Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (631)

Search Parameters:
Keywords = anti-multidrug resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
52 pages, 1574 KiB  
Review
Anti-QS Strategies Against Pseudomonas aeruginosa Infections
by Abdelaziz Touati, Nasir Adam Ibrahim, Lilia Tighilt and Takfarinas Idres
Microorganisms 2025, 13(8), 1838; https://doi.org/10.3390/microorganisms13081838 (registering DOI) - 7 Aug 2025
Abstract
Pseudomonas aeruginosa poses significant health threats due to its multidrug-resistant profile, particularly affecting immunocompromised individuals. The pathogen’s ability to produce virulence factors and antibiotic-resistant biofilms, orchestrated through quorum-sensing (QS) mechanisms, complicates conventional therapeutic interventions. This review aims to critically assess the potential of [...] Read more.
Pseudomonas aeruginosa poses significant health threats due to its multidrug-resistant profile, particularly affecting immunocompromised individuals. The pathogen’s ability to produce virulence factors and antibiotic-resistant biofilms, orchestrated through quorum-sensing (QS) mechanisms, complicates conventional therapeutic interventions. This review aims to critically assess the potential of anti-QS strategies as alternatives to antibiotics against P. aeruginosa infections. Comprehensive literature searches were conducted using databases such as PubMed, Scopus, and Web of Science, focusing on studies addressing QS inhibition strategies published recently. Anti-QS strategies significantly attenuate bacterial virulence by disrupting QS-regulated genes involved in biofilm formation, motility, toxin secretion, and immune evasion. These interventions reduce the selective pressure for resistance and enhance antibiotic efficacy when used in combination therapies. Despite promising outcomes, practical application faces challenges, including specificity of inhibitors, pharmacokinetic limitations, potential cytotoxicity, and bacterial adaptability leading to resistance. Future perspectives should focus on multi-target QS inhibitors, advanced delivery systems, rigorous preclinical validations, and clinical translation frameworks. Addressing current limitations through multidisciplinary research can lead to clinically viable QS-targeted therapies, offering sustainable alternatives to traditional antibiotics and effectively managing antibiotic resistance. Full article
(This article belongs to the Collection Feature Papers in Medical Microbiology)
Show Figures

Figure 1

47 pages, 7003 KiB  
Review
Phthalocyanines Conjugated with Small Biologically Active Compounds for the Advanced Photodynamic Therapy: A Review
by Kyrylo Chornovolenko and Tomasz Koczorowski
Molecules 2025, 30(15), 3297; https://doi.org/10.3390/molecules30153297 - 6 Aug 2025
Abstract
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, [...] Read more.
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, efficacy, and multifunctionality. These conjugates combine light-activated reactive oxygen species (ROS) production with targeted delivery and controlled release, offering enhanced treatment precision and reduced off-target toxicity. Chemotherapeutic agent conjugates, including those with erlotinib, doxorubicin, tamoxifen, and camptothecin, demonstrate receptor-mediated uptake, pH-responsive release, and synergistic anticancer effects, even overcoming multidrug resistance. Beyond oncology, ZnPc conjugates with antibiotics, anti-inflammatory drugs, antiparasitics, and antidepressants extend photodynamic therapy’s scope to antimicrobial and site-specific therapies. Targeting moieties such as folic acid, biotin, arginylglycylaspartic acid (RGD) and epidermal growth factor (EGF) peptides, carbohydrates, and amino acids have been employed to exploit overexpressed receptors in tumors, enhancing cellular uptake and tumor accumulation. Fluorescent dye and porphyrinoid conjugates further enrich these systems by enabling imaging-guided therapy, efficient energy transfer, and dual-mode activation through pH or enzyme-sensitive linkers. Despite these promising strategies, key challenges remain, including aggregation-induced quenching, poor aqueous solubility, synthetic complexity, and interference with ROS generation. In this review, the examples of Pc-based conjugates were described with particular interest on the synthetic procedures and optical properties of targeted compounds. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

