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Abstract: An antilock braking system (ABS) can ensure that the wheels are not locked during the
braking process which is an important system to ensure the safety of braking. Regenerative braking
is also a crucial system for hybrid vehicles and helps to improve the cruising range of the car. As
such, the coordinated control of a braking system and an ABS is an important research direction.
This paper researches the coordinated control of the regenerative braking system and the ABS in
the hybrid vehicle based on the composite structure motor (CSM-HEV). Firstly, two new braking
modes which are engine-motor coordinated braking (EMCB) and dual-motor braking (DMB) are
proposed and the coordinated control model of regenerative braking and ABS is established. Then,
for the purpose of optimal operating efficiency and guaranteeing the vehicle brake slip rate, a braking
force distribution strategy based on predictive control algorithm is proposed. Finally, the Simulink
model is established to simulate the control strategy. Results show that the slip rate can well track the
target and ensure the efficient operation of the system. Compared with the normal braking mode, the
braking energy recovery rate of EMCB is similar, but it can reduce the fuel loss of the engine during
the braking process by 30.1%, DMB can improve the braking energy recovery efficiency by 16.78%,
and the response time to track target slip is increased by 12 ms.

Keywords: hybrid electric vehicle; composite structure motor; regenerative braking system; antilock
braking system; model predictive control

1. Introduction

An antilock braking system (ABS) is an important system to ensure the safety of
automobile braking. It can ensure that the wheels are not locked during the braking
process, improve the directional stability of the vehicle and the steering ability, and shorten
the braking distance. The regenerative braking system is also an important system for
hybrid electric vehicles. The motor converts the braking energy into electrical energy. Thus,
it can improve the cruising range of the vehicle. It is an important research content for the
coordinated control of the regenerative braking system and ABS.

At present, scholars have conducted extensive research on the coordinated control of
the regenerative braking system and ABS. The literature [1–4] mainly studies how regen-
erative braking systems and ABSs participate in the braking process and the distribution
algorithm of electric brake and mechanical brake is also proposed to ensure the proper slip
rate. The control algorithm is based on logical thresholds or fuzzy control algorithms. The
authors of [5] proposed an algorithm to estimate the brake master cylinder pressure, valve
body flow and other parameters to make the system coordinated control process smoother.
In another study [6], the distribution method of regenerative braking and mechanical
braking based on model predictive control and Lyapunov theory is proposed. Then the
impact of pedal pulse signals under emergency braking conditions is eliminated. Other
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studies [7,8] divide the required braking force into a dynamic part and a steady part which
are provided by the motor and the mechanical brake, respectively, making the system
coordinated and the control process smoother.

A composite structure motor (CSM) was firstly proposed by Professor Martin Hoeij-
makers [9,10] in the Netherlands in 2001. As a special structure motor with dual mechanical
and dual electrical ports, it can implement a variety of energy conversion methods and is
very convenient when applied in energy conversion of HEV. A hybrid electric vehicle based
on a composite structure motor (CSM-HEV) can realize the functions of planetary gear
proposed by Toyota. A method for early fault diagnosis in a motor is proposed by Adam
Glowacz. He also presented rotor fault diagnostic techniques of a three-phase induction
motor (TPIM). The safety of the motor is ensured [11,12].

Most of the current research on energy management of CSM-HEV focuses on the
driving control. According to the characteristics of different operating modes of CSM-HEV,
research [13–18] has focused on the switching control of different modes and the power
distribution control of internal combustion engine (ICE) and CSM. Taking the braking force
distribution ratio, system operating efficiency or ICE state as the target, logic threshold
method, fuzzy control method or neural network control are proposed to realize the
coordination control. The regenerative braking system is an important system in CSM-
HEV. Its control idea is the same as the control mode of ordinary hybrid vehicles which
is that only the external motor participates in the regenerative braking process. Thus, the
advantages of CSM are not fully achieved and there are still no studies on the coordinated
control of a regenerative braking system and an ABS.

This paper mainly studies the coordinated control of CSM-HEV’s regenerative braking
and ABS. Firstly, two new regenerative braking modes, engine-motor coordinated braking
(EMCB) and dual-motor braking (DMB), are proposed. The coordinated control model of
regenerative braking system and ABS is proposed. With the goal of ensuring the optimal
slip rate and the system operating efficiency as the control goals, a braking force distribution
algorithm based on model predictive control is proposed.

