Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = anti-lock braking strategy (ABS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8207 KiB  
Article
Research on Energy-Saving Optimization Control Strategy for Distributed Hub Motor-Driven Vehicles
by Bin Huang, Jinyu Wei, Minrui Ma and Xu Yang
Energies 2025, 18(12), 3025; https://doi.org/10.3390/en18123025 - 6 Jun 2025
Viewed by 427
Abstract
Aiming at the problems of energy utilization efficiency and braking stability in electric vehicles, a high-efficiency and energy-saving control strategy that takes both driving and braking into account is proposed with the distributed hub motor-driven vehicle as the research object. Under regular driving [...] Read more.
Aiming at the problems of energy utilization efficiency and braking stability in electric vehicles, a high-efficiency and energy-saving control strategy that takes both driving and braking into account is proposed with the distributed hub motor-driven vehicle as the research object. Under regular driving and braking conditions, the front and rear axle torque distribution coefficients are optimized by an adaptive particle swarm algorithm based on simulated annealing and a multi-objective co-optimization strategy based on variable weight coefficients, respectively. During emergency braking, the anti-lock braking strategy (ABS) based on sliding mode control realizes the independent distribution of torque among four wheels. The joint simulation verification based on MATLAB R2023a/Simulink-Carsim 2020.0 shows that under World Light Vehicle Test Cycle (WLTC) conditions, the optimization strategy reduces the driving energy consumption by 3.20% and 2.00%, respectively, compared with the average allocation and the traditional strategy. The braking recovery energy increases by 4.07% compared with the fixed proportion allocation, improving the energy utilization rate of the entire vehicle. The wheel slip rate can be quickly stabilized near the optimal value during emergency braking under different adhesion coefficients, which ensures the braking stability of the vehicle. The effectiveness of the strategy is verified. Full article
Show Figures

Figure 1

15 pages, 3936 KiB  
Article
Research on a Hierarchical Control Strategy for Anti-Lock Braking Systems Based on Active Disturbance Rejection Control (ADRC)
by Shi Luo, Bing Zhang, Jiantao Ma and Xinyue Zheng
Appl. Sci. 2025, 15(3), 1294; https://doi.org/10.3390/app15031294 - 27 Jan 2025
Viewed by 921
Abstract
To improve the slip rate control effect for different road conditions during emergency braking of wheel hub motor vehicles, as well as to address the problems of uncertainty and nonlinearity of the system when the electro-mechanical braking system is used as the actuator [...] Read more.
To improve the slip rate control effect for different road conditions during emergency braking of wheel hub motor vehicles, as well as to address the problems of uncertainty and nonlinearity of the system when the electro-mechanical braking system is used as the actuator of the ABS, a hierarchical control strategy of the anti-lock braking system (ABS) using active disturbance rejection control (ADRC) is proposed. Firstly, a vehicle dynamics model and an ABS model based on the EMB system are established; secondly, a speed observer based on the dilated state observer is used in the upper layer to design a pavement recognition algorithm, which recognizes the current pavement and outputs the optimal slip rate; then, an ABS controller based on the ADRC algorithm is designed for the lower layer to track the optimal slip rate. In order to verify the performance of the pavement recognition method and control strategy, vehicle simulation software is used to establish the model and simulation. The results show that the road surface recognition method can quickly and effectively recognize the road surface, and comparing the emergency braking control effects of PID and SMC under different road surface conditions, the ADRC strategy has better robustness and reliability, and improves the braking effect. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