14 pages, 589 KiB  
Review
Biofilm Formation and the Role of Efflux Pumps in ESKAPE Pathogens
by Trent R. Sorenson, Kira M. Zack and Suresh G. Joshi
Microorganisms 2025, 13(8), 1816; https://doi.org/10.3390/microorganisms13081816 - 4 Aug 2025
Viewed by 70
Abstract
Nosocomial infections caused by ESKAPE pathogens represent a significant burden to global health. These pathogens may exhibit multidrug resistance (MDR) mechanisms, of which mechanisms such as efflux pumps and biofilm formation are gaining significant importance. Multidrug resistance mechanisms in ESKAPE pathogens have led [...] Read more.
Nosocomial infections caused by ESKAPE pathogens represent a significant burden to global health. These pathogens may exhibit multidrug resistance (MDR) mechanisms, of which mechanisms such as efflux pumps and biofilm formation are gaining significant importance. Multidrug resistance mechanisms in ESKAPE pathogens have led to an increase in the effective costs in health care and a higher risk of mortality in hospitalized patients. These pathogens utilize antimicrobial efflux pump mechanisms and bacterial biofilm-forming capabilities to escape the bactericidal action of antimicrobials. ESKAPE bacteria forming colonies demonstrate increased expression of efflux pump-encoding genes. Efflux pumps not only expel antimicrobial agents but also contribute to biofilm formation by bacteria through (1) transport of molecules and transcription factors involved in biofilm quorum sensing, (2) bacterial fimbriae structure transport for biofilm adhesion to surfaces, and (3) regulation of a transmembrane gradient to survive the difficult conditions of biofilm microenvironments. The synergistic role of these mechanisms complicates treatment outcomes. Given the mechanistic link between biofilms and efflux pumps, therapeutic strategies should focus on targeting anti-biofilm mechanisms alongside efflux pump inactivation with efflux pump inhibitors. This review explores the molecular interplay between efflux pumps and biofilm formation, emphasizing potential therapeutic strategies such as efflux pump inhibitors (EPIs) and biofilm-targeting agents. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

41 pages, 2975 KiB  
Review
Algal Metabolites as Novel Therapeutics Against Methicillin-Resistant Staphylococcus aureus (MRSA): A Review
by Ibraheem Borie M. Ibraheem, Reem Mohammed Alharbi, Neveen Abdel-Raouf, Nouf Mohammad Al-Enazi, Khawla Ibrahim Alsamhary and Hager Mohammed Ali
Pharmaceutics 2025, 17(8), 989; https://doi.org/10.3390/pharmaceutics17080989 (registering DOI) - 30 Jul 2025
Viewed by 267
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a multidrug-resistant pathogen, poses a significant threat to global healthcare. This review evaluates the potential of marine algal metabolites as novel antibacterial agents against MRSA. We explore the clinical importance of S. aureus, the emergence of MRSA as [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA), a multidrug-resistant pathogen, poses a significant threat to global healthcare. This review evaluates the potential of marine algal metabolites as novel antibacterial agents against MRSA. We explore the clinical importance of S. aureus, the emergence of MRSA as a “superbug”, and its resistance mechanisms, including target modification, drug inactivation, efflux pumps, biofilm formation, and quorum sensing. The limitations of conventional antibiotics (e.g., β-lactams, vancomycin, macrolides) are discussed, alongside the promise of algal-derived compounds such as fatty acids, pigments, polysaccharides, terpenoids, and phenolic compounds. These metabolites exhibit potent anti-MRSA activity by disrupting cell division (via FtsZ inhibition), destabilizing membranes, and inhibiting protein synthesis and metabolic pathways, effectively countering multiple resistance mechanisms. Leveraging advances in algal biotechnology, this review highlights the untapped potential of marine algae to drive innovative, sustainable therapeutic strategies against antibiotic resistance. Full article
Show Figures