2. Analysis of the New Braking Mode in CSM-HEV

The power transmission topology and split-type power transmission topology of
a hybrid electric vehicle (CSM-HEV) based on composite structure motor are shown in
Figures 1 and 2. The inner rotor of CSM (EM1) is connected to the output shaft of the
internal combustion engine (ICE), and the outer rotor is used as the common rotor of EM1
and external motor (EM2) and is connected to the main reducer. ICE can be decoupled
from the road and keep working in an optimal working state by controlling EM1. EM2 can
be adjusted to meet the requirements of the road load. In the hybrid power state, it can
realize CVT mode, driving power generation mode, auxiliary driving mode. In the pure
electric state, it can realize single-motor and dual-motor driving modes.
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Figure 1. Power transmission topology of hybrid electric vehicle based on a composite structure 

motor (CSM-HEV). 
Figure 1. Power transmission topology of hybrid electric vehicle based on a composite structure
motor (CSM-HEV).



Electronics 2021, 10, 223 3 of 19Electronics 2021, 10, x FOR PEER REVIEW 3 of 20 
 

 

Battery

~

=
=

~

+ -

VSI1

ICE

Final 

Reduction

Drive

Stator
Outer

rotorInner

rotor

EM2EM1

VSI2
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Figure 3. Analysis of power flow in engine-motor coordinated braking (EMCB) mode. 

Figure 2. Power transmission topology of the separated CSM-HEV.

The regenerative braking system is an important system in CSM-HEV which helps
to improve the fuel economy of the vehicle and improve the cruising range of the hybrid
vehicle. This paper divides the regenerative braking process into four different modes,
engine-motor coordinated braking (EMCB), single-motor braking mode (SMB), dual-motor
braking mode (DMB) and mechanical braking mode (MB); EMCB and DMB are firstly pro-
posed in this paper. They are of great significance for improving the braking performance
of hybrids. The details of the four braking modes are as follows:

(1) Engine-motor coordinated braking (EMCB)

The characteristic of EMCB is that it can still keep the internal combustion engine
working in the best running state during the regenerative braking process, thereby improv-
ing the fuel economy of CSM-HEV. The relationship of the torque and speed of the system
is shown in the Equation (1):

PICE = TICEωICE
PEM1 = TEM1(ωICE −ωEM2) = TICE(ωICE −ωEM2)
Pd = PICE − PEM1 = TICEωEM2 = TEM1ωEM2
Treq = TEM2 + TM − TICE
TM = Treq −max(TEM2) + TICE

(1)

In EMCB, the speed of EM2 is proportional to the vehicle speed, and the speed of EM1
is the difference between the speed of ICE and EM2. There are some special situations in
the EMCB mode. When the vehicle speed is too high or the braking intensity is too large,
EM1 cannot work in the optimal state or EM2 needs to provide a larger torque. Then, ICE
needs to shut down or run at idle state. EM1 does not work and regenerative braking force
is completely provided by EM2. The control idea is that if the required braking force is
less than the maximum braking torque of EM2, the braking force is completely provided
by EM2, and if the required braking force is greater than the maximum braking torque of
EM2, EM2 provides the maximum regenerative braking force, and the insufficient braking
force is provided by the mechanical braking force. The power flow in EMCB is shown in
Figure 3:

Electronics 2021, 10, x FOR PEER REVIEW 3 of 20 
 

 

Battery

~

=
=

~

+ -

VSI1

ICE

Final 

Reduction

Drive

Stator
Outer

rotorInner

rotor

EM2EM1

VSI2

 

Figure 2. Power transmission topology of the separated CSM-HEV. 

The regenerative braking system is an important system in CSM-HEV which helps 

to improve the fuel economy of the vehicle and improve the cruising range of the hybrid 

vehicle. This paper divides the regenerative braking process into four different modes, 

engine-motor coordinated braking (EMCB), single-motor braking mode (SMB), dual-mo-

tor braking mode (DMB) and mechanical braking mode (MB); EMCB and DMB are firstly 

proposed in this paper. They are of great significance for improving the braking perfor-

mance of hybrids. The details of the four braking modes are as follows: 

(1) Engine-motor coordinated braking (EMCB) 

The characteristic of EMCB is that it can still keep the internal combustion engine 

working in the best running state during the regenerative braking process, thereby im-

proving the fuel economy of CSM-HEV. The relationship of the torque and speed of the 

system is shown in the Equation (1): 

ICE ICE ICE

EM1 EM1 ICE EM2 ICE ICE EM2

d ICE EM1 ICE EM2 EM1 EM2

req EM2 M ICE

M req EM2 ICE

( ) ( )

max( )

P T

P T T

P P P T T

T T T T

T T T T



   

 




   

    
   


    

(1) 

In EMCB, the speed of EM2 is proportional to the vehicle speed, and the speed of 

EM1 is the difference between the speed of ICE and EM2. There are some special situations 

in the EMCB mode. When the vehicle speed is too high or the braking intensity is too 

large, EM1 cannot work in the optimal state or EM2 needs to provide a larger torque. 

