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Abstract: The development of high-performance filtration materials is essential for the effective
removal of airborne particles, and metal–organic frameworks (MOFs) anchored to organic poly-
mer matrices are considered to be one of the most promising porous adsorbents for air pollutants.
Nowadays, most air filters are generally based on synthetic fiber polymers derived from petroleum
residues and have limited functionality, so the use of MOFs in combination with nanofiber air filters
has received a lot of attention. Here, a conjugated electrostatic spinning method is demonstrated for
the one-step preparation of poly(lactic acid) (PLA) nanofibrous membranes with a bimodal diameter
distribution and the anchoring of Zeolitic Imidazolate Framework-8 (ZIF-8) by the introduction
of TiO2 and in situ generation to construct favorable multiscale fibers and rough structures. The
prepared PLA/TZ maintained a good PM2.5 capture efficiency of 99.97%, a filtration efficiency of
96.43% for PM0.3, and a pressure drop of 96.0 Pa, with the highest quality factor being 0.08449 Pa−1.
Additionally, ZIF-8 was uniformly generated on the surface of PLA and TiO2 nanofibers, obtaining a
roughened structure and a larger specific surface area. An enhanced filtration retention effect and
electrostatic interactions, as well as active free radicals, can be generated for the deep inactivation of
bacteria. Compared with the unmodified membrane, PLA/TZ prepared antibacterial characteristics
induced by photocatalysis and Zn2+ release, with excellent bactericidal effects against S. aureus
and E. coli. Overall, this work may provide a promising approach for the development of efficient
biomass-based filtration materials with antimicrobial properties.

Keywords: electrospinning; poly(lactic acid); ZIF-8; bimodal diameter distribution; air filtration

1. Introduction

With the development of the economy and the deepening of urbanization, industrial
emissions have caused air pollution. In recent years, people’s awareness of environmental
protection and health has gradually increased, bringing air pollution to the center of
society’s attention [1]. Particulate matter (PM) is the primary component of air pollution.
PM0.3 and PM2.5 are defined as particulate matter with an aerodynamic diameter less
than or equal to 0.3 or 2.5 µm, respectively. The higher the concentration in the air, the
more polluted the air [2]. Due to its small particle size, they can remain suspended in
the air for an extended period, forming aerosols that can easily enter the respiratory tract
and are more harmful than larger particles [3]. Microorganisms, including viruses and
bacteria, can attach to particulate matter, potentially spreading disease [4,5]. Wearing
masks to filter droplets can help intercept viruses and serve as a crucial tool in preventing
and controlling outbreaks. Therefore, there is an urgent need for energy-efficient particle
cleaning technology to control PM pollution, which is crucial for human health and energy
conservation [6,7]. The membrane is the central component of an air filter. Many researchers
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have developed filtration materials that are highly filtration efficient [8,9], reduce pressure
drop [10,11], and enhance functionality [12,13]. Therefore, the design and development
of high-quality filtration membranes are critical for the prevention and control of PM2.5.
Fiber filtration membranes are currently a research hotspot in air filtration materials due to
their high filtration efficiency and good air permeability.

The main technologies used to produce nanofibers are meltblown and electrostatic
spinning [14,15]. Filter membranes are typically made from meltblown polypropylene
nonwovens with micron-sized fiber diameters. These membranes typically require corona
electret treatment, which has become the predominant technology for producing commer-
cial masks [16,17]. However, the main drawback is the dissipation of charge during daily
use, which results in the unstable filtration of the masks. The nanofiber filtration membrane
prepared using the electrospinning method possesses characteristics such as a small fiber
diameter [18], a large specific surface area [19], and high porosity [20], making it highly
suitable for effectively filtering PM2.5 particles [21]. At the same time, traditional polymer
materials used for filtration media are typically derived from non-renewable oil sources.
Once used, these materials can only be incinerated or disposed of in landfills, creating an
environmental burden [22]. As a result, there is a growing concern for the development
and production of environmentally friendly nonwoven filtration materials [23,24]. PLA is a
common biodegradable material that decomposes into carbon dioxide and water through
the action of microorganisms in natural environments. Therefore, PLA products are also
widely used in the fields of water separation [25], air filtration, and healthcare [26,27].