Figure 1

55 pages, 6122 KiB  
Review
Isorhamnetin: Reviewing Recent Developments in Anticancer Mechanisms and Nanoformulation-Driven Delivery
by Juie Nahushkumar Rana, Kainat Gul and Sohail Mumtaz
Int. J. Mol. Sci. 2025, 26(15), 7381; https://doi.org/10.3390/ijms26157381 - 30 Jul 2025
Viewed by 198
Abstract
Natural compounds, particularly flavonoids, have emerged as promising anticancer agents due to their various biological activities and no or negligible toxicity towards healthy tissues. Among these, isorhamnetin, a methylated flavonoid, has gained significant attention for its potential to target multiple cancer hallmarks. This [...] Read more.
Natural compounds, particularly flavonoids, have emerged as promising anticancer agents due to their various biological activities and no or negligible toxicity towards healthy tissues. Among these, isorhamnetin, a methylated flavonoid, has gained significant attention for its potential to target multiple cancer hallmarks. This review comprehensively explores the mechanisms by which isorhamnetin exerts its anticancer effects, including cell cycle regulation, apoptosis, suppression of metastasis and angiogenesis, and modulation of oxidative stress and inflammation. Notably, isorhamnetin arrests cancer cell proliferation by regulating cyclins, and CDKs induce apoptosis via caspase activation and mitochondrial dysfunction. It inhibits metastatic progression by downregulating MMPs, VEGF, and epithelial–mesenchymal transition (EMT) markers. Furthermore, its antioxidant and anti-inflammatory properties mitigate reactive oxygen species (ROS) and pro-inflammatory cytokines, restricting cancer progression and modulating tumor microenvironments. Combining isorhamnetin with other treatments was also discussed to overcome multidrug resistance. Importantly, this review integrates the recent literature (2022–2024) and highlights isorhamnetin’s roles in modulating cancer-specific signaling pathways, immune evasion, tumor microenvironment dynamics, and combination therapies. We also discuss nanoformulation-based strategies that significantly enhance isorhamnetin’s delivery and bioavailability. This positions isorhamnetin as a promising adjunct in modern oncology, capable of improving therapeutic outcomes when used alone or in synergy with conventional treatments. The future perspectives and potential research directions were also summarized. By consolidating current knowledge and identifying critical research gaps, this review positions Isorhamnetin as a potent and versatile candidate in modern oncology, offering a pathway toward safer and more effective cancer treatment strategies. Full article
(This article belongs to the Special Issue The Role of Natural Compounds in Cancer and Inflammation, 2nd Edition)
Show Figures

Figure 1

11 pages, 1067 KiB  
Article
Assessment of the Anti-Biofilm Effect of Cefiderocol Against 28 Clinical Strains of Multidrug-Resistant Gram-Negative Bacilli
by Marta Díaz-Navarro, Emilia Cercenado, Andrés Visedo, Mercedes Marín, Marina Machado, Álvaro Irigoyen-von-Sierakowski, Belén Loeches, Juana Cacho-Calvo, Julio García-Rodríguez, Enea G. Di Domenico, Patricia Muñoz and María Guembe
Antibiotics 2025, 14(8), 738; https://doi.org/10.3390/antibiotics14080738 - 23 Jul 2025
Viewed by 265
Abstract
Objectives: Cefideroccol (FDC) is a siderophore cephalosporin with potent antibacterial activity against a wide range of Gram-negative multidrug-resistant (MDR) microorganisms. We investigated the anti-biofilm capacity of FDC against clinical strains. Methods: This multicenter study was conducted on 28 selected strains of [...] Read more.
Objectives: Cefideroccol (FDC) is a siderophore cephalosporin with potent antibacterial activity against a wide range of Gram-negative multidrug-resistant (MDR) microorganisms. We investigated the anti-biofilm capacity of FDC against clinical strains. Methods: This multicenter study was conducted on 28 selected strains of MDR Gram-negative bacilli isolated from clinical samples of Pseudomonas aeruginosa (n = 5), Acinetobacter baumannii (n = 11), and Klebsiella pneumoniae (n = 12). We first determined the minimum inhibitory concentration (MIC) of each strain using the microdilution method. We also defined the minimum biofilm inhibitory concentration (MBIC) as a ≥50% reduction in tetrazolium salt (XTT) (as recommended in the 2017 Spanish Microbiology Protocols [SEIMC] for the microbiological diagnosis of infections related to the formation of biofilms). We also analyzed the reduction in the following biofilm variables after an 8 mg/mL FDC treatment: the CFU count, the cell viability, the biomass, the metabolic activity, and extracellular α or β polysaccharides. Results: The MIC50 and MBIC50 of FDC were 0.5 mg/L and 64 mg/L, respectively. We observed a mean (SD) fold increase in the susceptibility to FDC between planktonic and sessile cells for P. aeruginosa, A. baumannii, and K. pneumoniae of 9.60 (0.55), 6.27 (2.28), and 6.25 (2.80), respectively. When 8 mg/mL of FDC was tested, we observed that the best median (IQR) percentage reductions were obtained for cell viability and the extracellular matrix (73.1 [12.4–86.5] and 79.5 [37.3–95.5], respectively), particularly for P. aeruginosa. The lowest percentage reduction rates were those obtained for biomass. Conclusions: We demonstrated that the susceptibility to FDC was significantly reduced when strains were in a biofilm state. The best percentage reduction rates for all biofilm-defining variables were observed for P. aeruginosa. Our results need to be validated using a larger collection of clinical samples. Full article
Show Figures

