Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = antibacterial nanofibrous membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10222 KiB  
Article
Preparation and Characterization of Novel Nanofibrous Composites Prepared by Electrospinning as Multifunctional Platforms for Guided Bone Regeneration Procedures
by Aleksandra Sierakowska-Byczek, Julia Radwan-Pragłowska, Łukasz Janus, Tomasz Galek, Natalia Radwan-Pragłowska, Karol Łysiak, Piotr Radomski and Mirosław Tupaj
Appl. Sci. 2025, 15(5), 2578; https://doi.org/10.3390/app15052578 - 27 Feb 2025
Cited by 1 | Viewed by 557
Abstract
Prosthetics, a rapidly advancing field in dentistry, aims to improve patient comfort and aesthetics by addressing the challenge of replacing missing teeth. A critical obstacle in dental implantation is the condition of the jawbone, which often necessitates reconstruction prior to implant placement. Guided [...] Read more.
Prosthetics, a rapidly advancing field in dentistry, aims to improve patient comfort and aesthetics by addressing the challenge of replacing missing teeth. A critical obstacle in dental implantation is the condition of the jawbone, which often necessitates reconstruction prior to implant placement. Guided bone regeneration (GBR) and guided tissue regeneration (GTR) techniques utilize membranes that act as scaffolds for bone and tissue growth while serving as barriers against rapidly proliferating cells and pathogens. Commonly used membranes, such as poly(tetrafluoroethylene) (PTFE) and collagen, have significant limitations—PTFE is non-bioresorbable and requires secondary removal, while collagen lacks adequate mechanical strength and exhibits unpredictable degradation rates. To overcome these challenges, nanofiber membranes produced via electrospinning using polylactic acid (PLA) were developed. The novel composites were functionalized with bioactive additives, including periclase (MgO) nanoparticles and polydopamine (PDA), to enhance osteoblast adhesion, antibacterial properties, and tissue regeneration. This study comprehensively evaluated the biological, mechanical, and physicochemical properties of the prepared nanofibrous scaffolds. Experimental results revealed controlled degradation rates and improved hydrophilicity due to surface modifications with PDA and MgO. Moreover, the nanofibers exhibited enhanced swelling behavior, which promoted nutrient exchange while maintaining structural integrity over prolonged periods. The incorporation of bioactive additives contributed to superior osteoblast proliferation, antibacterial activity, and growth factor immobilization, supporting bone tissue regeneration. These findings suggest that the developed nanofibrous composites are a promising candidate for GBR and GTR applications, offering a balanced combination of biological activity, mechanical performance, and degradation behavior tailored for clinical use. Full article
(This article belongs to the Special Issue Cutting-Edge Developments in Prosthodontics and Dental Implants)
Show Figures

Figure 1

17 pages, 4439 KiB  
Article
A PLGA/Silk Fibroin Nanofibre Membrane Loaded with Natural Flavonoid Compounds Extracted from Green Cocoons for Wound Healing
by Xiang Chen, Jiaqi Liu, Yaru Lu, Huijun Liu, Lan Cheng, Zhi Li and Fangyin Dai
Int. J. Mol. Sci. 2024, 25(17), 9263; https://doi.org/10.3390/ijms25179263 - 27 Aug 2024
Cited by 4 | Viewed by 1444
Abstract
The use of biodegradable materials combined with natural metabolites in wound dressings has received much attention. Flavonoids (FLs) from green cocoons, as metabolites, have antibacterial, antioxidant, anti-inflammatory, and other pharmacological effects. In this study, composite membranes of FL-loaded polylactic glycolic acid (PLGA)/silk fibroin [...] Read more.
The use of biodegradable materials combined with natural metabolites in wound dressings has received much attention. Flavonoids (FLs) from green cocoons, as metabolites, have antibacterial, antioxidant, anti-inflammatory, and other pharmacological effects. In this study, composite membranes of FL-loaded polylactic glycolic acid (PLGA)/silk fibroin (SF) were prepared by an electrospinning method. The prepared membranes, including SF, exhibited a good slow-release effect and cytocompatibility. An in vitro evaluation of the FL-loaded PLGA/SF membranes demonstrated good antioxidant, antibacterial, and anti-inflammatory properties. Animal experiments showed that the wound healing rate of PLGA/SF-2.5FL membranes within 15 days was 97.3%, and that of the control group was 72.5%. The PLGA/SF-2.5FL membranes shortened the inflammatory period of a full-layer wound model and promoted skin regeneration and wound healing by downregulating expression of the pro-inflammatory cytokines IL-1β and TNF-α and promoting expression of the growth factors VEGF, TGF-β, and EGF. In summary, the PLGA/SF-2.5FL composite nanofibre membrane with anti-inflammatory properties is an ideal wound dressing to promote acute wound healing. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