Then, ICE needs to shut down or run at idle state. EM1 does not work and regenerative 

braking force is completely provided by EM2. The control idea is that if the required brak-

ing force is less than the maximum braking torque of EM2, the braking force is completely 

provided by EM2, and if the required braking force is greater than the maximum braking 

torque of EM2, EM2 provides the maximum regenerative braking force, and the insuffi-

cient braking force is provided by the mechanical braking force. The power flow in EMCB 

is shown in Figure 3: 

Battery

ICE EM1 EM2 LOAD

CSM
ωICE

PICE=TICEωICE
ωEM1 ωEM2 ωEM2 ωLOAD

PEM1=TICE(ωICE-ωEM2)

TICE
TEM1 TEM2T'EM1

PEM2=TEM2ωEM2

TLOAD

Speed

Torque

Power

Pb=TICEωEM2

 

Figure 3. Analysis of power flow in engine-motor coordinated braking (EMCB) mode. Figure 3. Analysis of power flow in engine-motor coordinated braking (EMCB) mode.

(2) Single-motor braking (SMB)
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In SMB, ICE and EM1 do not work, and EM2 works only in the power generation state
to provide regenerative braking force. This mode is the same as the regenerative braking
mode of the pure electric vehicle, and the control method is relatively simple. The power
flow analysis in SMB is shown in Figure 4:
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(3) Dual-motor braking (DMB)

DMB mode is another important mode of CSM-HEV. Its advantage is that it uses EM1
to supplement the insufficient regenerative braking force. In ordinary electric vehicles
and hybrid electric vehicles, the insufficient braking force is usually supplemented by
mechanical brakes. Therefore, DMB mode can effectively improve the energy recovery
efficiency. Because the motor can quickly respond to torque changes, DMB can also improve
the coordination of system operation.

In DMB, the regenerative braking torque of the dual motors acts on the outer rotor
in the same direction at the same time. The relationship of the torque and speed of the
system is shown in the Equation (2) and the power flow analysis of DMB mode is shown
in Figure 5: 

ωEM1 = ωEM2
Treq = TEM2 + TEM1 + TM
TM = Treq −max(TEM2)−max(TEM1)

(2)
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(4) Mechanical braking (MB)

When the vehicle speed is low, the braking intensity is emergency braking or the
battery SOC is high, the efficiency and safety of the regenerative braking process are poor.
At this time, the braking force is purely provided by mechanical braking, and EM1 and
EM2 do not work, disconnecting the power transmission between the internal combustion
engine and the road load.

3. ABS in CSM-HEV

The ABS can ensure that the wheels are not locked during braking and it can improve
the vehicle’s directional stability and steering maneuverability, and shorten the braking
distance. It is an important system to ensure the safety of braking process. It is an
important research content to coordinate the braking force distribution in the braking
process considering the braking safety of the vehicle and the efficiency of the regenerative
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braking system at the same time. The coordinated control of the regenerative braking
system and the ABS in CSM-HEV has particularity and superiority.

3.1. ABS

This paper takes the driving shaft of CSM-HEV as the research object and the motion
of the vehicle is shown in Equation (3):

m
.
v = Fbrake_front + Fbrake_rear + Fresist

Iw
.

ω = Tbrake − Fbrakerw
S = v−ω

v

(3)

where m is the curb weight of the car,
.
v is the deceleration, Fbrake is the braking force of

the wheels, and Fresist is the driving resistance (driving resistance is the resistance under
driving conditions, which is ground braking force, the resistance here is only air resistance
and ramp resistance), Iw is the rotational inertia of the driving wheel, Tbrake is the braking
torque, rw is the rolling radius of the driving wheel, v and ω are, respectively, the velocity
and wheel speed, S is the slip rate indicating the proportion of the slip component in the
wheel motion. When the slip rate is 100%, the wheel is completely locked and loses its
steering ability which is a dangerous state. ABS need to adjust the braking force in real
time to ensure that the slip rate during the braking process is kept within the ideal range to
ensure the safety of the brake and shorten the braking distance.

In this paper, the slip curve can be approximated linearly as shown in the following
Equation (4) and Figure 6. {

µ = µh
Sh

S(S ≤ Sh)

µ = µp +
(1−S)(µh−µp)

1−Sh
(S > Sh)

(4)

where µ is the adhesion coefficient of the road, µh is the peak braking force coefficient, µp
is the braking force coefficient when the wheel is fully locked. Sh is the best slip rate. The
parameters of different adhesion coefficients are shown in Table 1:
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Table 1. Ground adhesion coefficients of different roads.

Different Roads SC µh µg

Dry asphalt 0.17 0.9599 0.75
Wet dirt 0.36 0.4546 0.45

Loose snow 0.2 0.15 0.27
Freeze 0.10 0.1028 0.07
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3.2. ABS in Different Braking Modes

In EMCB, EM2 needs to overcome the output torque of ICE and provides the regener-
ative braking torque. The motion equation at this time is shown in Equation (5):

m
.
v = Fbrake_f + Fbrake_r

Iw
.