30 pages, 31803 KiB  
Article
An NMPC-Based Integrated Longitudinal and Lateral Vehicle Stability Control Based on the Double-Layer Torque Distribution
by Xu Bai, Yinhang Wang, Mingchen Jia, Xinchen Tan, Liqing Zhou, Liang Chu and Di Zhao
Sensors 2024, 24(13), 4137; https://doi.org/10.3390/s24134137 - 26 Jun 2024
Cited by 1 | Viewed by 2073
Abstract
With the ongoing promotion and adoption of electric vehicles, intelligent and connected technologies have been continuously advancing. Electrical control systems implemented in electric vehicles have emerged as a critical research direction. Various drive-by-wire chassis systems, including drive-by-wire driving and braking systems and steer-by-wire [...] Read more.
With the ongoing promotion and adoption of electric vehicles, intelligent and connected technologies have been continuously advancing. Electrical control systems implemented in electric vehicles have emerged as a critical research direction. Various drive-by-wire chassis systems, including drive-by-wire driving and braking systems and steer-by-wire systems, are extensively employed in vehicles. Concurrently, unavoidable issues such as conflicting control system objectives and execution system interference emerge, positioning integrated chassis control as an effective solution to these challenges. This paper proposes a model predictive control-based longitudinal dynamics integrated chassis control system for pure electric commercial vehicles equipped with electro–mechanical brake (EMB) systems, centralized drive, and distributed braking. This system integrates acceleration slip regulation (ASR), a braking force distribution system, an anti-lock braking system (ABS), and a direct yaw moment control system (DYC). This paper first analyzes and models the key components of the vehicle. Then, based on model predictive control (MPC), it develops a controller model for integrated stability with double-layer torque distribution. The required driving and braking torque for each wheel are calculated according to the actual and desired motion states of the vehicle and applied to the corresponding actuators. Finally, the effectiveness of this strategy is verified through simulation results from Matlab/Simulink. The simulation shows that the braking deceleration of the braking condition is increased by 32% on average, and the braking distance is reduced by 15%. The driving condition can enter the smooth driving faster, and the time is reduced by 1.5 s~5 s. The lateral stability parameters are also very much improved compared with the uncontrolled vehicles. Full article
(This article belongs to the Special Issue Integrated Control and Sensing Technology for Electric Vehicles)
Show Figures

Figure 1

27 pages, 7949 KiB  
Article
RBS and ABS Coordinated Control Strategy Based on Explicit Model Predictive Control
by Liang Chu, Jinwei Li, Zhiqi Guo, Zewei Jiang, Shibo Li, Weiming Du, Yilin Wang and Chong Guo
Sensors 2024, 24(10), 3076; https://doi.org/10.3390/s24103076 - 12 May 2024
Cited by 5 | Viewed by 2276
Abstract
During the braking process of electric vehicles, both the regenerative braking system (RBS) and anti-lock braking system (ABS) modulate the hydraulic braking force, leading to control conflict that impacts the effectiveness and real-time capability of coordinated control. Aiming to enhance the coordinated control [...] Read more.
During the braking process of electric vehicles, both the regenerative braking system (RBS) and anti-lock braking system (ABS) modulate the hydraulic braking force, leading to control conflict that impacts the effectiveness and real-time capability of coordinated control. Aiming to enhance the coordinated control effectiveness of RBS and ABS within the electro-hydraulic composite braking system, this paper proposes a coordinated control strategy based on explicit model predictive control (eMPC-CCS). Initially, a comprehensive braking control framework is established, combining offline adaptive control law generation, online optimized control law application, and state compensation to effectively coordinate braking force through the electro-hydraulic system. During offline processing, eMPC generates a real-time-oriented state feedback control law based on real-world micro trip segments, improving the adaptiveness of the braking strategy across different driving conditions. In the online implementation, the developed three-dimensional eMPC control laws, corresponding to current driving conditions, are invoked, thereby enhancing the potential for real-time braking strategy implementation. Moreover, the state error compensator is integrated into eMPC-CCS, yielding a state gain matrix that optimizes the vehicle braking status and ensures robustness across diverse braking conditions. Lastly, simulation evaluation and hardware-in-the-loop (HIL) testing manifest that the proposed eMPC-CCS effectively coordinates the regenerative and hydraulic braking systems, outperforming other CCSs in terms of braking energy recovery and real-time capability. Full article
(This article belongs to the Special Issue Integrated Control and Sensing Technology for Electric Vehicles)
Show Figures