Currently, protective fibrous materials function mainly as a physical shield [28]. How-
ever, when infected with harmful microbes during and after use, such as viruses, these
materials are vulnerable to secondary contamination and transmission [29,30]. As the most
often used personal protective equipment, respirators with antibacterial qualities are essen-
tial in various situations [31,32]. Two widely utilized techniques to add active protective
functions to protective materials are the incorporation of antimicrobial agents into fiber
protective materials or the application of antimicrobial agents to their surfaces [33–35]. The
resulting antimicrobial fiber protective materials can be made using either approach, but
they still have significant drawbacks when it comes to obtaining antimicrobial and antiviral
effects. The coating that results from applying antimicrobial chemicals to protective fibers
has poor durability and weak adherence [36,37].

Of all the photocatalysts, TiO2 is the most stable and cost-effective. It has photocatalytic
properties that allow it to decompose adsorbed hazardous substances into harmless ones
under light irradiation, generating free radicals capable of destroying many microbial
bacteria [38,39]. MOFs are a class of nitrogen- or oxygen-containing polydentate organic
ligands and metal centers that self-assemble through coordination, forming a highly ordered
crystal structure [40,41]. They are extensively utilized in pollutant adsorption, catalysis, and
antibacterial applications. Among them, ZIF-8 is a typical MOF known for its permanent
pores, high porosity, large specific surface area, and excellent hydrothermal stability [42,43].
Significantly, the unbalanced metal ions and defects in ZIF-8 can polarize the PM surface,
enhancing the electrostatic adsorption of PM and exhibiting good antibacterial activity [44].
In light of the aforementioned properties, ZIF-8 has emerged as a prominent material
in the field of air filtration [45,46]. Antimicrobial properties are an important issue for
current air filters, and although some researchers have developed nanofiber membranes
with antimicrobial properties using electrospinning, cumbersome processes or expensive
equipment still hinder their wide application [47].

In this study, we present a facile strategy for synthesizing filter membranes with
bimodal diameter distributions that exhibit excellent biodegradability and antimicrobial
properties. The membrane is composed of biodegradable polylactic acid and is prepared
using conjugated electrostatic spinning to generate two different fiber diameters for random
mixing in filters, which improves filtration performance and significantly reduces resistance.
TiO2 and ZIF-8 nanoparticles are added to the fibers to enhance their surface roughness
and provide synergistic antimicrobial properties. To confirm the integration advantages of
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TiO2 and ZIF-8 nanoparticles, the filtration performance and antimicrobial properties of
electrospun fibers with and without MOF modification were investigated and evaluated
in detail. It was demonstrated that the nanoparticles could be uniformly encapsulated on
the electrospun fibers, and the focus was on the filtration performance, air permeability,
and durability. The production of biodegradable and antimicrobial PLA filters has great
potential for applications in healthcare and high-efficiency air filtration.

2. Materials and Methods
2.1. Materials

Poly(lactic acid) (PLA, REVODE110) was purchased from Zhejiang Haizheng (Taizhou,
China) Co., Ltd. Ethyl acetate (EA) and N, N-dimethylformamide (DMF) were purchased
from Xilong Scientific (Shantou, China) Co., Ltd. TiO2 (20 nm) was purchased from
Beasley (Suzhou, China) Co., Ltd. Zinc acetate dihydrate (Zn(CH3COO)2·2H2O) and 2-
methylimidazole (2-MI) were purchased from Aladdin Biochemical Co., Ltd., Shanghai,
China. Deionized water was taken from the internal water supply system of the laboratory.
All chemicals were analytically pure and used without further purification.