18 pages, 6495 KiB  
Article
Antibacterial Potential and Biocompatibility of Chitosan/Polycaprolactone Nanofibrous Membranes Incorporated with Silver Nanoparticles
by Viktoriia Korniienko, Yevgeniia Husak, Kateryna Diedkova, Yuliia Varava, Vladlens Grebnevs, Oksana Pogorielova, Māris Bērtiņš, Valeriia Korniienko, Baiba Zandersone, Almira Ramanaviciene, Arunas Ramanavicius and Maksym Pogorielov
Polymers 2024, 16(12), 1729; https://doi.org/10.3390/polym16121729 - 18 Jun 2024
Cited by 14 | Viewed by 2531
Abstract
This study addresses the need for enhanced antimicrobial properties of electrospun membranes, either through surface modifications or the incorporation of antimicrobial agents, which are crucial for improved clinical outcomes. In this context, chitosan—a biopolymer lauded for its biocompatibility and extracellular matrix-mimicking properties—emerges as [...] Read more.
This study addresses the need for enhanced antimicrobial properties of electrospun membranes, either through surface modifications or the incorporation of antimicrobial agents, which are crucial for improved clinical outcomes. In this context, chitosan—a biopolymer lauded for its biocompatibility and extracellular matrix-mimicking properties—emerges as an excellent candidate for tissue regeneration. However, fabricating chitosan nanofibers via electrospinning often challenges the preservation of their structural integrity. This research innovatively develops a chitosan/polycaprolactone (CH/PCL) composite nanofibrous membrane by employing a layer-by-layer electrospinning technique, enhanced with silver nanoparticles (AgNPs) synthesized through a wet chemical process. The antibacterial efficacy, adhesive properties, and cytotoxicity of electrospun chitosan membranes were evaluated, while also analyzing their hydrophilicity and nanofibrous structure using SEM. The resulting CH/PCL-AgNPs composite membranes retain a porous framework, achieve balanced hydrophilicity, display commendable biocompatibility, and exert broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with their efficacy correlating to the AgNP concentration. Furthermore, our data suggest that the antimicrobial efficiency of these membranes is influenced by the timed release of silver ions during the incubation period. Membranes incorporated starting with AgNPs at a concentration of 50 µg/mL effectively suppressed the growth of both microorganisms during the early stages up to 8 h of incubation. These insights underscore the potential of the developed electrospun composite membranes, with their superior antibacterial qualities, to serve as innovative solutions in the field of tissue engineering. Full article
(This article belongs to the Special Issue Bio-Inspired Polymers: Synthesis, Properties and Applications)
Show Figures