Figure 1

31 pages, 1531 KiB  
Article
A Multi-Source Braking Force Control Method for Electric Vehicles Considering Energy Economy
by Yinhang Wang, Liqing Zhou, Liang Chu, Di Zhao, Zhiqi Guo and Zewei Jiang
Energies 2024, 17(9), 2032; https://doi.org/10.3390/en17092032 - 25 Apr 2024
Cited by 2 | Viewed by 1456
Abstract
Advancements in electric vehicle technology have promoted the development trend of smart and low-carbon environmental protection. The design and optimization of electric vehicle braking systems faces multiple challenges, including the reasonable allocation and control of braking torque to improve energy economy and braking [...] Read more.
Advancements in electric vehicle technology have promoted the development trend of smart and low-carbon environmental protection. The design and optimization of electric vehicle braking systems faces multiple challenges, including the reasonable allocation and control of braking torque to improve energy economy and braking performance. In this paper, a multi-source braking force system and its control strategy are proposed with the aim of enhancing braking strength, safety, and energy economy during the braking process. Firstly, an ENMPC (explicit nonlinear model predictive control)-based braking force control strategy is proposed to replace the traditional ABS strategy in order to improve braking strength and safety while providing a foundation for the participation of the drive motor in ABS (anti-lock braking system) regulation. Secondly, a grey wolf algorithm is used to rationally allocate mechanical and electrical braking forces, with power consumption as the fitness function, to obtain the optimal allocation method and provide potential for EMB (electro–mechanical brake) optimization. Finally, simulation tests verify that the proposed method can improve braking strength, safety, and energy economy for different road conditions, and compared to other methods, it shows good performance. Full article
(This article belongs to the Special Issue Energy Management Control of Hybrid Electric Vehicles)
Show Figures

Figure 1

27 pages, 5869 KiB  
Article
On the Benefits of Active Aerodynamics on Energy Recuperation in Hybrid and Fully Electric Vehicles
by Petar Georgiev, Giovanni De Filippis, Patrick Gruber and Aldo Sorniotti
Energies 2023, 16(15), 5843; https://doi.org/10.3390/en16155843 - 7 Aug 2023
Cited by 3 | Viewed by 3730
Abstract
In track-oriented road cars with electric powertrains, the ability to recuperate energy during track driving is significantly affected by the frequent interventions of the antilock braking system (ABS), which usually severely limits the regenerative torque level because of functional safety considerations. In high-performance [...] Read more.
In track-oriented road cars with electric powertrains, the ability to recuperate energy during track driving is significantly affected by the frequent interventions of the antilock braking system (ABS), which usually severely limits the regenerative torque level because of functional safety considerations. In high-performance vehicles, when controlling an active rear wing to maximize brake regeneration, it is unclear whether it is preferable to maximize drag by positioning the wing into its stall position, to maximize downforce, or to impose an intermediate aerodynamic setup. To maximize energy recuperation during braking from high speeds, this paper presents a novel integrated open-loop strategy to control: (i) the orientation of an active rear wing; (ii) the front-to-total brake force distribution; and (iii) the blending between regenerative and friction braking. For the case study wing and vehicle setup, the results show that the optimal wing positions for maximum regeneration and maximum deceleration coincide for most of the vehicle operating envelope. In fact, the wing position that maximizes drag by causing stall brings up to 37% increased energy recuperation over a passive wing during a braking maneuver from 300 km/h to 50 km/h by preventing the ABS intervention, despite achieving higher deceleration and a 2% shorter stopping distance. Furthermore, the maximum drag position also reduces the longitudinal tire slip power losses, which, for example, results in a 0.4% recuperated energy increase when braking from 300 km/h to 50 km/h in high tire–road friction conditions at a deceleration close to the limit of the vehicle with passive aerodynamics, i.e., without ABS interventions. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

