicago/Turabian StyleKatz, Ofir. 2020. "Silicon and Plant–Animal Interactions: Towards an Evolutionary Framework" Plants 9, no. 4: 430. https://doi.org/10.3390/plants9040430
APA StyleKatz, O. (2020). Silicon and Plant–Animal Interactions: Towards an Evolutionary Framework. Plants, 9(4), 430. https://doi.org/10.3390/plants9040430