ωf = Tbrake_f − Fbrake_frw
Iw

.
ωr = Tmis − Fbrake_rrw

Sf =
v−ωfrw

v
Sr =

v−ωrrw
v

Tbrake_f = TEM2is − TEM1is

(5)

where Fbrake_f and Fbrake_r are the ground braking forces acting on the front and rear wheels,
respectively, TEM1, TEM2 and TM are braking torque of EM1, EM2 and mechanical braking,
respectively, is is the transmission ratio of main deceleration, subscript f and r, respectively,
indicate the corresponding parameters of the front and rear wheels.

The control of ABS and EMCB needs to adjust the torque and speed of CSM and ICE
to meet the slip rate corresponding to the peak adhesion rate of the wheel slip rate, so as to
achieve the purpose of braking safety. The braking system at this time is a complex system
with multiple control objects. There are various control methods for the control objects. In
this paper, the operation efficiency of the system is taken as the control goal to control ICE
and CSM. The equivalent efficiency model in EMCB mode is shown in Equation (6):

ηequa =
TEM1ωEM1ηEM1 + TEM2ωEM2ηEM2

TEM1ωEM1 + TEM2ωEM2
(6)

where ηequa is the equivalent efficiency of the system, ηEM1 and ηEM2 represent the efficiency
of EM1 and EM2.

In DMB, ICE does not work and the regenerative braking force is provided by EM1
and EM2. Compared with the regenerative braking of ordinary hybrid vehicles, no mechan-
ical braking force is required and the response speed of mechanical braking and electric
braking is different. Therefore, the control coordination of ABS is poor, while in DMB, the
coordinated braking control of ABS and the regenerative braking system only needs to
coordinate the electric braking torque of EM1 and EM2, so the control coordination of the
ABS is stronger. The motion equation in DMB mode is shown in Equation (7):

m
.
v = Fbrake_f + Fbrake_r

Iw
.

ωf = Tbrake_f − Fbrake_frw
Iw

.
ωr = Tmis − Fbrake_rrw

Sf =
v−ωfrw

v
Sr =

v−ωrrw
v

Tbrake_f = TEM2is + TEM1is

(7)

The coordinated control of regenerative braking and ABS in DMB needs to coordinate
the regenerative braking force of EM1 and EM2 to ensure that the vehicle slip rate remains
at the target value. The operating efficiency is used as the control target to adjust the
regenerative braking force of CSM. The equivalent efficiency of the regenerative braking
system in DMB is shown in Equation (8):

ηequa =
TEM1ωEM1ηEM1 + TEM2ωEM2ηEM2

TEM1ωEM1 + TEM2ωEM2
(8)

3.3. Evaluation of Hybrid Vehicle Energy Recovery Performance in CSM-HEV

The evaluation of energy recovery performance of the new braking mode proposed
in this paper is slightly different from that of ordinary hybrid vehicles. Figure 7 is the
schematic diagram of energy flow in the regenerative braking process of two new brak-
ing modes.
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Figure 7. (a) Schematic diagram of energy flow in EMCB; (b) schematic diagram of energy flow
in DMB.

In DMB, the motor converts the energy recovered during the braking process into elec-
trical energy and stores it in the battery. Therefore, the regenerative braking performance of
the DMB can be evaluated by the efficiency of the braking energy recovery which is similar
to that in ordinary HEV [19,20]. As shown in Equation (9), the braking energy recovery
efficiency of the DMB mode is the ratio of the energy recovered by CSM to the recoverable
vehicle energy. Where ηdmb is the braking energy recovery efficiency in the DMB mode,
Eem1 and Eem2 are, respectively, the energy recovered by EM1 and EM2; Ebraking is the
recoverable braking energy. 

ηdmb = Eem2+Eem1
Ebraking

Eem2 =
∫

TEM2ωEM2ηEM2dt
Eem1 =

∫
TEM1ωEM1ηEM1dt

Ebraking =
∫

Tbrakeωwheeldt

(9)

In EMCB, due to the influence of ICE, there are two paths for energy recovery. On the
one hand, ICE energy is recovered through EM1 and EM2. On the other hand, the braking
energy is recovered through EM2. In this paper, the comprehensive energy recovery rate
and braking energy recovery rate are used to evaluate the energy recovery performance in
EMCB. The comprehensive energy recovery rate is all the energy recovered through EM1
and EM2 to the engine output energy and braking recoverable braking energy. The ratio is
defined and shown in Equation (10). The braking energy recovery efficiency is the ratio of
the braking energy recovered by EM2 to the braking energy recoverable by the vehicle and
is shown in Equation (11). In which ηsys is the comprehensive energy recovery rate, Eice
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is the output energy of ICE, ηsys is the braking energy recovery efficiency, Eem1input and
Eem2input is the input energy of EM1 and EM2.