2.2. Preparation of PLA and PLA/TZ Membranes

The preparation procedure of PLA/TZ membranes is shown in Figure 1. PLA particles
were dissolved in a 7:3 (v/v) solvent mixture of EA and DMF to prepare a 12.0 wt.%
solution of PLA. Subsequently, TiO2 was added to the solution at concentrations of 5 wt.%
of the PLA mass. The mixture was stirred continuously at 75 ◦C for 24 h. After adding
Zn(CH3COO)2·2H2O to the above solution and stirring for 2 h, the mass ratio of PLA
to Zn(CH3COO)2·2H2O was 1:1. Electrospinning was performed using an electrostatic
spinning device (SS-X3, Yongkang Co. Ltd., Beijing, China). Conjugate electrospinning
was performed using two 21-gauge flat-tip needles placed symmetrically and controlled
by positive and negative voltages [48]. The solution was fed at 1.0 mL/h and 3.0 mL/h,
respectively. The distance from the needles to the receiving rollers was 10.0 cm. The
applied electric field ranged from 10.0 kV to 15.0 kV. The ejected fibers were stretched by
an electric field and then deposited onto a metal collector roller, which was wrapped with
a laboratory-prepared PLA spunbonded nonwoven fabric. A three-dimensional, fluffy,
conjugated bimodal diameter-distributed membrane was produced in the experiment. The
metal collector was rotated at a speed of 300 rpm and positioned a little bit below the
needle. The membrane was then dried at 50 ◦C for 24 h to remove any residual solvent,
named PLA/T.
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The 2-MI was dissolved in deionized water and ultrasonically agitated for 30 min.
The prepared PLA/T membranes were then immersed in the solution and reacted at room
temperature for 4 h. During the process, Zn2+ crystal species on the surface of PLA fibers
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coordinated with 2-MI in the solution. Subsequently, they were removed, thoroughly
rinsed, and dried in an oven at 40 ◦C to obtain the final PLA/TZ membranes.

2.3. Characterization

The surface morphology of the bimodal filter was investigated using a scanning
electron microscope (TESAN MIRA LMS, Tescan China Ltd., Shanghai, China), sputter
coating the samples with gold. The diameter and distribution of the nanofibers were
analyzed using Nano Measure 1.2 software. The surface chemical elements were analyzed
using an energy dispersive X-ray (EDX) detector (Thermo Scientific Helios 5 CX, Thermo
Fisher Scientific, Waltham, MA, USA). The Fourier transform infrared (FT-IR, Thermo
Scientific Niolet iN10, Thermo Fisher Scientific, USA), ranging from 600 to 4000 cm−1, of
the samples was recorded before and after modification, and changes in the spectra were
observed. The crystal structure of the samples was analyzed using X-ray diffraction (XRD,
Rigaku Analytical Devices Inc., Tokyo, Japan), with scattering angles ranging from 5 to
90◦. Analyzing the elemental and electronic states of the sample surfaces was performed
using X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific, America) with an
excitation source of Al Kα-1486.6 eV. The narrow-spectrum scan has a pass energy of 50 eV
and a step size of 0.1 eV. The air permeabilities of the filter samples were evaluated on
an air permeability tester (YG461E, Quanzhou Meibang Instrument Co., Ltd., Quanzhou,
China), in accordance with the ASTM D 737 standard [49].

2.4. Filter Performance Evaluation

The particle filtration efficiency tester (DR251XL, Wenzhou Darong Textile Instrument
Co., Ltd., Wenzhou, China) was used to measure the filtration performance and pressure
drop. The filtration test equipment contained the test membrane with an effective area
of 100 cm2. An air compressor generated the carrier airflow, which was continuously ad-
justable within the range of 10–90 L/min. The aerosol used was an electrically neutral NaCl
solution with a concentration of 2.0 wt.%, produced through a dust generator and dried
to pass through the test sample. The NaCl aerosol had a normal particle size distribution,
with a median diameter of 75 nm and a geometric standard deviation of less than 1.86.
To calculate filtration efficiency, the concentration of aerosol is measured both upstream
and downstream using the built-in spectrophotometer. The filtration efficiency (η) can be
calculated using the following equation:

η =
Cup − Cdown

Cup
× 100% (1)

where Cup and Cdown are the concentrations of the NaCl aerosols in the upstream and
downstream flow, respectively.