17 pages, 4732 KiB  
Article
Integrated Braking Control for Electric Vehicles with In-Wheel Propulsion and Fully Decoupled Brake-by-Wire System
by Marius Heydrich, Vincenzo Ricciardi, Valentin Ivanov, Matteo Mazzoni, Alessandro Rossi, Jože Buh and Klaus Augsburg
Vehicles 2021, 3(2), 145-161; https://doi.org/10.3390/vehicles3020009 - 25 Mar 2021
Cited by 32 | Viewed by 9394
Abstract
This paper introduces a case study on the potential of new mechatronic chassis systems for battery electric vehicles, in this case a brake-by-wire (BBW) system and in-wheel propulsion on the rear axle combined with an integrated chassis control providing common safety features like [...] Read more.
This paper introduces a case study on the potential of new mechatronic chassis systems for battery electric vehicles, in this case a brake-by-wire (BBW) system and in-wheel propulsion on the rear axle combined with an integrated chassis control providing common safety features like anti-lock braking system (ABS), and enhanced functionalities, like torque blending. The presented controller was intended to also show the potential of continuous control strategies with regard to active safety, vehicle stability and driving comfort. Therefore, an integral sliding mode (ISM) and proportional integral (PI) control were used for wheel slip control (WSC) and benchmarked against each other and against classical used rule-based approach. The controller was realized in MatLab/Simulink and tested under real-time conditions in IPG CarMaker simulation environment for experimentally validated models of the target vehicle and its systems. The controller also contains robust observers for estimation of non-measurable vehicle states and parameters e.g., vehicle mass or road grade, which can have a significant influence on control performance and vehicle safety. Full article
(This article belongs to the Special Issue Dynamics and Control of Automated Vehicles)
Show Figures

Graphical abstract

19 pages, 8688 KiB  
Article
Research on the Coordinated Control of Regenerative Braking System and ABS in Hybrid Electric Vehicle Based on Composite Structure Motor
by Qiwei Xu, Chuan Zhou, Hong Huang and Xuefeng Zhang
Electronics 2021, 10(3), 223; https://doi.org/10.3390/electronics10030223 - 20 Jan 2021
Cited by 21 | Viewed by 5312
Abstract
An antilock braking system (ABS) can ensure that the wheels are not locked during the braking process which is an important system to ensure the safety of braking. Regenerative braking is also a crucial system for hybrid vehicles and helps to improve the [...] Read more.
An antilock braking system (ABS) can ensure that the wheels are not locked during the braking process which is an important system to ensure the safety of braking. Regenerative braking is also a crucial system for hybrid vehicles and helps to improve the cruising range of the car. As such, the coordinated control of a braking system and an ABS is an important research direction. This paper researches the coordinated control of the regenerative braking system and the ABS in the hybrid vehicle based on the composite structure motor (CSM-HEV). Firstly, two new braking modes which are engine-motor coordinated braking (EMCB) and dual-motor braking (DMB) are proposed and the coordinated control model of regenerative braking and ABS is established. Then, for the purpose of optimal operating efficiency and guaranteeing the vehicle brake slip rate, a braking force distribution strategy based on predictive control algorithm is proposed. Finally, the Simulink model is established to simulate the control strategy. Results show that the slip rate can well track the target and ensure the efficient operation of the system. Compared with the normal braking mode, the braking energy recovery rate of EMCB is similar, but it can reduce the fuel loss of the engine during the braking process by 30.1%, DMB can improve the braking energy recovery efficiency by 16.78%, and the response time to track target slip is increased by 12 ms. Full article
Show Figures