ηsyn = Eem1+Eem2
Eice+Ebrake

Eem2 =
∫

TEM2ωEM2ηEM2dt
Eem1 =

∫
TEM1ωEM1ηEM1dt

Ebrake =
∫

Tbrakeωwheeldt
Eice =

∫
Ticeωicedt

(10)



ηbr =
Eem2bra
Ebrake

Eem2bra= [Eem2input − (Eice − Eem1input)]ηem2
Eem1input =

∫
TEM1ωEM1dt

Eem2input =
∫

TEM2ωEM2dt
Ebrake =

∫
Tbrakeωwheeldt

(11)

4. Coordinated Control Strategy of Regenerative Braking System and ABS

There are two important problems in the coordinated control of the regenerative
braking system and ABS in CSM-HEV. One issue is the distribution of braking force of
the front and rear wheels. Another issue is the braking force distribution that combines
optimal system efficiency and a target slip rate.

4.1. Braking Force Distribution of Front and Rear Axles

The vehicle model studied in this paper is a 1/2 car model. As shown in Figure 8,
the braking force is provided by each wheel in the front and rear, and the vehicle only
moves longitudinally.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 20 
 

 

the front and rear wheels. Another issue is the braking force distribution that combines 

optimal system efficiency and a target slip rate. 

4.1. Braking Force Distribution of Front and Rear Axles 

The vehicle model studied in this paper is a 1/2 car model. As shown in Figure 8, the 

braking force is provided by each wheel in the front and rear, and the vehicle only moves 

longitudinally. 

Battery

~

=
=

~

+ -

VSI1

Final 

Reduction

Drive

Stator

Outer

rotor

Inner

rotor

EM2

EM1

VSI2

{
{

Engine

Rear 

Wheel

Front 

Wheel

 

Figure 8. Schematic diagram of the vehicle model. 

During the braking process, the front and rear wheels are locked at the same time, 

which is beneficial to the use of adhesion conditions and the direction stability of the car 

during braking. At this time, the relationship curve between the front and rear brake brak-

ing forces is often called the ideal braking force distribution curve, also called I curve. The 

mathematical expression of the I curve is shown in Equation (12): 

1 2

1

2

g

g

T T Gr

b hT

T a h

 











 



 

 (12) 

where Tμ1 and Tμ2 are the braking torque of the front and rear wheel,  φ is the ground 

adhesion coefficient, G is the vehicle curb weight, and a and b are the distances from the 

center of gravity of the vehicle to the front and rear axle. 

For front driving vehicles, in order to improve the braking force distribution curve, 

the ECE braking regulations can be used to restrict the rear wheel braking. When meeting 

the braking ECE regulations, the front wheels can be supplied with more regenerative 

braking force. The distribution curve is often referred to as the curve M. Since more brak-

ing force is distributed to the driving wheels, the efficiency of regenerative braking can be 

improved. The distribution relationship of the braking force of the front and rear brakes 

of the M curve is shown in Equation (13): 

1 2

1

0.07
( )

0.85
g

T T zGr

z Gr
T b zh

L

 



 

 

 


 (13) 

where L is the wheelbase, hg is the height of the center of gravity and z is the braking 

intensity. In this paper, curve I is used to distribute the braking force of the front and rear 

axles. The distribution curve is shown in Figure 9. 

Figure 8. Schematic diagram of the vehicle model.

During the braking process, the front and rear wheels are locked at the same time,
which is beneficial to the use of adhesion conditions and the direction stability of the car
during braking. At this time, the relationship curve between the front and rear brake
braking forces is often called the ideal braking force distribution curve, also called I curve.
The mathematical expression of the I curve is shown in Equation (12):{

Tµ1 + Tµ2 = ϕGr
Tµ1
Tµ2

=
b+ϕhg
a−ϕhg

(12)

where Tµ1 and Tµ2 are the braking torque of the front and rear wheel, ϕ is the ground
adhesion coefficient, G is the vehicle curb weight, and a and b are the distances from the
center of gravity of the vehicle to the front and rear axle.