Figure 1

25 pages, 18745 KiB  
Article
Novel Polyamide/Chitosan Nanofibers Containing Glucose Oxidase and Rosemary Extract: Fabrication and Antimicrobial Functionality
by Ghazaleh Chizari Fard, Mazeyar Parvinzadeh Gashti, Seyed Ahmad Dehdast, Mohammad Shabani, Ehsan Zarinabadi, Negin Seifi and Ali Berenjian
Coatings 2024, 14(4), 411; https://doi.org/10.3390/coatings14040411 - 29 Mar 2024
Cited by 4 | Viewed by 1819
Abstract
In recent years, the synthesis of nanofibers using plant extracts and bioactive materials has been extensively studied and recognized as a suitable and efficient method applicable in the food packaging field. In this research, an antimicrobial material was introduced by the immobilization of [...] Read more.
In recent years, the synthesis of nanofibers using plant extracts and bioactive materials has been extensively studied and recognized as a suitable and efficient method applicable in the food packaging field. In this research, an antimicrobial material was introduced by the immobilization of glucose oxidase (GOx) in Nylon–Ag masterbatch/chitosan/Rosmarinus officinalis extract nanofiber via electrospinning technology. Nylon–Ag masterbatch/chitosan/Rosmarinus officinalis composite nanofibrous membranes with an average diameter of 207 ± 18 nm were successfully prepared using the electrospinning technique. The chemical properties of membranes were analyzed by Fourier transform infrared spectroscopy (FTIR) and the morphological characterization of nanofibers was evaluated with field emission scanning electron microscopy (FE-SEM). Moreover, enzymatic activity of GOx was determined by the Carmine method. FTIR results showed the successful incorporation of glucose oxidase and Rosmarinus officinalis into the nanofiber composite. Immobilized GOx showed high (79.5%) enzymatic activity in the optimum sample. The Rosmarinus officinalis, glucose oxidase-incorporated Nylon–Ag masterbatch/chitosan nanofibrous exhibited excellent antimicrobial activity on both gram-negative bacterium Escherichia coli (97.5%) and gram-positive bacterium Staphylococcus aureus (99.5%). The antibacterial and antioxidant Nylon–Ag masterbatch/chitosan/Rosmarinus officinalis/GOx nanofibrous membrane showed higher potential, compared to the control sample, to be used as food packaging by improving the shelf life and maintaining the quality of food stuffs. Therefore, this research recommends it as a promising candidate for food preservation applications. Full article
(This article belongs to the Special Issue Fabrication and Properties of Bio-Coatings and Their Applications)
Show Figures

Graphical abstract

14 pages, 9884 KiB  
Article
Fabrication of Poly(Lactic Acid)@TiO2 Electrospun Membrane Decorated with Metal–Organic Frameworks for Efficient Air Filtration and Bacteriostasis
by Minggang Lin, Jinlin Shen, Qiaonan Qian, Tan Li, Chuyang Zhang and Huan Qi
Polymers 2024, 16(7), 889; https://doi.org/10.3390/polym16070889 - 24 Mar 2024
Cited by 10 | Viewed by 2421
Abstract
The development of high-performance filtration materials is essential for the effective removal of airborne particles, and metal–organic frameworks (MOFs) anchored to organic polymer matrices are considered to be one of the most promising porous adsorbents for air pollutants. Nowadays, most air filters are [...] Read more.
The development of high-performance filtration materials is essential for the effective removal of airborne particles, and metal–organic frameworks (MOFs) anchored to organic polymer matrices are considered to be one of the most promising porous adsorbents for air pollutants. Nowadays, most air filters are generally based on synthetic fiber polymers derived from petroleum residues and have limited functionality, so the use of MOFs in combination with nanofiber air filters has received a lot of attention. Here, a conjugated electrostatic spinning method is demonstrated for the one-step preparation of poly(lactic acid) (PLA) nanofibrous membranes with a bimodal diameter distribution and the anchoring of Zeolitic Imidazolate Framework-8 (ZIF-8) by the introduction of TiO2 and in situ generation to construct favorable multiscale fibers and rough structures. The prepared PLA/TZ maintained a good PM2.5 capture efficiency of 99.97%, a filtration efficiency of 96.43% for PM0.3, and a pressure drop of 96.0 Pa, with the highest quality factor being 0.08449 Pa−1. Additionally, ZIF-8 was uniformly generated on the surface of PLA and TiO2 nanofibers, obtaining a roughened structure and a larger specific surface area. An enhanced filtration retention effect and electrostatic interactions, as well as active free radicals, can be generated for the deep inactivation of bacteria. Compared with the unmodified membrane, PLA/TZ prepared antibacterial characteristics induced by photocatalysis and Zn2+ release, with excellent bactericidal effects against S. aureus and E. coli. Overall, this work may provide a promising approach for the development of efficient biomass-based filtration materials with antimicrobial properties. Full article
(This article belongs to the Special Issue Preparation and Application of Biodegradable Polymeric Materials)
Show Figures