Figure 1

12 pages, 1380 KiB  
Article
Halicin: A New Approach to Antibacterial Therapy, a Promising Avenue for the Post-Antibiotic Era
by Imane El Belghiti, Omayma Hammani, Fatima Moustaoui, Mohamed Aghrouch, Zohra Lemkhente, Fatima Boubrik and Ahmed Belmouden
Antibiotics 2025, 14(7), 698; https://doi.org/10.3390/antibiotics14070698 - 11 Jul 2025
Viewed by 736
Abstract
Background: The global spread of antibiotic-resistant bacteria presents a major public health challenge and necessitates the development of innovative antimicrobial agents. Artificial intelligence (AI)-driven drug discovery has recently enabled the repurposing of existing compounds with novel therapeutic potential. Halicin, originally developed as an [...] Read more.
Background: The global spread of antibiotic-resistant bacteria presents a major public health challenge and necessitates the development of innovative antimicrobial agents. Artificial intelligence (AI)-driven drug discovery has recently enabled the repurposing of existing compounds with novel therapeutic potential. Halicin, originally developed as an anti-diabetic molecule, has been identified through AI screening as a promising antibiotic candidate due to its broad-spectrum activity, including efficacy against multidrug-resistant pathogens. Methods: In this study, the antibacterial activity of halicin was evaluated against a range of clinically relevant multidrug-resistant bacterial strains. Bacterial isolates were first characterized using the agar disk diffusion method with a panel of 22 conventional antibiotics to confirm resistance profiles. The minimum inhibitory concentration (MIC) of halicin was then determined for selected isolates, including Escherichia coli ATCC® 25922™ and Staphylococcus aureus ATCC® 29213™, using broth microdilution according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Results: Halicin demonstrated notable antibacterial activity, with MIC values of 16 μg/mL and 32 μg/mL against E. coli ATCC® 25922™ and S. aureus ATCC® 29213™, respectively. A dose-dependent inhibition of bacterial growth was observed for the majority of tested isolates, except for Pseudomonas aeruginosa, which exhibited intrinsic resistance. This lack of susceptibility is likely related to reduced outer membrane permeability, limiting the intracellular accumulation of halicin. Conclusions: Our findings support the potential of halicin as a novel antimicrobial agent for the treatment of infections caused by antibiotic-resistant bacteria. However, further investigations, including pharmacokinetic, pharmacodynamic, and toxicity studies, are essential to assess its clinical safety and therapeutic applicability. Full article
Show Figures

Figure 1

50 pages, 3939 KiB  
Review
Targeting Gram-Negative Bacterial Biofilm with Innovative Therapies: Communication Silencing Strategies
by Milka Malešević and Branko Jovčić
Future Pharmacol. 2025, 5(3), 35; https://doi.org/10.3390/futurepharmacol5030035 - 3 Jul 2025
Viewed by 621
Abstract
Biofilm-associated infections caused by Gram-negative bacteria, especially multidrug-resistant strains, frequently occur in intensive care units and represent a major therapeutic challenge. The economic burden of biofilm-associated infections is considerable, making the search for new treatment approaches a focal point for policymakers and scientific [...] Read more.
Biofilm-associated infections caused by Gram-negative bacteria, especially multidrug-resistant strains, frequently occur in intensive care units and represent a major therapeutic challenge. The economic burden of biofilm-associated infections is considerable, making the search for new treatment approaches a focal point for policymakers and scientific funding bodies. Biofilm formation is regulated by quorum sensing (QS), a population density-dependent communication mechanism between cells mediated by small diffusible signaling molecules. QS modulates various intracellular processes, and some features of QS are common to all Gram-negative bacteria. While there are differences in the QS regulatory networks of different Gram-negative bacterial species, a common feature of most Gram-negative bacteria is the ability of N-acylhomoserine lactones (AHL) as inducers to diffuse across the bacterial membrane and interact with receptors located either in the cytoplasm or on the inner membrane. Targeting QS by inhibiting the synthesis, transport, or perception of signaling molecules using small molecules, quorum quenching enzymes, antibodies, combinatorial therapies, or nanoparticles is a promising strategy to combat virulence. In-depth knowledge of biofilm biology, antibiotic susceptibility, and penetration mechanisms, as well as a deep understanding of anti-QS agents, will contribute to the development of antimicrobial therapies to combat biofilm infections. Advancing antimicrobial therapies against biofilm infections requires a deep understanding of biofilm biology, antibiotic susceptibility, penetration mechanisms, and anti-QS strategies. This can be achieved through in vivo and clinical studies, supported by state-of-the-art tools such as machine learning and artificial intelligence. Full article
Show Figures