Figure 1

17 pages, 2596 KiB  
Article
Identification of Road-Surface Type Using Deep Neural Networks for Friction Coefficient Estimation
by Eldar Šabanovič, Vidas Žuraulis, Olegas Prentkovskis and Viktor Skrickij
Sensors 2020, 20(3), 612; https://doi.org/10.3390/s20030612 - 22 Jan 2020
Cited by 119 | Viewed by 9419
Abstract
Nowadays, vehicles have advanced driver-assistance systems which help to improve vehicle safety and save the lives of drivers, passengers and pedestrians. Identification of the road-surface type and condition in real time using a video image sensor, can increase the effectiveness of such systems [...] Read more.
Nowadays, vehicles have advanced driver-assistance systems which help to improve vehicle safety and save the lives of drivers, passengers and pedestrians. Identification of the road-surface type and condition in real time using a video image sensor, can increase the effectiveness of such systems significantly, especially when adapting it for braking and stability-related solutions. This paper contributes to the development of the new efficient engineering solution aimed at improving vehicle dynamics control via the anti-lock braking system (ABS) by estimating friction coefficient using video data. The experimental research on three different road surface types in dry and wet conditions has been carried out and braking performance was established with a car mathematical model (MM). Testing of a deep neural networks (DNN)-based road-surface and conditions classification algorithm revealed that this is the most promising approach for this task. The research has shown that the proposed solution increases the performance of ABS with a rule-based control strategy. Full article
(This article belongs to the Special Issue Advance in Sensors and Sensing Systems for Driving and Transportation)
Show Figures

Figure 1

21 pages, 11898 KiB  
Article
A Pressure-Coordinated Control for Vehicle Electro-Hydraulic Braking Systems
by Yang Yang, Guangzheng Li and Quanrang Zhang
Energies 2018, 11(9), 2336; https://doi.org/10.3390/en11092336 - 4 Sep 2018
Cited by 13 | Viewed by 6212
Abstract
The characteristics of electro-hydraulic braking systems have a direct influence on the fuel consumption, emissions, brake safety, and ride comfort of hybrid electric vehicles. In order to realize efficient energy recovery for ensuring braking safety and considering that the existing electro-hydraulic braking pressure [...] Read more.
The characteristics of electro-hydraulic braking systems have a direct influence on the fuel consumption, emissions, brake safety, and ride comfort of hybrid electric vehicles. In order to realize efficient energy recovery for ensuring braking safety and considering that the existing electro-hydraulic braking pressure control systems have control complexity disadvantages and functional limitations, this study considers the front and rear dual-motor-driven hybrid electric vehicle as the prototype and based on antilock brake system (ABS) hardware, proposes a new braking pressure coordinated control system with electro-hydraulic braking function and developed a corresponding control strategy in order to realize efficient energy recovery and ensure braking safety, while considering the disadvantages of control complexity and functional limitations of existing electro-hydraulic system. The system satisfies the pressure coordinated control requirements of conventional braking, regenerative braking, and ABS braking. The vehicle dynamics model based on braking control strategy and pressure coordinated control system is established, and thereafter, the performance simulation of the vehicle-based pressure coordinated control system under typical braking conditions is carried out to validate the performance of the proposed system and control strategy. The simulation results show that the braking energy recovery rates under three different conditions—variable braking intensity, constant braking intensity and integrated braking model—are 66%, 55% and 47%. The battery state of charge (SOC) recovery rates are 0.37%, 0.31% and 0.36%. This proves that the motor can recover the reduced energy of the vehicle during braking and provide an appropriate braking force. It realizes the ABS control function and has good dynamic response and braking pressure control accuracy. The simulation results illustrate the effectiveness and feasibility of the program which lays the foundation for further design and optimization of the new regenerative braking system. Full article
Show Figures