Figure 1

17 pages, 3947 KiB  
Article
Polyamide Electrospun Nanofibers Functionalized with Silica and Titanium Dioxide Nanoparticles for Efficient Dye Removal
by Safaa Saleh, Ahmed Salama, Ola M. Awad, Roberto De Santis, Vincenzo Guarino and Emad Tolba
J. Compos. Sci. 2024, 8(2), 59; https://doi.org/10.3390/jcs8020059 - 4 Feb 2024
Cited by 6 | Viewed by 2596
Abstract
In this work, novel multifunctional electrospun nanofibrous membranes made of polyamide (PA6) and loaded with silica (SiO2) and/or titanium dioxide (TiO2) nanoparticles were fabricated. SiO2 NPs were first prepared and then characterized by TEM, FE-SEM, and FTIR, and [...] Read more.
In this work, novel multifunctional electrospun nanofibrous membranes made of polyamide (PA6) and loaded with silica (SiO2) and/or titanium dioxide (TiO2) nanoparticles were fabricated. SiO2 NPs were first prepared and then characterized by TEM, FE-SEM, and FTIR, and by using XRD techniques, confirming the formation of cristobalite tetragonal crystals with high purity. Different nanofibrous mats, loaded with SiO2 NPs, TiO2 NPs, or both SiO2 and TiO2 NPs, were investigated. Morphological studies indicated that SiO2 and TiO2 nanoparticles tend to be arranged along the fiber surface, also promoting the formation of anatase nanorods when they are mixed into the nanofibers. In this last scenario, mechanical tests have demonstrated that the presence of SiO2 contributed to balancing the mechanical response of fibers that are negatively affected by the presence of TiO2 NPs—as confirmed by tensile tests. More interestingly, the presence of SiO2 did not negatively affect the antibacterial response against different bacteria populations (i.e., Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, Bacillus subtilis, and Candida albicans), which is mainly ascribable to the presence of TiO2 particles. Accordingly, the TiO2- and TiO2/SiO2-loaded fibers showed higher methylene blue (MB) absorption values—i.e., 26 mg/g and 27 mg/g—respectively, compared to the SiO2-loaded fibers (23 mg/g), with kinetics in good agreement with the second-order kinetic model. The obtained findings pave the way for the formation of novel antibacterial membranes with a promising use in water purification. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, Volume II)
Show Figures

Figure 1

14 pages, 7942 KiB  
Article
Polyelectrolyte–Surfactant Complex Nanofibrous Membranes for Antibacterial Applications
by Qiaohua Qiu, Zhengkai Wang and Liying Lan
Polymers 2024, 16(3), 414; https://doi.org/10.3390/polym16030414 - 1 Feb 2024
Cited by 3 | Viewed by 1495
Abstract
Polyelectrolyte–surfactant complexes (PESCs) have garnered significant attention due to their extensive range of biological and industrial applications. Most present applications are predominantly used in liquid or emulsion states, which limits their efficacy in solid material-based applications. Herein, pre-hydrolyzed polyacrylonitrile (HPAN) and quaternary ammonium [...] Read more.
Polyelectrolyte–surfactant complexes (PESCs) have garnered significant attention due to their extensive range of biological and industrial applications. Most present applications are predominantly used in liquid or emulsion states, which limits their efficacy in solid material-based applications. Herein, pre-hydrolyzed polyacrylonitrile (HPAN) and quaternary ammonium salts (QAS) are employed to produce PESC electrospun membranes via electrospinning. The formation process of PESCs in a solution is observed. The results show that the degree of PAN hydrolysis and the varying alkyl chain lengths of surfactants affect the rate of PESC formation. Moreover, PESCs/PCL hybrid electrospun membranes are fabricated, and their antibacterial activities against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) are investigated. The resulting electrospun membranes exhibit high bactericidal efficacy, which enables them to serve as candidates for future biomedical and filtration applications. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