Graphical abstract

24 pages, 429 KiB  
Systematic Review
Multidrug-Resistant Tuberculosis in Central Asia and Predominant Beijing Lineage, Challenges in Diagnosis, Treatment Barriers, and Infection Control Strategies: An Integrative Review
by Ulan Kozhamkulov, Sholpan Iglikova, Anar Rakisheva and Joseph Almazan
Antibiotics 2025, 14(7), 673; https://doi.org/10.3390/antibiotics14070673 - 2 Jul 2025
Viewed by 436
Abstract
Background: Multidrug-resistant tuberculosis (MDR-TB) remains a significant public health threat in Central Asia, where rising resistance to first-line anti-TB drugs challenges control efforts. As of 2024, the World Health Organization (WHO) reports that over 2.5% of new TB cases and 18% of [...] Read more.
Background: Multidrug-resistant tuberculosis (MDR-TB) remains a significant public health threat in Central Asia, where rising resistance to first-line anti-TB drugs challenges control efforts. As of 2024, the World Health Organization (WHO) reports that over 2.5% of new TB cases and 18% of previously treated cases are resistant to first-line TB drugs worldwide. Objectives: This integrative review synthesizes current evidence on MDR-TB in Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan, with a focus on infection control, diagnostic advancements, and evolving treatment strategies. Methods: A comprehensive literature search was conducted across five electronic databases: PubMed, Scopus, Web of Science, Embase, World Health Organization (WHO) Global Tuberculosis Database, and ClinicalTrials.gov. A total of 29 articles from Central Asian countries met the inclusion criteria. Results: Four main themes were identified: “genetic variability and resistance patterns of MDR-TB strains”; “barriers to effective treatment”; “diagnostic tools”, and “infection control strategies”. Conclusions: This review underscores the importance of comprehensive, multifactorial approaches in addressing drug-resistant TB in the region. The implementation of early diagnosis and all-oral treatment regimens has improved adherence in recent studies. Full article
(This article belongs to the Special Issue Diagnosis and Treatment of Drug-Resistant Mycobacterium tuberculosis)
Show Figures