Figure 1

18 pages, 4783 KiB  
Article
Regenerative Braking Control Strategy of Electric-Hydraulic Hybrid (EHH) Vehicle
by Yang Yang, Chang Luo and Pengxi Li
Energies 2017, 10(7), 1038; https://doi.org/10.3390/en10071038 - 20 Jul 2017
Cited by 26 | Viewed by 12323
Abstract
A novel electric-hydraulic hybrid drivetrain incorporating a set of hydraulic systems is proposed for application in a pure electric vehicle. Models of the electric and hydraulic components are constructed. Two control strategies, which are based on two separate rules, are developed; the maximum [...] Read more.
A novel electric-hydraulic hybrid drivetrain incorporating a set of hydraulic systems is proposed for application in a pure electric vehicle. Models of the electric and hydraulic components are constructed. Two control strategies, which are based on two separate rules, are developed; the maximum energy recovery rate strategy adheres to the rule of the maximization of the braking energy recovery rate, while the minimum current impact strategy adheres to the rule of the minimization of the charge current to the battery. The simulation models were established to verify the effects of these two control strategies. An ABS (Anti-lock Braking System) fuzzy control strategy is also developed and simulated. The simulation results demonstrate that the developed control strategy can effectively absorb the braking energy, suppress the current impact, and assure braking safety. Full article
(This article belongs to the Special Issue Advances in Electric Vehicles and Plug-in Hybrid Vehicles 2017)
Show Figures

Figure 1

18 pages, 4776 KiB  
Article
Design and Simulation of the Robust ABS and ESP Fuzzy Logic Controller on the Complex Braking Maneuvers
by Andrei Aksjonov, Klaus Augsburg and Valery Vodovozov
Appl. Sci. 2016, 6(12), 382; https://doi.org/10.3390/app6120382 - 25 Nov 2016
Cited by 48 | Viewed by 10570
Abstract
Automotive driving safety systems such as an anti-lock braking system (ABS) and an electronic stability program (ESP) assist drivers in controlling the vehicle to avoid road accidents. In this paper, ABS and the ESP, based on the fuzzy logic theory, are integrated for [...] Read more.
Automotive driving safety systems such as an anti-lock braking system (ABS) and an electronic stability program (ESP) assist drivers in controlling the vehicle to avoid road accidents. In this paper, ABS and the ESP, based on the fuzzy logic theory, are integrated for vehicle stability control in complex braking maneuvers. The proposed control algorithm is implemented for a sport utility vehicle (SUV) and investigated for braking on different surfaces. The results obtained for the vehicle software simulator confirm the robustness of the developed control strategy for a variety of road profiles and surfaces. Full article
Show Figures

Figure 1

7 pages, 391 KiB  
Article
Research on Braking Stability of Electro-mechanical Hybrid Braking System in Electric Vehicles
by Fenzhu Ji and Mi Tian
World Electr. Veh. J. 2010, 4(1), 217-223; https://doi.org/10.3390/wevj4010217 - 26 Mar 2010
Viewed by 1451
Abstract
For the electro-mechanical hybrid braking system, which is composed of electric brake and general friction brake, the models of electric braking force, total braking force and the utilization adhesion coefficient for front and rear axles were established based on the analysis of braking [...] Read more.
For the electro-mechanical hybrid braking system, which is composed of electric brake and general friction brake, the models of electric braking force, total braking force and the utilization adhesion coefficient for front and rear axles were established based on the analysis of braking torque distribution. The variation relationship between electric braking force and friction braking force in different braking intensity was calculated and analyzed with the paralleled-hybridized braking control strategy. Taking USA urban driving circle UDDS as an example, the utilization adhesion coefficient of front and rear axles was calculated at different braking intensity for a certain Electric Vehicles (EVs), and the braking stability was also analyzed for front-wheel drive EVs. The calculation results indicate that the utilization adhesion coefficient of front axle is always greater than that of rear axle, which means the front axle always locked ahead of the rear axle, thus the braking stability meets the requirement. The calculation results also have certain instructive significance on the anti-lock braking system (ABS) and electric brake-force distribution (EBD) of EVs. Full article
Back to TopTop