Fabrication of Poly(Lactic Acid)@TiO2 Electrospun Membrane Decorated with Metal–Organic Frameworks for Efficient Air Filtration and Bacteriostasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PLA and PLA/TZ Membranes
2.3. Characterization
2.4. Filter Performance Evaluation
2.5. Antibacterial Performance Evaluation
3. Results and Discussion
3.1. Morphological Observation of Membranes
3.2. Characterization of Membranes
3.3. Filtration Properties
3.4. Loading Performance
3.5. Antibacterial Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaddick, G.; Thomas, M.L.; Mudu, P.; Ruggeri, G.; Gumy, S. Half the world’s population are exposed to increasing air pollution. NPJ Clim. Atmos. Sci. 2020, 3, 23. [Google Scholar] [CrossRef]
- Badran, G.; Verdin, A.; Grare, C.; Abbas, I.; Achour, D.; Ledoux, F.; Roumie, M.; Cazier, F.; Courcot, D.; Lo Guidice, J.-M.; et al. Toxicological appraisal of the chemical fractions of ambient fine (PM2.5-0.3) and quasi-ultrafine (PM0.3) particles in human bronchial epithelial beas-2b cells. Environ. Pollut. 2020, 263, 114620. [Google Scholar] [CrossRef]
- Moufarrej, L.; Verdin, A.; Cazier, F.; Ledoux, F.; Courcot, D. Oxidative stress response in pulmonary cells exposed to different fractions of PM2.5-0.3 from urban, traffic and industrial sites. Environ. Res. 2023, 216, 114572. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Han, P.; Liu, S.; Han, R.; Niu, J.; Liu, F.; Yu, H.; Cao, L.; Li, X.; Cao, Y.; et al. Polystyrene/polymethylhydrosiloxane multiscale electrospun nanofiber membranes for air filtration. ACS Appl. Nano Mater. 2023, 6, 21293–21302. [Google Scholar] [CrossRef]
- Zhou, M.; Ma, L.; Zhou, Z.; Xu, Q.; Zhang, S.; Guo, Z.H.; Xiong, C.; Guo, W.; Wang, R.; Tan, S.C.; et al. Tribonano Shield—Scalable Manufacturing anti-smog multi-level structured nanofiber air filter with co-enhanced purification performance towards self-powered window screen. Nano Energy 2024, 121, 109230. [Google Scholar] [CrossRef]
- Ke, Z.; Yu, L.; Wang, G.; Sun, R.; Zhu, M.; Dong, H.; Xu, Y.; Ren, M.; Fu, S.; Zhi, C. Three-dimensional modeling of spun-bonded nonwoven meso-structures. Polymers 2023, 15, 600. [Google Scholar] [CrossRef]
- Zhao, Y.; Ming, J.; Cai, S.; Wang, X.; Ning, X. One-step fabrication of polylactic acid (PLA) nanofibrous membranes with spider-web-like structure for high-efficiency PM0.3 capture. J. Hazard. Mater. 2024, 465, 133232. [Google Scholar] [CrossRef]
- Shao, W.; Niu, J.; Han, R.; Liu, S.; Wang, K.; Cao, Y.; Han, P.; Li, X.; Zhang, H.; Yu, H.; et al. Electrospun multiscale poly(lactic acid) nanofiber membranes with a synergistic antibacterial effect for air-filtration applications. ACS Appl. Polym. Mater. 2023, 5, 9632–9641. [Google Scholar] [CrossRef]
- Shang, H.; Xu, K.; Li, T.; Yang, H.-R.; Gao, J.; Li, S.; Zhu, J.; He, X.; Zhang, S.; Xu, H.; et al. Bioelectret poly(lactic acid) membranes with simultaneously enhanced physical interception and electrostatic adsorption of airborne PM0.3. J. Hazard. Mater. 2023, 458, 132010. [Google Scholar] [CrossRef]
- Toptas, A.; Calisir, M.D.; Gungor, M.; Kilic, A. Enhancing filtration performance of submicron particle filter media through bimodal structural design. Polym. Eng. Amp; Sci. 2023, 64, 901–912. [Google Scholar] [CrossRef]