Figure 1

26 pages, 905 KiB  
Review
Advancements in Antimicrobial Surface Coatings Using Metal/Metaloxide Nanoparticles, Antibiotics, and Phytochemicals
by Preetha Ebenezer, S. P. S. N. Buddhika Sampath Kumara, S. W. M. A. Ishantha Senevirathne, Laura J. Bray, Phurpa Wangchuk, Asha Mathew and Prasad K. D. V. Yarlagadda
Nanomaterials 2025, 15(13), 1023; https://doi.org/10.3390/nano15131023 - 1 Jul 2025
Viewed by 433
Abstract
The growing prevalence of bacterial infections and the alarming rise of antimicrobial resistance (AMR) have driven the need for innovative antimicrobial coatings for medical implants and biomaterials. However, implant surface properties, such as roughness, chemistry, and reactivity, critically influence biological interactions and must [...] Read more.
The growing prevalence of bacterial infections and the alarming rise of antimicrobial resistance (AMR) have driven the need for innovative antimicrobial coatings for medical implants and biomaterials. However, implant surface properties, such as roughness, chemistry, and reactivity, critically influence biological interactions and must be engineered to ensure biocompatibility, corrosion resistance, and sustained antibacterial activity. This review evaluates three principal categories of antimicrobial agents utilized in surface functionalization: metal/metaloxide nanoparticles, antibiotics, and phytochemical compounds. Metal/metaloxide-based coatings, especially those incorporating silver (Ag), zinc oxide (ZnO), and copper oxide (CuO), offer broad-spectrum antimicrobial efficacy through mechanisms such as reactive oxygen species (ROS) generation and bacterial membrane disruption, with a reduced risk of resistance development. Antibiotic-based coatings enable localized drug delivery but often face limitations related to burst release, cytotoxicity, and diminishing effectiveness against multidrug-resistant (MDR) strains. In contrast, phytochemical-derived coatings—using bioactive plant compounds such as curcumin, eugenol, and quercetin—present a promising, biocompatible, and sustainable alternative. These agents not only exhibit antimicrobial properties but also provide anti-inflammatory, antioxidant, and osteogenic benefits, making them multifunctional tools for implant surface modification. The integration of these antimicrobial strategies aims to reduce bacterial adhesion, inhibit biofilm formation, and enhance tissue regeneration. By leveraging the synergistic effects of metal/metaloxide nanoparticles, antibiotics, and phytochemicals, next-generation implant coatings hold the potential to significantly improve infection control and clinical outcomes in implant-based therapies. Full article
(This article belongs to the Special Issue Nanocoating for Antibacterial Applications)
Show Figures

Graphical abstract

26 pages, 8585 KiB  
Article
The Invertebrate-Derived Antimicrobial Peptide Cm-p5 Induces Cell Death and ROS Production in Melanoma Cells
by Ernesto M. Martell-Huguet, Daniel Alpízar-Pedraza, Armando Rodriguez, Marc Zumwinkel, Mark Grieshober, Fidel Morales-Vicente, Ann-Kathrin Kissmann, Markus Krämer, Steffen Stenger, Octavio L. Franco, Ludger Ständker, Anselmo J. Otero-Gonzalez and Frank Rosenau
Mar. Drugs 2025, 23(7), 273; https://doi.org/10.3390/md23070273 - 29 Jun 2025
Viewed by 1193
Abstract
Nowadays, healthcare systems face two global challenges: the rise of multidrug-resistant pathogens and the growing incidence of cancer. Due to their broad spectrum of activities, antimicrobial peptides emerged as potential alternatives against both threats. Our group previously described the antifungal activity of the [...] Read more.
Nowadays, healthcare systems face two global challenges: the rise of multidrug-resistant pathogens and the growing incidence of cancer. Due to their broad spectrum of activities, antimicrobial peptides emerged as potential alternatives against both threats. Our group previously described the antifungal activity of the α-helical peptide Cm-p5, a derivative of the natural peptide Cm-p1, isolated from the coastal mollusk Cenchritis muricatus; however, its anti-cancer properties remained unexplored. Analyses through calorimetry and molecular dynamics simulations suggest the relevance of phosphatidylserine for the attachment of Cm-p5 to cancer cell membranes. Cm-p5 exhibited cytotoxic activity in a dose-dependent manner against A375 melanoma cells, without toxicity against non-malignant cells or hemolytic activity. DAPI/PI and DiSC3(5) staining confirmed permeabilization, disruption, and depolarization of A375 cytoplasmic membranes by Cm-p5. Furthermore, Annexin V-FITC/PI assay revealed the induction of cellular death in melanoma cells, which can result from the cumulative membrane damage and oxidative stress due to the overproduction of reactive oxygen species (ROS). Moreover, after the treatment, the proliferation of A375 cells was dampened for several days, suggesting that Cm-p5 might inhibit the recurrence of melanomas. These findings highlight the multifunctional nature of Cm-p5 and its potential for treating malignant melanoma. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents, 4th Edition)
Show Figures

