Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,724)

Search Parameters:
Keywords = anti-diabetes drugs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5725 KB  
Article
The Synergistic Effects of rhArg with Bcl-2 Inhibitors or Metformin Co-Treatment in Multiple Cancer Cell Models
by Lai-Pan Sze, Vicky Mei-Ki Ho, Wing-Ki Fung, Kin-Ho Law, Yifan Tu, Yik-Hing So, Sai-Fung Chung, Wing-Leung Wong, Zhen Liu, Alisa Sau-Wun Shum, Leo Man-Yuen Lee and Yun-Chung Leung
Cells 2026, 15(2), 164; https://doi.org/10.3390/cells15020164 - 16 Jan 2026
Abstract
Background: Recombinant human arginase (rhArg) has been proven to exhibit an anticancer effect via arginine starvation. To further improve the efficacy of rhArg, we examined the feasibility of a combination strategy with Bcl-2 inhibitors (ABT263 and ABT199) or an antidiabetic drug (metformin) and [...] Read more.
Background: Recombinant human arginase (rhArg) has been proven to exhibit an anticancer effect via arginine starvation. To further improve the efficacy of rhArg, we examined the feasibility of a combination strategy with Bcl-2 inhibitors (ABT263 and ABT199) or an antidiabetic drug (metformin) and investigated the mechanistic basis for these strategies. Methods: The combination effects were evaluated in a panel of human cancer cell lines modeling pancreatic ductal carcinoma (PDAC), triple-negative breast cancer (TNBC), colorectal cancer (CRC) and glioblastoma (GBM). Western blot analysis was used to evaluate the expression of apoptotic and cell cycle markers. MTT assay was used to evaluate the combination efficacy. Flow cytometric assays were used to investigate the apoptotic and cell cycle effects. Results: The combination of rhArg with sublethal doses of ABT263 significantly induced dose-dependent apoptosis, with elevated expression of apoptotic markers and a CI of 0.47 in U251. The combination inhibited CDK2 and cyclin A expression, indicating that the observed synergy also resulted from cell cycle arrest. We also found that rhArg + metformin was synergistic in a time-dependent manner. Compared to other amino acid depletion agents, rhArg + ABT263 was the most favorable combination pair. Conclusions: The combination of rhArg and ABT263 enhanced apoptosis and cell cycle arrest, demonstrating a potential broad-spectrum antitumor strategy. Full article
Show Figures

Figure 1

17 pages, 1975 KB  
Article
Comparative Longitudinal Evaluation of Systemic Inflammatory Markers in Type 2 Diabetes Treated with Four Oral Antidiabetic Drug Classes
by Mehmet Yamak, Serkan Çakır, Sami Uzun, Egemen Cebeci, Özlem Menken and Savas Ozturk
J. Clin. Med. 2026, 15(2), 688; https://doi.org/10.3390/jcm15020688 - 15 Jan 2026
Abstract
Background: Systemic inflammation plays a central role in the pathogenesis and progression of type 2 diabetes mellitus (T2DM). Hematologic inflammatory indices-such as the Systemic Immune-Inflammation Index (SII), Neutrophil-to-Lymphocyte Ratio (NLR), Platelet-to-Lymphocyte Ratio (PLR), and Monocyte-to-Lymphocyte Ratio (MLR)-have emerged as accessible markers of chronic [...] Read more.
Background: Systemic inflammation plays a central role in the pathogenesis and progression of type 2 diabetes mellitus (T2DM). Hematologic inflammatory indices-such as the Systemic Immune-Inflammation Index (SII), Neutrophil-to-Lymphocyte Ratio (NLR), Platelet-to-Lymphocyte Ratio (PLR), and Monocyte-to-Lymphocyte Ratio (MLR)-have emerged as accessible markers of chronic inflammation, yet longitudinal comparisons across oral antidiabetic therapies remain limited. This study uniquely integrates longitudinal correlation and network analyses in a large real-world T2DM cohort, allowing assessment of the temporal stability and class-specific inflammatory patterns across four oral antidiabetic therapies. Methods: This retrospective, longitudinal study analyzed 13,425 patients with T2DM treated with Biguanidines, Dipeptidyl Peptidase-4 (DPP-4) inhibitors, Sodium–Glucose Cotransporter-2 (SGLT-2) inhibitors or Thiazolidinediones (TZDs) between 2020 and 2024. Data were retrieved from the Probel® Hospital Information System and included baseline, early (30–180 days), and late (180–360 days) follow-up laboratory results. Systemic inflammatory indices were computed from hematologic parameters, and correlations among inflammatory and biochemical markers were assessed using Spearman’s coefficients. Results: At baseline, all hematologic indices were strongly intercorrelated (SII–NLR r = 0.83, p < 0.001; SII–PLR r = 0.73, p < 0.001), with moderate associations to C-reactive protein (CRP; r ≈ 0.3–0.4) and weak or no correlations with Ferritin (r ≈ −0.1). These relationships remained stable throughout follow-up, confirming reproducibility of systemic inflammatory coupling. Longitudinally, SII and NLR showed modest early increases followed by significant declines at one year (p < 0.05), while PLR and MLR remained stable. Class-specific differences were observed: SGLT-2 inhibitors and TZDs demonstrated stronger and more integrated anti-inflammatory networks, whereas Biguanidines and DPP-4 inhibitors exhibited moderate coherence. Principal Component Analysis (PCA) explained 62.4% of total variance and revealed distinct clustering for TZD and SGLT-2 groups, reflecting class-specific inflammatory modulation. Conclusions: Systemic inflammatory indices (SII, NLR, PLR) provide reproducible and accessible measures of low-grade inflammation in T2DM. Despite overall inflammation reduction with treatment, drug-specific patterns emerged-SGLT-2 inhibitors and TZDs showed greater anti-inflammatory coherence, while Biguanidines and DPP-4 inhibitors maintained moderate effects. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