24 pages, 10705 KiB  
Review
Stand Up to Stand Out: Natural Dietary Polyphenols Curcumin, Resveratrol, and Gossypol as Potential Therapeutic Candidates against Severe Acute Respiratory Syndrome Coronavirus 2 Infection
by Zhonglei Wang, Xian-qing Song, Wenjing Xu, Shizeng Lei, Hao Zhang and Liyan Yang
Nutrients 2023, 15(18), 3885; https://doi.org/10.3390/nu15183885 - 6 Sep 2023
Cited by 11 | Viewed by 3403
Abstract
The COVID-19 pandemic has stimulated collaborative drug discovery efforts in academia and the industry with the aim of developing therapies and vaccines that target SARS-CoV-2. Several novel therapies have been approved and deployed in the last three years. However, their clinical application has [...] Read more.
The COVID-19 pandemic has stimulated collaborative drug discovery efforts in academia and the industry with the aim of developing therapies and vaccines that target SARS-CoV-2. Several novel therapies have been approved and deployed in the last three years. However, their clinical application has revealed limitations due to the rapid emergence of viral variants. Therefore, the development of next-generation SARS-CoV-2 therapeutic agents with a high potency and safety profile remains a high priority for global health. Increasing awareness of the “back to nature” approach for improving human health has prompted renewed interest in natural products, especially dietary polyphenols, as an additional therapeutic strategy to treat SARS-CoV-2 patients, owing to its good safety profile, exceptional nutritional value, health-promoting benefits (including potential antiviral properties), affordability, and availability. Herein, we describe the biological properties and pleiotropic molecular mechanisms of dietary polyphenols curcumin, resveratrol, and gossypol as inhibitors against SARS-CoV-2 and its variants as observed in in vitro and in vivo studies. Based on the advantages and disadvantages of dietary polyphenols and to obtain maximal benefits, several strategies such as nanotechnology (e.g., curcumin-incorporated nanofibrous membranes with antibacterial-antiviral ability), lead optimization (e.g., a methylated analog of curcumin), combination therapies (e.g., a specific combination of plant extracts and micronutrients), and broad-spectrum activities (e.g., gossypol broadly inhibits coronaviruses) have also been emphasized as positive factors in the facilitation of anti-SARS-CoV-2 drug development to support effective long-term pandemic management and control. Full article
Show Figures

Figure 1

14 pages, 3605 KiB  
Article
Incorporation of Copper Nanoparticles on Electrospun Polyurethane Membrane Fibers by a Spray Method
by Tamer Al Kayal, Giulia Giuntoli, Aida Cavallo, Anissa Pisani, Paola Mazzetti, Rossella Fonnesu, Alfredo Rosellini, Mauro Pistello, Mario D’Acunto, Giorgio Soldani and Paola Losi
Molecules 2023, 28(16), 5981; https://doi.org/10.3390/molecules28165981 - 9 Aug 2023
Cited by 8 | Viewed by 2406
Abstract
Electrospinning is an easy and versatile technique to obtain nanofibrous membranes with nanosized fibers, high porosity, and pore interconnectivity. Metal nanoparticles (e.g., Ag, Cu, ZnO) exhibit excellent biocide properties due to their size, shape, release of metal ions, or reactive oxygen species production, [...] Read more.
Electrospinning is an easy and versatile technique to obtain nanofibrous membranes with nanosized fibers, high porosity, and pore interconnectivity. Metal nanoparticles (e.g., Ag, Cu, ZnO) exhibit excellent biocide properties due to their size, shape, release of metal ions, or reactive oxygen species production, and thus are often used as antimicrobial agents. In this study, a combined electrospinning/spray technique was employed to fabricate electrospun polyurethane membranes loaded with copper nanoparticles at different surface densities (10, 20, 25, or 30 μg/cm2). This method allows particle deposition onto the surface of the membranes without the use of chemical agents. SEM images showed that polyurethane fibers own homogeneous thickness (around 650 nm), and that spray-deposited copper nanoparticles are evenly distributed. STEM-EDX demonstrated that copper nanoparticles are deposited onto the surface of the fibers and are not covered by polyurethane. Moreover, a uniaxial rupture test showed that particles are firmly anchored to the electrospun fibers. Antibacterial tests against model microorganisms Escherichia coli indicated that the prepared electrospun membranes possess good bactericidal effect. Finally, the antiviral activity against SARS-CoV-2 was about 90% after 1 h of direct contact. The obtained results suggested that the electrospun membranes possess antimicrobial activities and can be used in medical and industrial applications. Full article
Show Figures