For front driving vehicles, in order to improve the braking force distribution curve, the
ECE braking regulations can be used to restrict the rear wheel braking. When meeting the
braking ECE regulations, the front wheels can be supplied with more regenerative braking
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force. The distribution curve is often referred to as the curve M. Since more braking force is
distributed to the driving wheels, the efficiency of regenerative braking can be improved.
The distribution relationship of the braking force of the front and rear brakes of the M
curve is shown in Equation (13):{

Tµ1 + Tµ2 = zGr
Tµ1 = z+0.07

0.85
Gr
L (b + zhg)

(13)

where L is the wheelbase, hg is the height of the center of gravity and z is the braking
intensity. In this paper, curve I is used to distribute the braking force of the front and rear
axles. The distribution curve is shown in Figure 9.
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4.2. Regenerative Braking Force Distribution Based on Model Predictive Control

The coordinated control of regenerative braking and ABS in this paper is a multi-
objective control problem, and the system has typical characteristics of nonlinearity. There
are many advanced control methods [21,22] to deal with the problem. Among them, model
predictive control is a proper and convenient control method and is adopted in this paper
to ensure braking safety and system operating efficiency. The flow of regenerative braking
force distribution based on model predictive control is shown in Figure 10:

The establishment of a prediction model requires the establishment of a discretized
state equation of the system. Now the equation of the car’s motion in Equation (3) is
written as a discrete form, as shown in Equation (14):

v(k + 1) = v(k) + 1
m [G(

b+zhg
L )µf(k) + G(

a−zhg
L )µr(k)]

ωf(k + 1) = ωf(k) + 1
Iw
(Tbrake_f(k)is − G(

b+zhg
L )µf(k)rw)

ωr(k + 1) = ωr(k) + 1
Iw
(TM(k)− G(

a−zhg
L )µr(k)rw)

Sf(k+1) = v(k+1)−rwωf(k+1)
v(k+1)

Sr(k+1) = v(k+1)−rwωr(k+1)
v(k+1)

(14)

where k is the sampling time, TS is the sampling step. The definitions of state variables,
control variables, and optimization variables are shown in Equation (15). The state variables
are vehicle speed and front and rear wheel speeds. The system control variables are the
braking torque CSM and the rear axle mechanical braking torque; the variable is the slip
ratio of the front and rear wheel.

x = [v, ωf, ωr]
T

u = [TEM1, TEM2, TM]T

y = [Sf, Sr]
T

(15)
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The constraints on the control variables in the solution process of the predictive model
are as shown in Equation (16):{

min(TEM1) ≤ TEM1 ≤ max(TEM1)
min(TEM1) ≤ TEM2 ≤ max(TEM2)

(16)

In this paper, the braking torque is distributed for the purpose of ensuring the optimal
slip rate of the brake and the optimal operating efficiency of the system. The equivalent
efficiency of the system is written in discrete form as shown in Equation (17): ηemcb(k) =

TEM1(k)ωEM1(k)ηEM1(k)+TEM2(k)ωEM2(k)ηEM2(k)
TEM1(k)ωEM1(k)+TEM2(k)ωEM2(k)

ηdmb(k) =
TEM1(k)ωEM1(k)ηEM1(k)+TEM2(k)ωEM2(k)ηEM2(k)

TEM1(k)ωEM1(k)+TEM2(k)ωEM2(k)

(17)

In EMCB, ICE runs on the optimal fuel consumption curve and the torque is the same
as EM1 torque. In DMB, the speeds of EM1 and EM2 are the same and related to the
wheel speed. The relationship between the system speed in EMCB and DMB are shown in
Equations (18) and (19), respectively:{

ωEM2 = ωfis
ωEM1 = g(TEM1)−ωEM2

(18)

ωEM1 = ωEM2 = ωfis (19)
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where ωf is the wheel speed, and g (T) is a function of the engine speed and the optimal
torque on the optimal fuel consumption curve. The equivalent efficiency model can be
expressed as Equation (20):

η(k)kθ(TEM1(k), TEM2(k), ωf(k)) (20)

Let Np be the prediction step and Nc the control step. According to the system’s
discrete model and equivalent efficiency model, the prediction models of slip rate and
equivalent efficiency can be written as Equations (21) and (22):

S(k + 1) = ξ1(x(k), (u(k))
S(k + 2) = ξ2(x(k), x(k+1), u(k), u(k + 1))
. . . . . .
S(k + Nc) = ξNc(x(k), x(k+1), . . . , x(k + Nc − 1),
(u(k), u(k + 1), . . . , u(k + Nc − 1))
. . . . . .
S(k + Np) = ξNp(x(k), x(k+1), . . . , (k + Np − 1),
(u(k), u(k + 1), . . . , u(k + Np − 1))

(21)



η(k + 1) = θ1(x(k), (u(k))
η(k + 2) = θ2(x(k), x(k+1), u(k), u(k + 1))
. . . . . .
η(k + Nc) = θNc(x(k), x(k+1), . . . , x(k + Nc − 1),
(u(k), u(k + 1), . . . , u(k + Nc − 1))
. . . . . .
η(k + Np) = θNp(x(k), x(k+1), . . . , (k + Np − 1),
(u(k), u(k + 1), . . . , u(k + Np − 1))

(22)

where S(k + i) is the predicted value of slip rate at time k + i, ζi (x, u) is the relationship
between state variable, control variable and slip rate optimization variable at time k + i, θi
(u) is the relationship between state variables, control variables and equivalent efficiency
optimization variables at time k + i.