Figure 1

21 pages, 568 KiB  
Review
Armed Phages: A New Weapon in the Battle Against Antimicrobial Resistance
by Cleo Anastassopoulou, Deny Tsakri, Antonios-Periklis Panagiotopoulos, Chrysa Saldari, Antonia P. Sagona and Athanasios Tsakris
Viruses 2025, 17(7), 911; https://doi.org/10.3390/v17070911 - 27 Jun 2025
Viewed by 957
Abstract
The increasing prevalence of multidrug-resistant (MDR) bacterial infections necessitates the exploration of alternative antimicrobial strategies, with phage therapy emerging as a viable option. However, the effectiveness of naturally occurring phages can be significantly limited by bacterial defense systems that include adsorption blocking, restriction–modification, [...] Read more.
The increasing prevalence of multidrug-resistant (MDR) bacterial infections necessitates the exploration of alternative antimicrobial strategies, with phage therapy emerging as a viable option. However, the effectiveness of naturally occurring phages can be significantly limited by bacterial defense systems that include adsorption blocking, restriction–modification, CRISPR-Cas immunity, abortive infection, and NAD+ depletion defense systems. This review examines these bacterial defenses and their implications for phage therapy, while highlighting the potential of phages’ bioengineering to overcome these barriers. By leveraging synthetic biology, genetically engineered phages can be tailored to evade bacterial immunity through such modifications as receptor-binding protein engineering, anti-CRISPR gene incorporation, methylation pattern alterations, and enzymatic degradation of bacterial protective barriers. “Armed phages”, enhanced with antimicrobial peptides, CRISPR-based genome-editing tools, or immune-modulating factors, offer a novel therapeutic avenue. Clinical trials of bioengineered phages, currently SNIPR001 and LBP-EC01, showcase their potential to safely and effectively combat MDR infections. SNIPR001 has completed a Phase I clinical trial evaluating safety in healthy volunteers, while LBP-EC01 is in Phase II trials assessing its performance in the treatment of Escherichia coli-induced urinary tract infections in patients with a history of drug-resistant infections. As “armed phages” progress toward clinical application, they hold great promise for precision-targeted antimicrobial therapies and represent a critical innovation in addressing the global antibiotic resistance crisis. Full article
(This article belongs to the Collection Phage Therapy)
Show Figures

Figure 1

23 pages, 4069 KiB  
Article
Engineered Sustainable Mxene-PVA Hydrogel as an Inspiring Co-Delivery Carrier for Targeting Solid Tumors
by Elham Ghazizadeh, Mahya Sadeghi, Hans-Peter Deigner and Ali Neshastehriz
Pharmaceutics 2025, 17(7), 823; https://doi.org/10.3390/pharmaceutics17070823 - 25 Jun 2025
Viewed by 537
Abstract
Background: Solid tumors have long presented a significant challenge in the field of oncology due to their ability to develop resistance to multiple drugs, known as multidrug resistance (MDR). This phenomenon often leads to treatment failure and poor patient outcomes. In recent years, [...] Read more.
Background: Solid tumors have long presented a significant challenge in the field of oncology due to their ability to develop resistance to multiple drugs, known as multidrug resistance (MDR). This phenomenon often leads to treatment failure and poor patient outcomes. In recent years, researchers have been exploring innovative approaches to combat MDR, including the use of hydrogels for localized drug delivery. Methods: Through the biological crosslinking of an MB-smDNA-MB agent to form a pH sensitive hydrogel matrix, we introduce the injection coating of a novel PVA-MB-smDNA-MB-Mxene (PMSDMM) carrier for Adriamycin (a potent chemotherapy drug) and miR-375 (as tumor-suppressive microRNA) delivery. Results: We aimed to enhance the effectiveness of drug delivery to solid tumors while minimizing systemic toxicity via the pH-sensitive characteristics of methylene blue at the end of smDNA as a dsDNA biological crosslinking agent, i.e., anti-miR-375 PMSDMM ADR. Our hydrogel was shown to improve the release of the drug in the acid tumor environment. In the first 24 h, the cumulative release rate was higher at pH = 5.5 than at pH = 7.4. Conclusions: We show that this DNA bio-inspired PMSDMM hydrogel has potential in hydrogel injection applications for tumor suppression and tissue regeneration after the surgical resection of tumors. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