Figure 1

20 pages, 7472 KiB  
Article
Development and In Vitro Analysis of Layer-by-Layer Assembled Membranes for Potential Wound Dressing: Electrospun Curcumin/Gelatin as Middle Layer and Gentamicin/Polyvinyl Alcohol as Outer Layers
by Ssu-Meng Huang, Shih-Ming Liu, Hua-Yi Tseng and Wen-Cheng Chen
Membranes 2023, 13(6), 564; https://doi.org/10.3390/membranes13060564 - 30 May 2023
Cited by 10 | Viewed by 3001
Abstract
Nanofibrous membranes made of hydrogels have high specific surface areas and are suitable as drug carriers. Multilayer membranes fabricated by continuous electrospinning could delay drug release by increasing diffusion pathways, which is beneficial for long-term wound care. In this experiment, polyvinyl alcohol (PVA) [...] Read more.
Nanofibrous membranes made of hydrogels have high specific surface areas and are suitable as drug carriers. Multilayer membranes fabricated by continuous electrospinning could delay drug release by increasing diffusion pathways, which is beneficial for long-term wound care. In this experiment, polyvinyl alcohol (PVA) and gelatin were used as membrane substrates, and a sandwich PVA/gelatin/PVA structure of layer-by-layer membranes was prepared by electrospinning under different drug loading concentrations and spinning times. The outer layers on both sides were citric-acid-crosslinked PVA membranes loaded with gentamicin as an electrospinning solution, and the middle layer was a curcumin-loaded gelatin membrane for the study of release behavior, antibacterial activity, and biocompatibility. According to the in vitro release results, the multilayer membrane could release curcumin slowly; the release amount was about 55% less than that of the single layer within 4 days. Most of the prepared membranes showed no significant degradation during immersion, and the phosphonate-buffered saline absorption rate of the multilayer membrane was about five to six times its weight. The results of the antibacterial test showed that the multilayer membrane loaded with gentamicin had a good inhibitory effect on Staphylococcus aureus and Escherichia coli. In addition, the layer-by-layer assembled membrane was non-cytotoxic but detrimental to cell attachment at all gentamicin-carrying concentrations. This feature could be used as a wound dressing to reduce secondary damage to the wound when changing the dressing. This multilayer wound dressing could be applied to wounds in the future to reduce the risk of bacterial infection and help wounds heal. Full article
(This article belongs to the Special Issue Lipid/Polymeric Membrane Based Drug Delivery Systems)
Show Figures

Figure 1

22 pages, 3620 KiB  
Review
Recent Advances on Electrospun Nanofibers for Periodontal Regeneration
by Mafalda S. Santos, Marta S. Carvalho and João C. Silva
Nanomaterials 2023, 13(8), 1307; https://doi.org/10.3390/nano13081307 - 7 Apr 2023
Cited by 8 | Viewed by 5572
Abstract
Periodontitis is an inflammatory infection caused by bacterial plaque accumulation that affects the periodontal tissues. Current treatments lack bioactive signals to induce tissue repair and coordinated regeneration of the periodontium, thus alternative strategies are needed to improve clinical outcomes. Electrospun nanofibers present high [...] Read more.
Periodontitis is an inflammatory infection caused by bacterial plaque accumulation that affects the periodontal tissues. Current treatments lack bioactive signals to induce tissue repair and coordinated regeneration of the periodontium, thus alternative strategies are needed to improve clinical outcomes. Electrospun nanofibers present high porosity and surface area and are able to mimic the natural extracellular matrix, which modulates cell attachment, migration, proliferation, and differentiation. Recently, several electrospun nanofibrous membranes have been fabricated with antibacterial, anti-inflammatory, and osteogenic properties, showing promising results for periodontal regeneration. Thus, this review aims to provide an overview of the current state of the art of these nanofibrous scaffolds in periodontal regeneration strategies. First, we describe the periodontal tissues and periodontitis, as well as the currently available treatments. Next, periodontal tissue engineering (TE) strategies, as promising alternatives to the current treatments, are addressed. Electrospinning is briefly explained, the characteristics of electrospun nanofibrous scaffolds are highlighted, and a detailed overview of electrospun nanofibers applied to periodontal TE is provided. Finally, current limitations and possible future developments of electrospun nanofibrous scaffolds for periodontitis treatment are also discussed. Full article
(This article belongs to the Special Issue New Insights in Nanomaterials for Dental Diseases Management)
Show Figures