- Bae, J.; Lee, J.; Hwang, W.-T.; Youn, D.-Y.; Song, H.; Ahn, J.; Nam, J.-S.; Jang, J.-S.; Kim, D.; Jo, W.; et al. Advancing breathability of respiratory Nanofilter by optimizing pore structure and alignment in Nanofiber Networks. ACS Nano 2023, 18, 1371–1380. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Lv, X.; Zhou, J.; Lv, Y.; Sun, J.; Guo, H.; Wang, C.; Hu, P.; Spitalsky, Z.; Liu, Y. Multi-level structured polylactic acid electrospun fiber membrane based on green solvents for high-performance air filtration. Sep. Purif. Technol. 2024, 331, 125659. [Google Scholar] [CrossRef]
- Lin, S.; Fu, X.; Luo, M.; Zhong, W.-H. Tailoring bimodal protein fabrics for enhanced air filtration performance. Sep. Purif. Technol. 2022, 290, 120913. [Google Scholar] [CrossRef]
- Yu, Y.-H.; Huang, Y.; Zhang, J.-F.; Lin, W.-T.; Li, W.-L.; Ye, X.-Y.; Ji, J.; Xu, Z.-K.; Wan, L.-S. Self-powered, biodegradable, and antibacterial air filters based on piezoelectric poly(L-lactic acid) nanofibrous membranes. ACS Appl. Polym. Mater. 2023, 5, 10426–10437. [Google Scholar] [CrossRef]
- Zhang, F.; Lin, J.; Yang, M.; Wang, Y.; Ye, Z.; He, J.; Shen, J.; Zhou, X.; Guo, Z.; Zhang, Y.; et al. High-breathable, antimicrobial and water-repellent face mask for breath monitoring. Chem. Eng. J. 2023, 466, 143150. [Google Scholar]
- Lin, X.; Lin, M.; Li, T.; Lu, H.; Qi, H.; Chen, T.; Wu, L.; Zhang, C. Preparation of self-curling melt-blown fibers with crimped masterbatch (CM) and its application for low-pressure air filtration. Polymers 2023, 15, 3365. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wang, X.; Yu, J.; Ding, B. Earthworm-inspired mechanical toughened biodegradable polylactic acid microfiber for Sustainable Air Filtration. Sep. Purif. Technol. 2024, 338, 126575. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, Z.; Ma, H.; Venkateswaran, S.; Hsiao, B.S. Ultra-fine electrospun nanofibrous membranes for multicomponent wastewater treatment: Filtration and adsorption. Sep. Purif. Technol. 2020, 242, 116794. [Google Scholar] [CrossRef]
- Katsogiannis, K.A.; Vladisavljević, G.T.; Georgiadou, S.; Rahmani, R. Assessing the increase in specific surface area for electrospun fibrous network due to pore induction. ACS Appl. Mater. Interfaces 2016, 8, 29148–29154. [Google Scholar]
- Liu, H.; Zhu, Y.; Zhang, C.; Zhou, Y.; Yu, D.-G. Electrospun nanofiber as building blocks for high-performance air filter: A Review. Nano Today 2024, 55, 102161. [Google Scholar] [CrossRef]
- Kashif, M.; Guo, H.; Ge, J.; Lv, X.; Rasul, S.; Liu, Y. Effect of different symmetries of electrospun poly(lactic acid) nanofibers on facemask filtration. ACS Appl. Polym. Mater. 2023, 5, 5995–6002. [Google Scholar] [CrossRef]
- Dey, S.; Samanta, P.; Dutta, D.; Kundu, D.; Ghosh, A.R.; Kumar, S. Face masks: A COVID-19 protector or environmental contaminant? Environ. Sci. Pollut. Res. 2023, 30, 93363–93387. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, Q.; Liu, S.; Liu, X.; Wu, Z.; Wang, J.; Zhou, M.; Ren, M.; Wan, C.; Huo, W.; et al. A self-purifying smart mask integrated with metal–organic framework membranes and flexible circuits. Adv. Mater. Interfaces 2022, 10, 2201895. [Google Scholar] [CrossRef]
- Shen, R.; Guo, Y.; Wang, S.; Tuerxun, A.; He, J.; Bian, Y. Biodegradable electrospun nanofiber membranes as promising candidates for the development of Face Masks. Int. J. Environ. Res. Public Health 2023, 20, 1306. [Google Scholar] [CrossRef]