15 pages, 5419 KiB  
Article
Exploring the Antimicrobial and Immunomodulatory Potential of Gecko-Derived Cathelicidin Gj-CATH5
by Shasha Cai, Ningyang Gao, Junhan Wang and Jing Li
Biomolecules 2025, 15(7), 908; https://doi.org/10.3390/biom15070908 - 20 Jun 2025
Viewed by 456
Abstract
Regulating the innate immune response against infections, particularly drug-resistant bacteria, is a key focus in anti-infection therapy. Cathelicidins, found in vertebrates, are crucial for pathogen resistance. Few studies have explored gecko cathelicidins’ anti-infection properties. Recently, five new cathelicidins (Gj-CATH1-5) were identified in Gekko [...] Read more.
Regulating the innate immune response against infections, particularly drug-resistant bacteria, is a key focus in anti-infection therapy. Cathelicidins, found in vertebrates, are crucial for pathogen resistance. Few studies have explored gecko cathelicidins’ anti-infection properties. Recently, five new cathelicidins (Gj-CATH1-5) were identified in Gekko japonicus. The peptide Gj-CATH5, from G. japonicus, shows promise against Pseudomonas aeruginosa through various mechanisms. This study examined Gj-CATH5’s protective effects using in vitro and in vivo models, finding that it significantly reduced bacterial load in a mouse infection model when administered before or shortly after infection. Flow cytometry and the plate counting method showed that Gj-CATH5 boosts neutrophil and macrophage activity, enhancing chemotaxis, phagocytosis, and bactericidal functions. Gj-CATH5 increases ROS production, MPO activity, and NET formation, aiding pathogen clearance. Its amphipathic α-helical structure supports broad-spectrum bactericidal activity (MBC: 4–8 μg/mL) against Gram-negative and antibiotic-resistant bacteria. Gj-CATH5 is minimally cytotoxic (<8% hemolysis at 200 μg/mL) and preserves cell viability at therapeutic levels. These results highlight Gj-CATH5’s dual role in pathogen elimination and immune modulation, offering a promising approach to combat multidrug-resistant infections while reducing inflammation. This study enhances the understanding of reptilian cathelicidins and lays the groundwork for peptide-based immune therapies against difficult bacterial infections. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

15 pages, 568 KiB  
Article
Resistance Rates of Mycobacterium tuberculosis Complex Strains: A Retrospective Study in Türkiye
by Melda Payaslıoğlu, İmran Sağlık and Cüneyt Özakın
Medicina 2025, 61(6), 1060; https://doi.org/10.3390/medicina61061060 - 9 Jun 2025
Viewed by 519
Abstract
Background and Objectives: Tuberculosis (TB) is one of the most common infectious diseases in developing countries. The resistance of the causative agent, Mycobacterium tuberculosis, to two or more first-line anti-TB drugs results in multidrug-resistant (MDR) TB, posing a serious challenge to [...] Read more.
Background and Objectives: Tuberculosis (TB) is one of the most common infectious diseases in developing countries. The resistance of the causative agent, Mycobacterium tuberculosis, to two or more first-line anti-TB drugs results in multidrug-resistant (MDR) TB, posing a serious challenge to the control of TB worldwide. This study was designed to determine the changes in drug resistance over time in TB strains isolated from patients in all departments of Uludağ University Hospital in western Türkiye. Materials and Methods: We retrospectively analyzed 104,598 clinical samples sent to our laboratory for the investigation of the presence of TB between 1996 and 2023. BACTEC 460 TB, BACTEC MGIT 960 culture systems and Löwenstein–Jensen medium were used for the culture of these samples. The susceptibility of M. tuberculosis complex strains grown in culture to isoniazid (INH) (0.1 μg/mL), rifampicin (RIF) (1.0 μg/mL), ethambutol (ETB) (5.0 μg/mL) and streptomycin (SM) (1.0 μg/mL) antibiotics was studied according to the manufacturer’s recommendation. Results: Out of 104,598 patient samples, 2752 (2.6%) were culture-positive, and the susceptibility test results of 1869 of these were analyzed. Of the isolates, 358 (19.2%) were found to be resistant to at least one first-line drug, i.e., INH, RIF, ETB, or SM. In addition, 2.9% were resistant to two or more first-line drugs. Conclusions: Drug susceptibility testing is essential to ensure the optimal treatment and control of drug-resistant TB strains. This study highlights the value of ongoing efforts to control tuberculosis drug resistance in the fight against this disease. Full article
(This article belongs to the Section Epidemiology & Public Health)
Show Figures

Figure 1

Back to TopTop