Figure 1

14 pages, 3681 KiB  
Article
Electrospun Polycaprolactone/Chitosan Nanofibers Containing Cordia myxa Fruit Extract as Potential Biocompatible Antibacterial Wound Dressings
by Amal A. Alyamani, Mastafa H. Al-Musawi, Salim Albukhaty, Ghassan M. Sulaiman, Kadhim M. Ibrahim, Elsadig M. Ahmed, Majid S. Jabir, Hassan Al-Karagoly, Abed Alsalam Aljahmany and Mustafa K. A. Mohammed
Molecules 2023, 28(6), 2501; https://doi.org/10.3390/molecules28062501 - 9 Mar 2023
Cited by 62 | Viewed by 4886
Abstract
The goal of the current work was to create an antibacterial agent by using polycaprolactone/chitosan (PCL/CH) nanofibers loaded with Cordia myxa fruit extract (CMFE) as an antimicrobial agent for wound dressing. Several characteristics, including morphological, physicomechanical, and mechanical characteristics, surface wettability, antibacterial activity, [...] Read more.
The goal of the current work was to create an antibacterial agent by using polycaprolactone/chitosan (PCL/CH) nanofibers loaded with Cordia myxa fruit extract (CMFE) as an antimicrobial agent for wound dressing. Several characteristics, including morphological, physicomechanical, and mechanical characteristics, surface wettability, antibacterial activity, cell viability, and in vitro drug release, were investigated. The inclusion of CMFE in PCL/CH led to increased swelling capability and maximum weight loss. The SEM images of the PCL/CH/CMFE mat showed a uniform topology free of beads and an average fiber diameter of 195.378 nm. Excellent antimicrobial activity was shown towards Escherichia coli (31.34 ± 0.42 mm), Salmonella enterica (30.27 ± 0.57 mm), Staphylococcus aureus (21.31 ± 0.17 mm), Bacillus subtilis (27.53 ± 1.53 mm), and Pseudomonas aeruginosa (22.17 ± 0.12 mm) based on the inhibition zone assay. The sample containing 5 wt% CMFE had a lower water contact angle (47 ± 3.7°), high porosity, and high swelling compared to the neat mat. The release of the 5% CMFE-loaded mat was proven to be based on anomalous non-Fickian diffusion using the Korsmeyer–Peppas model. Compared to the pure PCL membrane, the PCL-CH/CMFE membrane exhibited suitable cytocompatibility on L929 cells. In conclusion, the fabricated antimicrobial nanofibrous films demonstrated high bioavailability, with suitable properties that can be used in wound dressings. Full article
(This article belongs to the Special Issue Polymers in Biomedical Applications)
Show Figures

Figure 1

16 pages, 4406 KiB  
Article
Antifouling and Antimicrobial Study of Nanostructured Mixed-Matrix Membranes for Arsenic Filtration
by Tawsif Siddique, Sheeana Gangadoo, Duy Quang Pham, Naba K. Dutta and Namita Roy Choudhury
Nanomaterials 2023, 13(4), 738; https://doi.org/10.3390/nano13040738 - 15 Feb 2023
Cited by 17 | Viewed by 3069
Abstract
Membrane fouling is a major drawback in the membrane filtration industry for water treatment. Mixed-matrix membranes (MMMs) are well known for their enhanced antifouling and antibacterial properties, which could offer potential benefits for membrane filtration processes in the water treatment field. In this [...] Read more.
Membrane fouling is a major drawback in the membrane filtration industry for water treatment. Mixed-matrix membranes (MMMs) are well known for their enhanced antifouling and antibacterial properties, which could offer potential benefits for membrane filtration processes in the water treatment field. In this work, three electrospun nanofibrous MMMs (P, CP, and MCP, which were, respectively, the pristine polysulfone membrane and mixed-matrix membranes (MMMs) consisting of GO–ZnO and GO–ZnO–iron oxides) were studied for antifouling and antibacterial properties with respect to the arsenic nanofiltration process. The effects of these composites on the antifouling behaviour of the membranes were studied by characterising the bovine serum albumin (BSA) protein adsorption on the membranes and subsequent analysis using microscopic (morphology via scanning electron microscopy) and Brunauer–Emmett–Teller (BET) analyses. The antibacterial properties of these membranes were also studied against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). The composite nanoparticle-incorporated membranes showed improved antifouling properties in comparison with the pristine polysulfone (PSF) membrane. The excellent antimicrobial properties of these membranes make them appropriate candidates to contribute to or overcome biofouling issues in water or wastewater treatment applications. Full article
Show Figures