- Zou, R.; Wei, Y.; Yang, W.; Li, Y.; Lv, H.; Zhao, J.; Liu, C. Effective removal of arsenite from water using polylactic acid ZIF-8 biocomposite nanofiber. Mater. Today Chem. 2023, 33, 101723. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, D.; Li, J.; Yue, Z.; Zhou, J.; Wang, X. The preparation of ultrathin and porous electrospinning membranes of HKUST-1/PLA with good antibacterial and filtration performances. J. Porous Mater. 2022, 30, 1011–1019. [Google Scholar] [CrossRef]
- Le, T.T.; Curry, E.J.; Vinikoor, T.; Das, R.; Liu, Y.; Sheets, D.; Tran, K.T.; Hawxhurst, C.J.; Stevens, J.F.; Hancock, J.N.; et al. Piezoelectric nanofiber membrane for reusable, stable, and highly functional face mask filter with long-term biodegradability. Adv. Funct. Mater. 2022, 32, 20. [Google Scholar] [CrossRef]
- Cui, J.; Wan, M.; Wang, Z.; Zhao, Y.; Sun, L. Preparation of PAN/SIO2/CTAB electrospun nanofibrous membranes for highly efficient air filtration and sterilization. Sep. Purif. Technol. 2023, 321, 124270. [Google Scholar] [CrossRef]
- Liang, C.; Li, J.; Chen, Y.; Ke, L.; Zhu, J.; Zheng, L.; Li, X.-P.; Zhang, S.; Li, H.; Zhong, G.-J.; et al. Self-charging, breathable, and antibacterial poly(lactic acid) nanofibrous air filters by surface engineering of ultrasmall electroactive nanohybrids. ACS Appl. Mater. Interfaces 2023, 15, 57636–57648. [Google Scholar] [CrossRef]
- Liu, H.; Lai, W.; Shi, Y.; Tian, L.; Li, K.; Bian, L.; Xi, Z.; Lin, B. Ag-decorated electrospun polymer/GO fibrous membranes for simultaneous bacterial filtration and termination. J. Membr. Sci. 2024, 695, 122498. [Google Scholar] [CrossRef]
- Han, S.; Kim, J.; Lee, Y.; Bang, J.; Kim, C.G.; Choi, J.; Min, J.; Ha, I.; Yoon, Y.; Yun, C.-H.; et al. Transparent air filters with active thermal sterilization. Nano Lett. 2021, 22, 524–532. [Google Scholar] [CrossRef]
- Su, X.; Zhai, Y.; Jia, C.; Xu, Z.; Luo, D.; Pan, Z.; Xiang, H.; Yu, S.; Zhu, L.; Zhu, M. Improved antibacterial properties of polylactic acid-based nanofibers loaded with ZnO–Ag nanoparticles through pore engineering. ACS Appl. Mater. Interfaces 2023, 15, 42920–42929. [Google Scholar] [CrossRef] [PubMed]
- Ke, L.; Yang, T.; Liang, C.; Guan, X.; Li, T.; Jiao, Y.; Tang, D.; Huang, D.; Li, S.; Zhang, S.; et al. Electroactive, antibacterial, and biodegradable poly(lactic acid) nanofibrous air filters for Healthcare. ACS Appl. Mater. Interfaces 2023, 15, 32463–32474. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.; Fang, K.; Li, T.; Zhang, L.; Zheng, Q.; Liang, Y. Green preparation of water-stable coptidis-dyeing composite nanofiber filters with ultraviolet shielding and antibacterial activity and biodegradability. Sep. Purif. Technol. 2024, 336, 126289. [Google Scholar] [CrossRef]
- Tang, X.; Guo, X.; Duo, Y.; Qian, X. Preparation and characterization of a one-step electrospun poly(lactic acid)/wormwood oil antibacterial nanofiber membrane. Polymers 2023, 15, 3585. [Google Scholar] [CrossRef] [PubMed]
- Mercante, L.; Teodoro, K.; dos Santos, D.; dos Santos, F.; Ballesteros, C.; Ju, T.; Williams, G.; Correa, D. Recent progress in stimuli-responsive antimicrobial electrospun nanofibers. Polymers 2023, 15, 4299. [Google Scholar] [CrossRef] [PubMed]