26 pages, 823 KB  
Review
Underlying Mechanisms of Osteoporosis in the Context of Multimorbidity: Clinical Challenges and Management Strategies
by Alberto Castagna, Carmelo Pujia, Elisa Mazza, Samantha Maurotti, Yvelise Ferro, Valeria Rizzo, Martina Formica, Rosy Conforto, Caterina Mercuri, Angela Sciacqua, Carmine Gazzaruso, Arturo Pujia and Tiziana Montalcini
Nutrients 2026, 18(2), 262; https://doi.org/10.3390/nu18020262 - 14 Jan 2026
Viewed by 57
Abstract
Osteoporosis and chronic conditions such as type 2 diabetes mellitus, cardiovascular disease, heart failure, and chronic kidney disease share several common biological mechanisms, including chronic inflammation, oxidative stress, hormonal dysregulation, and metabolic alterations. In this context, multimorbidity presents an increasing clinical challenge, particularly [...] Read more.
Osteoporosis and chronic conditions such as type 2 diabetes mellitus, cardiovascular disease, heart failure, and chronic kidney disease share several common biological mechanisms, including chronic inflammation, oxidative stress, hormonal dysregulation, and metabolic alterations. In this context, multimorbidity presents an increasing clinical challenge, particularly in older populations, where osteoporosis remains frequently underdiagnosed and undertreated. This review aims to explore the complex interplay between skeletal fragility and cardiometabolic diseases, emphasizing the role of nutritional deficiencies (such as iron and vitamin C), shared molecular pathways (advanced glycation end-products, Renin–Angiotensin–Aldosterone System, RANK Ligand, RANK), and the systemic impact of chronic inflammation and tissue hypoperfusion. The review also addresses the effects of various drug classes—antidiabetics, antihypertensives, anticoagulants, and anti-osteoporotic agents—on bone metabolism and cardiovascular risk. Special focus is given to the implementation of integrated and personalized care models, particularly multidisciplinary team-based approaches, which have demonstrated significant reductions in mortality and refracture rates, despite their still limited adoption in clinical practice. In conclusion, this review highlights the shared mechanisms between osteoporosis and cardiometabolic conditions in the context of multimorbidity, underscoring persistent clinical challenges related to diagnosis, drug interactions, and care fragmentation that warrant further research into integrated care models. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Graphical abstract