Pressure drop is determined by measuring the differential gas pressure between the
upstream air inlet and the downstream air outlet of the filtration material. In order to better
evaluate the overall filtration performance of the filter media, the quality factor (QF) is used
to evaluate when a higher QF indicates that the material has a better filtration performance.
The QF can be calculated as the following equation:

QF = −Ln(1 − η)

∆P
(2)

where ∆P represents pressure drop.
The filtration loading test was conducted to examine the dynamic filtration properties

in accordance with GB 2626-2019 [50]. The concentration of NaCl aerosol was adjusted
to a maximum of 20.0 mg/m3, and the airflow rate was set to a maximum of 85.0 L/min.
When the pressure drop reaches a certain value, the increase in weight of the air filter
reflects its dust holding capacity. The dust holding capacity was measured by a filter
loading test that stops when the initial pressure drop doubles during the loading test, and
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it was calculated by weighing the mass of the deposited particles per unit area of the filter.
Meanwhile, in order to evaluate the performance of the filter at effectively capturing PM, an
independent filter tester was designed and constructed to simulate real-life haze conditions.
The test membrane was placed in the middle of two transparent boxes with continuous
ventilation, and a cigarette was lit on one side of the membrane. During the combustion
process, the concentration of smoke was observed on both sides of the membrane. The
PM concentration was measured using a dust particle counter (Airhug-CP-15, Beijing
Yishan Technology Co., Ltd., Beijing, China) to determine the actual filtration of the PM
concentrations on both sides of a burning cigarette.

2.5. Antibacterial Performance Evaluation

Antibacterial tests were performed according to the standard GB 15979-2002, and the
tested strains were Escherichia coli (E. coli, ATCC 25922, Gram-negative) and Staphylococ-
cus aureus (S. aureus, ATCC 25923, Gram-positive). The specific experimental procedure
was in accordance with reference [51,52].

3. Results and Discussion
3.1. Morphological Observation of Membranes

SEM was used to study the morphology of the as-developed electrospun nanofiber
membranes. Figure 2a–c display the SEM images of pure PLA, PLA/T, and PLA/TZ
nanofiber membranes. The distributions of the bimodal diameters of the fibers of pure
PLA were 1.06 ± 0.09 µm and 0.53 ± 0.04 µm, respectively. The fibers on the surface of
the PLA membranes were uniform, smooth, and randomly oriented. The addition of TiO2
resulted in a finer and more uniform distribution of the fiber diameters. This was attributed
to the dilution of the PLA concentration by TiO2 and the increased electrical conductivity
of the electrospinning precursor solution [53]. Although the bimodal distribution of the
fiber diameters was somewhat weakened, a homogeneous diameter with a still bimodal
distribution can be clearly seen in Figure 2b,c. The weakening of the bimodal distribution is
mainly due to viscosity, which causes the uneven splitting of the polymer liquid during the
electrospinning process. The surface of the PLA nanofibers obtained by electrospinning is
smooth and uniform. The addition of TiO2 significantly improves the roughness of the fiber
surface. The surface of the PLA/TZ nanofiber membrane is covered with a layer of dense
ZIF-8 particles. The protrusion of the nanoparticles increases the surface roughness of the
fiber membrane, thereby enhancing the effective surface area of the membrane. In addition,
hydrogen bonding between polylactic acid (PLA) and 2-methylimidazole promotes the
uniform distribution of ZIF-8 on the fiber surface. Small-sized ZIF-8 nanoparticles were
uniformly loaded and wrapped onto the fiber surface, thereby further enhancing the
performance of the fiber membrane. The composite membrane was enhanced with high
photocatalytic activity and improved barrier performance by dispersing TiO2 and ZIF-8 on
the fiber surface.

The EDS spectrogram confirmed the uniform appearance of TiO2 and ZIF-8 on the
PLA fibers without agglomeration, further indicating their presence on the fiber surface.
Environmental factors such as humidity and temperature may cause variations in elec-
trospun fibers in addition to those caused by the nature of the solution and processing
conditions.
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3.2. Characterization of Membranes