- Isawi, H. Development of thin-film composite membranes via radical grafting with methacrylic acid/ ZnO doped TiO2 nanocomposites. React. Funct. Polym. 2018, 131, 400–413. [Google Scholar] [CrossRef]
- Ji, X.; Yang, Y.; Gou, Y.; Yang, Y.; Li, W.; Huang, J.; Cai, W.; Lai, Y. Electrospun heterojunction nanofibrous membranes for photoinduced enhancement of fine particulate matter capture in harsh environment. Sep. Purif. Technol. 2023, 320, 124209. [Google Scholar] [CrossRef]
- Verma, V.; Al-Dossari, M.; Singh, J.; Rawat, M.; Kordy, M.G.; Shaban, M. A review on Green Synthesis of TIO2 NPs: Photocatalysis and antimicrobial applications. Polymers 2022, 14, 1444. [Google Scholar] [CrossRef]
- Kamil, A.I.; Munir, M.M. Structure and morphology optimization of nanofiber membrane for the application of high-performance air filtration. Powder Technol. 2023, 430, 118978. [Google Scholar] [CrossRef]
- Wang, W.; Hou, Z.; Zhang, H.; Ma, X.; Wang, G.; Miao, J.; Fan, T. Harsh environmental-tolerant ZIF-8@polyphenylene sulfide membrane for efficient oil/water separation and air filtration under extreme conditions. J. Membr. Sci. 2023, 685, 121885. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, W.; Yu, R.; Liu, S.; Shi, J.; Shan, M.; Shi, H.; Xu, Z.; Deng, H. Construction of ultra-stable polypropylene membrane by in-situ growth of nano-metal–organic frameworks for Air Filtration. Sep. Purif. Technol. 2022, 282, 120030. [Google Scholar] [CrossRef]
- Lee, J.; Jung, S.; Park, H.; Kim, J. Bifunctional ZIF-8 grown webs for advanced filtration of particulate and gaseous matters: Effect of charging process on the electrostatic capture of nanoparticles and sulfur dioxide. ACS Appl. Mater. Interfaces 2021, 13, 50401–50410. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Zhang, M.; Nie, J.; Tan, J.; Yang, B.; Song, S. Design of double-component metal–organic framework air filters with PM2.5 capture, gas adsorption and antibacterial capacities. Carbohydr. Polym. 2019, 203, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Cheng, X.; Li, J.; Wang, N. Bifunctional polyimide/ZIF-8 composite nanofibrous membranes with controllable bilayer structure for bioprotective application and high-efficiency oil/water separation. J. Environ. Chem. Eng. 2023, 11, 110913. [Google Scholar] [CrossRef]
- Jhinjer, H.S.; Jassal, M.; Agrawal, A.K. Nanosized ZIF-8 based odor adsorbing and antimicrobial finish for polyester fabrics. Appl. Surf. Sci. 2023, 639, 158153. [Google Scholar] [CrossRef]
- Deng, Y.; Lu, T.; Cui, J.; Keshari Samal, S.; Xiong, R.; Huang, C. Bio-based electrospun nanofiber as Building Blocks for a novel eco-friendly air filtration membrane: A Review. Sep. Purif. Technol. 2021, 277, 119623. [Google Scholar] [CrossRef]
- Lin, M.; Shen, J.; Wang, B.; Chen, Y.; Zhang, C.; Qi, H. Preparation of fluffy bimodal conjugated electrospun poly(lactic acid) air filters with low pressure drop. RSC Adv. 2023, 13, 30680–30689. [Google Scholar] [CrossRef]
- ASTM D 737; Standard Test Method for Air Permeability of Textile Fabrics. ASTM International: West Conshohocken, PA, USA, 2023.
- GB 2626-2019; Respiratory Protection—Non-Powered Air-Purifying Particle Respirator. China Standard Press: Beijing, China, 2019.
- GB 15979-2002; Hygienic Standard for Disposable Sanitary Articles. China Standard Press: Beijing, China, 2002.