According to the above prediction model, the evaluation function of the prediction
model to ensure the optimal slip rate and the operating efficiency is shown in Equation (23):

J(k) =
p

∑
i=1

{
ws‖S(k + i)− S∗‖2 + we‖wb(η(k + i)− η∗)‖2

}
(23)

where p is the model prediction step, i is the model control step, ws is the target weight
of slip rate, we is the target weight of system efficiency, and wb is the balance coefficient
between the efficiency optimization target and the slip rate optimization target. To ensure
that the double target error is within the same magnitude, the balance factor is defined as
wb = S*/η*.

5. Simulation and Analysis

In this paper, the regenerative braking simulation system for CSM-HEV is estab-
lished. The model predictive control algorithm is used as a controller to ensure the slip
rate of the brake and the equivalent efficiency. This article mainly carried out the follow-
ing three aspects of simulation, the important simulation parameters used are shown in
Tables 2 and 3.
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Table 2. Important power system parameters for simulation.

Engine Parameters Maximum Torque (Nm)/Corresponding Speed (r/min) Maximum Power (kW)

Engine 130/3500 60

Motor Parameters Maximum Torque (Nm) Rated Speed (r/min) Maximum Power (kW)

EM1 130 2000 30
EM2 240 3000 60

Table 3. Important vehicle parameters for simulation.

Vehicle Parameters Value

Rolling radius (m) 0.317
Main reduction ratio 3.59

Curb quality (kg) 1559
Wheelbase (m) 2.5

Centroid height (m) 0.569
Distance from center of mass to front axle 1.1

Simulation 1: To verify the coordinated control performance of the regenerative
braking system and ABS based on model predictive control in EMCB and compare with
the ordinary braking mode.

Simulation 2: To verify the coordinated control performance of the regenerative
braking system and ABS based on model predictive control in DMB and compare with the
ordinary braking mode.

5.1. Simulation 1

The simulation conditions for Simulation 1 are that vehicle is braking on a wet soil
pavement, the target slip rate is set to 0.1, the weight of the slip rate target is 1, the weight
of the equivalent efficiency target is 0.01, the initial vehicle speed is 15 m/s, the simulation
duration is 4 s, and the braking mode used is the EMCB mode. Based on the above
simulation settings, the simulation results are shown in Figure 11:
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Figure 11 shows that the control algorithm designed in this paper enables the vehicle
to track the target slip. Evaluated by a 2% error band, the adjustment time of the front
wheel slip rate is 53 ms and the adjustment time of the rear wheel slip rate is 61 ms; the
errors of the actual slip rate of the front and rear wheels and the target slip rate under
steady state are 0.22% and 0.27%, respectively. Within 4 s, the vehicle velocity is reduced
from 15 to 10 m/s. It can be seen from Figure 11d that in the initial stage of braking, the
efficiency of EM2 is 85% while the efficiency of EM1 is 77%. As the vehicle speed decreases,
the speed of EM2 decreases and the efficiency reduces; meanwhile, the speed of EM1
increases and the efficiency goes upward. Figure 11e shows that with EMCB based on
model predictive control, the engine can run near the optimal curve of the engine. This is
the advantage of EMCB compared to the traditional control. The switching frequency and
the energy loss of ICE can be reduced.

The energy recovery efficiency under different efficiency weights is shown in Table 4.
When efficiency weights are not considered, the braking energy recovered during the
braking process is 41.56 kJ, the braking recovery efficiency is 46.99% and the comprehen-
sive energy recovery efficiency is 61.48%. With the increase in the efficiency weight, the
comprehensive energy recovery efficiency and the braking energy recovery efficiency show
the upward trend.

Table 4. Comparison of energy recovery rates under different efficiency weights.

Weights Braking Energy (kJ) Braking Energy
Recovery Rate (%)

Comprehensive Energy
Recovery Rate (%)

0 88.43 46.99 61.48
0.001 88.43 47.89 63.62
0.01 88.4 47.89 63.62
0.1 88.17 47.91 63.65
0.2 87.93 47.92 63.69

At present, the regenerative braking control of CSM-HEV is the same as that of
ordinary hybrid vehicles. When the vehicle enters the braking mode from the hybrid
drive state, ICE is in the idle state and EM2 provides the regenerative braking force. The
simulation conditions of the ordinary braking mode are the same as those in EMCB. The
ordinary mode uses a model predictive control algorithm based on slip rate and its braking
simulation performance is shown in Figure 12.
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Figure 12. Performance of ordinary regenerative braking mode in hybrid state: (a) slip rate variation;
(b) vehicle speed and wheel speed variation.