The surface chemical structure of the nanofiber membranes was characterized using
FTIR. The full-range FTIR spectra in the 4000–650 cm−1 region are shown in Figure 3a,
while the local spectra are shown in Figure 3c–e. The telescopic vibrational absorption
peaks of C=O in the PLA chains were located at 1751 cm−1. The absorption peaks of C-H
and C-H were located at 1454 cm−1. The symmetric and asymmetric telescopic vibration
peaks of C-O-C were located at 1181 cm−1 and 1085 cm−1, respectively, and they gradually
shifted to 1180 and 1185 cm−1 (Figure 3c,e). The telescopic vibration absorption peak
of C=O shifted to 1749 cm−1, mainly due to the introduction of TiO2. The addition of
ZIF-8 facilitated the interaction between numerous carbonyl groups on the PLA chain and
the oxygen atoms located at the edge and surface of TiO2. Meanwhile, the nanofibrous
membranes loaded with ZIF-8 exhibited peaks corresponding to aromatic and aliphatic
C-H stretching vibrations at 2900 cm−1 and 3100 cm−1, respectively. In addition, a peak of
C=N stretching vibration was observed at 1570 cm−1. For PLA/TZ, characteristic bending
vibration peaks attributed to the imidazole ring (due to the introduction of ZIF-8) were
observed at 758 cm−1. The successful incorporation of TiO2 and ZIF-8 nanostructures into
PLA nanofibers was confirmed by the migration and intensity changes in the characteristic
peaks, as well as the emergence of new characteristic peaks.
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The crystalline structure of the nanofiber membrane was analyzed using XRD. The
pure PLA nanofiber membrane exhibited a sharp peak at 17.6◦, attributed to the diffraction
of the (200/110) crystal plane, indicating the characteristic presence of orthorhombic crystals
in the pure PLA nanofibers. The ZIF-8 particles exhibited characteristic peaks at 7.2◦,
10.4◦, 12.6◦, and 18.0◦, corresponding to the (011), (002), (112), and (222) crystal plane
diffractions, respectively. At 25.3◦, titanium dioxide exhibited a distinct characteristic peak
corresponding to the (101) crystal plane diffraction [54]. The simultaneous appearance of
characteristic diffraction peaks of PLA, TiO2, and ZIF-8 in the spectrogram of PLA/TZ fiber
membranes further demonstrates the successful growth of TiO2 and ZIF-8 on the surface of
the PLA fibers.

The surface chemical bonding states of PLA/TZ were investigated using XPS. The
high-resolution spectra indicate that the membrane acquired Zn, Ti, O, and N elements,
as shown in Figure 4. The Zn 2p orbital spectrum in Figure 4a shows peaks at 1044.7 eV
and 1021.6 eV, corresponding to Zn 2p3/2 and Zn 2p1/2 peaks, respectively, indicating
the presence of Zn2+. The Ti 2p XPS spectrum displays two peaks (Figure 4b) at binding
energies of 464.4 eV and 458.7 eV, corresponding to Ti 2p3/2 and 2p1/2, respectively. The
spin-orbit splitting energies of these two peaks are about 5.7 eV, indicating that Ti4+ is in a
normal state in the PLA/TZ. This suggests the presence of oxidized Ti4+ in the membrane,
which is similar to that of TiO2. Figure 4c O 1s spectrum displays two peaks at 530.1 eV and
532.3 eV, which can be attributed to the lattice oxygen (Ti-O bond) and external -OH groups
or H2O molecules absorbed on the sample surface [55]. The high-resolution mapping of
N 1S in Figure 4d shows three N 1s peaks at 398.9 eV, 399.6 eV, and 400.9 eV, which were
processed by peak splitting and consisted of N=C, N-Ti-O, and N-C bonds of the imidazole
ring of ZIF-8 [56,57]. The presence of N-Ti-O bonds suggests that some of the oxygen
atoms on the surface of TiO2 were replaced by nitrogen atoms of 2-MI. FTIR, XRD, and XPS
analyses demonstrate the successful in situ growth and ordered self-assembly of ZIF-8 into
macroscopically robust fibrous membranes along the PLA fiber backbone. These findings
provide additional evidence of the successful production of PLA/TZ nanofiber membranes.
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3.3. Filtration Properties