Figure 1

14 pages, 3505 KiB  
Article
Dual-Functional Nanofibrous Patches for Accelerating Wound Healing
by Dan Xia, Yuan Liu, Wuxiu Cao, Junwei Gao, Donghui Wang, Mengxia Lin, Chunyong Liang, Ning Li and Ruodan Xu
Int. J. Mol. Sci. 2022, 23(18), 10983; https://doi.org/10.3390/ijms231810983 - 19 Sep 2022
Cited by 20 | Viewed by 3647
Abstract
Bacterial infections and inflammation are two main factors for delayed wound healing. Coaxial electrospinning nanofibrous patches, by co-loading and sequential co-delivering of anti-bacterial and anti-inflammation agents, are promising wound dressing for accelerating wound healing. Herein, curcumin (Cur) was loaded into the polycaprolactone (PCL) [...] Read more.
Bacterial infections and inflammation are two main factors for delayed wound healing. Coaxial electrospinning nanofibrous patches, by co-loading and sequential co-delivering of anti-bacterial and anti-inflammation agents, are promising wound dressing for accelerating wound healing. Herein, curcumin (Cur) was loaded into the polycaprolactone (PCL) core, and broad-spectrum antibacterial tetracycline hydrochloride (TH) was loaded into gelatin (GEL) shell to prepare PCL-Cur/GEL-TH core-shell nanofiber membranes. The fibers showed a clear co-axial structure and good water absorption capacity, hydrophilicity and mechanical properties. In vitro drug release results showed sequential release of Cur and TH, in which the coaxial mat showed good antioxidant activity by DPPH test and excellent antibacterial activity was demonstrated by a disk diffusion method. The coaxial mats showed superior biocompatibility toward human immortalized keratinocytes. This study indicates a coaxial nanofiber membrane combining anti-bacterial and anti-inflammation agents has great potential as a wound dressing for promoting wound repair. Full article
(This article belongs to the Special Issue Wound Healing and Hypertrophic Scar)
Show Figures

Figure 1

21 pages, 4653 KiB  
Article
Phosphorylated Curdlan Gel/Polyvinyl Alcohol Electrospun Nanofibres Loaded with Clove Oil with Antibacterial Activity
by Dana M. Suflet, Irina Popescu, Irina M. Pelin, Geta David, Diana Serbezeanu, Cristina M. Rîmbu, Oana M. Daraba, Alin A. Enache and Maria Bercea
Gels 2022, 8(7), 439; https://doi.org/10.3390/gels8070439 - 13 Jul 2022
Cited by 12 | Viewed by 3393
Abstract
Fibrous membranes based on natural polymers obtained by the electrospinning technique are a great choice for wound dressings. In order to promote an efficient wound repair, and to avoid antibiotics, antibacterial plant extracts can be incorporated. In the present work, the new electrospun [...] Read more.
Fibrous membranes based on natural polymers obtained by the electrospinning technique are a great choice for wound dressings. In order to promote an efficient wound repair, and to avoid antibiotics, antibacterial plant extracts can be incorporated. In the present work, the new electrospun nanofibre membranes based on monobasic phosphate curdlan (PCurd) and polyvinyl alcohol (PVA) were obtained for the first time. To establish the adequate mixing ratio for electrospinning, the behaviour of the PCurd and PVA mixture was studied by viscometry and rheology. In order to confer antimicrobial activity with the nanofibre membrane, clove essential oil (CEO) was incorporated into the electrospun solution. Well-defined and drop-free nanofibres with a diameter between 157 nm and 110 nm were obtained. The presence of CEO in the obtained nanofibres was confirmed by ATR–FTIR spectroscopy, by the phenolic and flavonoid contents, and by the antioxidant activity of the membranes. In physiological conditions, CEO was released from the membrane after 24 h. The in vivo antimicrobial tests showed a good inhibitory activity against E. coli and higher activity against S. aureus. Furthermore, the viability cell test showed the lack of cytotoxicity of the nanofibre membrane with and without CEO, confirming its potential use in wound treatment. Full article
Show Figures

Graphical abstract

Back to TopTop