- Lu, H.; Lin, M.; Li, T.; Zhang, H.; Feng, L.; Zhang, C. Polyimide (PI) composite spunlace nonwovens for hygiene material with excellent comfort and antimicrobial properties. Processes 2024, 12, 354. [Google Scholar] [CrossRef]
- Kim, W.-T.; Park, D.-C.; Yang, W.-H.; Cho, C.-H.; Choi, W.-Y. Effects of electrospinning parameters on the microstructure of PVP/TIO2 nanofibers. Nanomaterials 2021, 11, 1616. [Google Scholar] [CrossRef]
- Echeverría, C.; Limón, I.; Muñoz-Bonilla, A.; Fernández-García, M.; López, D. Development of highly crystalline polylactic acid with β-crystalline phase from the induced alignment of electrospun fibers. Polymers 2021, 13, 2860. [Google Scholar] [CrossRef] [PubMed]
- Singh Jhinjer, H.; Jassal, M.; Agrawal, A.K. Metal-organic frameworks functionalized cellulosic fabrics as multifunctional Smart Textiles. Chem. Eng. J. 2023, 478, 147253. [Google Scholar] [CrossRef]
- Yurtsever, H.A.; Çetin, A.E. Fabrication of ZIF-8 decorated copper doped TiO2 nanocomposite at low ZIF-8 loading for solar energy applications. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 625, 126980. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Li, T.; Ma, P.; Zhang, X.; Xia, B.; Chen, M.; Du, M.; Dong, W. High-performance polylactic acid materials enabled by TiO2–polydopamine hybrid nanoparticles. Ind. Eng. Chem. Res. 2021, 60, 3999–4008. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Ma, X.Y.; Ang, J.; Zeng, Z.; Ng, B.F.; Wan, M.P.; Wong, S.-C.; Lu, X. Polymer/MOF-derived multilayer fibrous membranes for moisture-wicking and efficient capturing both fine and ultrafine airborne particles. Sep. Purif. Technol. 2020, 235, 116183. [Google Scholar] [CrossRef]
- Roegiers, J.; Denys, S. CFD-modelling of activated carbon fibers for indoor air purification. Chem. Eng. J. 2019, 365, 80–87. [Google Scholar] [CrossRef]
- Huang, Q.; Meng, C.; Liao, M.; Kou, T.; Zhou, F.; Lu, J.R.; Li, J.; Li, Y. Hierarchically porous, superhydrophobic plla/copper composite fibrous membranes for air filtration. ACS Appl. Polym. Mater. 2024, 6, 2381–2391. [Google Scholar] [CrossRef]
- Yang, Z.; Zhen, Y.; Feng, Y.; Jiang, X.; Qin, Z.; Yang, W.; Qie, Y. Polyacrylonitrile@TiO2 nanofibrous membrane decorated by MOF for efficient filtration and green degradation of PM2.5. J. Colloid Interface Sci. 2023, 635, 598–610. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, L.; Wu, H.; Chen, X.; Zhang, J.; Li, W.; Qin, H.; Tao, Z.; Wang, S.; Liu, Y. Reusable and self-sterilization mask for real-time personal protection based on sunlight-driven photocatalytic reaction. J. Hazard. Mater. 2024, 466, 133513. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, M.; Shen, J.; Qian, Q.; Li, T.; Zhang, C.; Qi, H. Fabrication of Poly(Lactic Acid)@TiO2 Electrospun Membrane Decorated with Metal–Organic Frameworks for Efficient Air Filtration and Bacteriostasis. Polymers 2024, 16, 889. https://doi.org/10.3390/polym16070889
Lin M, Shen J, Qian Q, Li T, Zhang C, Qi H. Fabrication of Poly(Lactic Acid)@TiO2 Electrospun Membrane Decorated with Metal–Organic Frameworks for Efficient Air Filtration and Bacteriostasis. Polymers. 2024; 16(7):889. https://doi.org/10.3390/polym16070889
Chicago/Turabian StyleLin, Minggang, Jinlin Shen, Qiaonan Qian, Tan Li, Chuyang Zhang, and Huan Qi. 2024. "Fabrication of Poly(Lactic Acid)@TiO2 Electrospun Membrane Decorated with Metal–Organic Frameworks for Efficient Air Filtration and Bacteriostasis" Polymers 16, no. 7: 889. https://doi.org/10.3390/polym16070889
APA StyleLin, M., Shen, J., Qian, Q., Li, T., Zhang, C., & Qi, H. (2024). Fabrication of Poly(Lactic Acid)@TiO2 Electrospun Membrane Decorated with Metal–Organic Frameworks for Efficient Air Filtration and Bacteriostasis. Polymers, 16(7), 889. https://doi.org/10.3390/polym16070889