The concentration of sodium chloride aerogel particles was measured upstream of
the generator and downstream of the receiver sensor in order to assess the filtration
performance and efficiency. This study extensively investigated the filtration efficiency at
a flow rate of 85 L/min for PM2.5 and PM0.3, using filtration efficiency, pressure drop,
and the QF as evaluation parameters. Figure 5a illustrates the impact of air filtration
performance with varying loadings. The filtration efficiency of pure PLA was 90.92% for
PM0.3, while PLA/T and PLA/TZ achieved 92.56% and 96.43%, respectively. The filtration
efficiencies for PM2.5 were 99.92%, 99.94%, and 99.97%, respectively. The fiber membranes
loaded with TiO2 and ZIF-8 both effectively improved the filtration efficiencies, with a more
significant effect observed in PM2.5. The introduction of titanium dioxide is attributed to
the increase in solution conductivity, which results in a reduction in the fiber diameter. This
reduction can effectively increase the physical interception of dust particles. It is interesting
to note that the simultaneous introduction of ZIF-8 and TiO2 effectively raised the fibers’
roughness, which raised the filtration efficiency even further. Previous investigations came
to a similar conclusion about this phenomenon [58]. Figure 5b shows that the corresponding
pressure drops of PLA, PLA/T, and PLA/TZ were 95.0 Pa, 93.1 Pa, and 96.0 Pa, respectively.
The nanoparticles on the surface did not cause a significant change in the pressure drop.
When considering filter materials, it is important to strike a balance between filtration
efficiency and pressure drop. The QF represents the overall performance of filtration and is
related to both filtration efficiency and pressure drop. Figure 5c displays the QFs for PM0.3
and PM2.5, which were 0.02526 Pa−1, 0.02790 Pa−1, and 0.03470 Pa−1 and 0.07509 Pa−1,
0.07968 Pa−1, and 0.08447 Pa−1, respectively. The bimodal diameter distribution of the
constructed and loaded nanoparticles in the PLA membrane resulted in a high QF of up
to 0. 08447 Pa−1 thanks to the effective interception of nanofibers and micron fibers by
conjugated electrostatic spinning to form 3D structures with fluffiness. The roughness was
improved, and the slip effect was enhanced by the addition of ZIF-8, which was further
intensified by its incorporation. This phenomenon can be verified by the air permeability
test. Figure 5d shows that PLA/TZ has the highest average air permeability at 125.59 mm/s,
while pure PLA has the lowest at 118.09 mm/s.
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The effect of different airflow rates on the filtration efficiency for PM2.5 removal
is shown in Figure 5e,f. As the airflow rate rises from 25.0 L/min to 85.0 L/min, the
filtering efficiency progressively declines; the PLA/TZ falls from 99.92% to 98.15% while
staying above 95.0%. In addition, the pressure drop increased from 42.5 Pa to 97.1 Pa, in
accordance with Darcy’s law [59]. The correlation between pressure drops and air velocity
suggests that the membrane material has open air channels and good air permeability. Both
the introduction of TiO2 and the loading of ZIF-8 follow a consistent pattern of change.
Mechanical interception effects such as interception, inertial collision, Brownian motion,
and gravity deposition are primarily observed in air filtration. Interception and gravity
effects play a more prominent role in capturing larger particles due to their size and weight.
The PLA/TZ membrane is most effective at filtering particles of 2.5 µm, making it suitable
for everyday use.

3.4. Loading Performance

In a practical environment, it may be necessary for the filter media to provide continu-
ous filtration for a long time. Therefore, the stability of the dynamic filtration performance
is critical for filter materials. In order to evaluate the filtration stability and durability
of membranes, load tests were carried out at a flow rate of 85.0 L/min. The results are
shown in Figure 6a,b. During the loading test, the dust collector continuously produced
sodium chloride aerosols at a concentration of 20 mg/cm3, which passed through the test
membrane and were intercepted and deposited in the filter media. The trapped particles
also acted as a deposition site for subsequent new particulate matter, thereby enhancing
mechanical interception. During the loading test period, the filtration efficiency of PLA/TZ
initially decreased and then increased over time, while the filtration resistance gradually
increased. It is evident that PLA/TZ has higher filtration stability than PLA throughout the
entire loading process, and it provides better overall filtration performance for prolonged
use. When the resistance has doubled from the initial level, the loading test is stopped. The
weight change in the membrane is then measured to determine the dust holding capacity.
This is an important indicator of filtration performance and is directly related to the re-
placement cycle of the filter material. The dust holding capacity significantly influences the
service life of the air filter as it directly affects the frequency of filter replacements. Figure 6d
shows a comparison of the dust holding capacity of PLA, PLA/T, and PLA/TZ. The dust
holding capacity of PLA, PLA/T, and PLA/TZ is 9.17 g/m2, 9.93 g/m2, and 10.79 g/m2,
respectively. This indicates that PLA/TZ has a higher dust holding capacity than the other
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two, and a higher filtration efficiency based on comprehensive performance evaluation.
The dust holding capacity of PLA/TZ reflects its retention capacity and service life. The
bimodal distribution and coarser fibers of the construction facilitate airflow, providing
longer channels and more deposition sites for small particles to be trapped. The rough
structures can increase the number of settlement sites. As a result, the filter media can
effectively trap more dust particles, and if it takes longer to reach a given and comparable
level of pressure drop, the filter may have a longer service life.
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measurements that simulate the actual smoke testing process.