Evaluated by the 2% error band, the adjustment time of the front wheel slip rate is
62 ms in the normal braking mode and the adjustment time of the rear wheel slip rate is
71 ms. The errors between the actual slip rate and target slip rate of the front and rear
wheels under steady state are 0.19% and 0.29%, respectively.

In terms of energy recovery efficiency, the energy recovered during the braking process
is 42.02 kJ in the normal braking mode and the braking energy recovery efficiency is 47.49%,
which is slightly lower than that in EMCB. In EMCB, the output energy of the engine is
recovered into the battery through CSM. In the ordinary braking mode, the engine is in idle
state and the output energy is totally lost. When converting to the fuel quantity through
the universal characteristic curve, the loss of fuel quantity in EMCB is 1.146 g, while fuel
loss in the normal braking mode is 1.78 g. Therefore, the fuel consumption loss in EMCB is
reduced by 35.6% compared to the ordinary braking mode.

5.2. Simulation 2

The simulation conditions for Simulation 2 are that the vehicle is braking on a wet soil
pavement, the target slip rate is set to 0.3, the weight of the slip rate target is 1, the weight
of the equivalent efficiency target is 0.01, the initial speed is 15 m/s, and the simulation
duration is 2 s. Based on the above simulation settings, the simulation results are shown in
Figure 13.
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Figure 13 shows that the control algorithm enables the vehicle to successfully track
the target slip. Evaluated by the 2% error band, the adjustment time of the front wheel
slip rate is 56 ms and the adjustment time of the rear wheel slip rate is 79 ms; the error
between the actual slip rate of the front and rear wheels and the target slip rate are 0.13%
and 0.75%, respectively, under steady state. Vehicle velocity is reduced from 15 to 7.6 m/s
within 2 s. Figure 13d shows that the efficiency of EM1 is above 79% and the efficiency of
EM2 is above 81%.

The braking energy recovery efficiency under different efficiency weights is shown in
Table 5. When efficiency weights are not considered, the braking energy recovered during
the braking process is 42.36 kJ and the braking energy recovery efficiency is 46.14%. As the
efficiency weight increases, the braking energy recovery efficiency also increases.

Table 5. Comparison of energy recovery rates under different efficiency weights.

Weights Energy Recovery (kJ) Braking Energy (kJ) Brake Energy Recovery
Rate (%)

0 43.11 92.24 46.14
0.001 43.18 93.09 46.39
0.01 43.18 93.03 46.42
0.1 43.19 92.25 46.77
0.2 43.13 91.53 47.12

In electric driving mode, the regenerative braking strategy of CSM-HEV is the same
as that of ordinary hybrid vehicles and only EM2 is used in regenerative braking. The
simulation conditions based on the ordinary regenerative braking control are the same
as those in DMB. The braking performance of the ordinary braking mode is shown in
Figure 14. The results show that the normal braking mode can follow the target slip rate
during the braking process. Evaluated by the 2% error band, the adjustment time of front
wheel slip rate is 68 ms. Since the ordinary braking mode is the coordinated control of the
electric braking and mechanical braking, while the DMB is the coordinated control of two
motors, the adjustment time is 12 ms faster than that of the ordinary braking mode. The
energy recovery efficiency is 29.6% in normal control while the energy recovery efficiency
of DMB is 46.39%. Due to the use of EM1 to supplement the regenerative braking force in
DMB, the energy recovery efficiency is increased by 16.79%.
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6. Conclusions

In this paper, two new braking modes, EMCB and DMB, are firstly proposed and
the coordination control of regenerative braking system and ABS is researched. In order
to ensure the optimal slip rate of the vehicle and the optimal equivalent efficiency of
CSM during the regenerative braking process, the model predictive control algorithm
is proposed to control the new braking modes and regenerative braking performance
evaluation indicators for two new braking modes are established. Through the simulation
in Simulink, this paper arrives at the following important conclusions:

(1) Under the control algorithm designed in this paper, EMCB and DMB can make the
vehicle track the target slip rate and ensure the safety of braking.

(2) EMCB can keep ICE working in the best state during the regenerative braking
process, thereby improving the fuel economy of CSM-HEV. Compared with the ordinary
braking mode, the braking energy recovery efficiency of EMCB is similar while the fuel
loss of the engine during the braking process of EMCB is reduced by 30.1% compared with
the ordinary braking mode.

(3) DMB uses EM1 to supplement the insufficient regenerative braking force. Thereby
increasing the braking energy efficiency. Compared with the ordinary braking mode, DMB
can increase the braking energy recovery efficiency by 16.78% and the response time to the
target slip rate is reduced by 12 ms.
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