Smoke removal efficiency is a crucial factor to consider when evaluating filtration
materials. It is particularly important to assess their ability to purify haze larger than PM2.5.
To determine the purification efficiency of PLA/TZ in removing smoke, we simulated
real-world conditions using a homemade device (refer to Figure 6e). The left side of the
box was filled with the generated PM, while the PM2.5 particle counters on both sides of
the membrane detected them separately, as shown in Figure 6f. The PLA/TZ effectively
intercepted and absorbed the PM, resulting in a clear and transparent right side of the
box. This indicates that the prepared membrane has good filtration performance, which
is maintained even after five cycles in Figure 6c. This confirms that PLA/TZ has superior
PM2.5 removal capability and purification efficiency, indicating a strong potential for use
in masks.

3.5. Antibacterial Performance

Antimicrobial activity is a critical factor in the evaluation of protective fiber mate-
rials for active protection. In previous reports, TIO2 and ZIF-8 have also demonstrated
antimicrobial properties for medical protection applications. In this study, antimicrobial
PLA-based fibers doped with TiO2 and loaded with ZIF-8 were prepared and tested for
their antimicrobial activity against Gram-negative (E. coli) and Gram-positive (S. aureus)
bacteria. The results showed that PLA/TZ exhibited significantly higher antimicrobial
properties than PLA, as shown in Figure 7(a1,a2). The bactericidal rate was calculated by
the count method, and the inhibitory effect on E. coli and S. aureus was 98.3% and 97.6%,
respectively. The demonstrated bactericidal activity predicts the great application prospects
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of MOF protection for ring-breaking and bacterial killing. Figure 7b illustrates the schematic
diagram of the synergistic PM filtration mechanism of TiO2 and ZIF-8. ZIF-8 crystals have
a high specific surface area and abundant adsorption sites, enabling them to adsorb fine
particles on the PLA/TZ membrane as they pass through the visible-light-irradiated mem-
brane. As a result, pollutants are trapped in the fibers. Under light conditions, both TiO2
and ZIF-8 can be activated, and the ·O2− and ·OH generated by PLA/TZ can lead to the
oxidative decomposition of PM2.5 [60]. In addition, the heterostructure formed by ZIF-8
and TiO2 promotes charge separation and reduces the bandgap. The charge carriers are
induced by light, and the filter membrane generates ROS. ROS are free radicals with strong
reducing and oxidizing capabilities, which can damage the phospholipid layer of the cell’s
outer membrane and react with many organic substances inside the cell [61,62].
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pathways.

4. Conclusions

In conclusion, we present a strategy for the preparation of bimodal diameter-distributed
polylactic acid filtration membranes by introducing TiO2 and the in situ anchoring of ZIF-8
coatings. This approach is straightforward and simple to use; it may successfully increase
the roughness by uniformly embedding nanoparticles into electrospun fibers. In particu-
lar, the filtration results confirm that the developed ZIF-8 embedded nanofiber filter can
effectively capture submicron particles. The pressure drop remained stable, while the
filtration efficiency was improved, ranging from 90.92% to 96.43% for PM0.3, especially
for PM2.5, with good interception performance, obtaining the highest quality factor of
0.08449 Pa−1. Furthermore, the stability resistance test demonstrated an extended service
life in real-world application conditions, and it exhibited some degree of antibacterial
performance. In general, this research offers significant perspectives on the creation of
materials for nanofiber air filtration.
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