27 pages, 4157 KB  
Article
LASSBio-1986 as a Multifunctional Antidiabetic Lead: SGLT1/2 Docking, Redox–Inflammatory Modulation and Metabolic Benefits in C57BL/6 Mice
by Landerson Lopes Pereira, Raimundo Rigoberto B. Xavier Filho, Gabriela Araújo Freire, Caio Bruno Rodrigues Martins, Maurício Gabriel Barros Perote, Cibelly Loryn Martins Campos, Manuel Carlos Serrazul Monteiro, Isabelle de Fátima Vieira Camelo Maia, Renata Barbosa Lacerda, Luis Gabriel Valdivieso Gelves, Damião Sampaio de Sousa, Régia Karen Barbosa De Souza, Paulo Iury Gomes Nunes, Tiago Lima Sampaio, Gisele Silvestre Silva, Deysi Viviana Tenazoa Wong, Lidia Moreira Lima, Walter José Peláez, Márcia Machado Marinho, Hélcio Silva dos Santos, Jane Eire Silva Alencar de Menezes, Emmanuel Silva Marinho, Kirley Marques Canuto, Pedro Filho Noronha Souza, Francimauro Sousa Morais, Nylane Maria Nunes de Alencar and Marisa Jadna Silva Fredericoadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2026, 27(2), 829; https://doi.org/10.3390/ijms27020829 - 14 Jan 2026
Viewed by 45
Abstract
Type 2 diabetes mellitus (T2DM) involves chronic hyperglycemia, insulin resistance, low-grade inflammation, and oxidative stress that drive cardiometabolic and renal damage despite current therapies. Sodium–glucose cotransporter (SGLT) inhibitors have reshaped the treatment landscape, but residual risk and safety concerns highlight the need for [...] Read more.
Type 2 diabetes mellitus (T2DM) involves chronic hyperglycemia, insulin resistance, low-grade inflammation, and oxidative stress that drive cardiometabolic and renal damage despite current therapies. Sodium–glucose cotransporter (SGLT) inhibitors have reshaped the treatment landscape, but residual risk and safety concerns highlight the need for new agents that combine glucose-lowering efficacy with redox–inflammatory modulation. LASSBio-1986 is a synthetic N-acylhydrazone (NAH) derivative designed as a gliflozin-like scaffold with the potential to interact with SGLT1/2 while also influencing oxidative and inflammatory pathways. Here, we integrated in silico and in vivo approaches to characterize LASSBio-1986 as a multifunctional antidiabetic lead in murine models of glucose dysregulation. PASS and target class prediction suggested a broad activity spectrum and highlighted transporter- and stress-related pathways. Molecular docking indicated high-affinity binding to both SGLT1 and SGLT2, with a modest energetic preference for SGLT2, and ADME/Tox predictions supported favorable oral drug-likeness. In vivo, intraperitoneal LASSBio-1986 improved oral glucose tolerance and reduced glycemic excursions in an acute glucose challenge model in C57BL/6 mice, while enhancing hepatic and skeletal muscle glycogen stores. In a dexamethasone-induced insulin-resistance model, LASSBio-1986 improved insulin sensitivity, favorably modulated serum lipids, attenuated thiobarbituric acid-reactive substances (TBARS), restored reduced glutathione (GSH) levels, and rebalanced pro- and anti-inflammatory cytokines in metabolic tissues, with efficacy broadly comparable to dapagliflozin. These convergent findings support LASSBio-1986 as a preclinical, multimodal lead that targets SGLT-dependent glucose handling while mitigating oxidative and inflammatory stress in models relevant to T2DM. Chronic disease models, formal toxicology, and pharmacokinetic studies, particularly with oral dosing, will be essential to define its translational potential. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Graphical abstract

25 pages, 2682 KB  
Article
Cohort Profile: A Descriptive Analysis of Patients Aged 75 Years and Older with Public Health Coverage in Madrid at Baseline, Including a 5-Year Preobservational Period (2015–2019)
by Victor Iriarte-Campo, Pilar Vich-Perez, José M. Mostaza, Carlos Lahoz, Juan Cárdenas-Valladolid, Paloma Gómez-Campelo, Belén Taulero-Escalera, F. Javier San-Andrés-Rebollo, Fernando Rodriguez-Artalejo, Enrique Carrillo-de Santa Pau, Lucía Carrasco and Miguel Angel Salinero-Fort
J. Clin. Med. 2026, 15(2), 571; https://doi.org/10.3390/jcm15020571 - 10 Jan 2026
Viewed by 155
Abstract
Background/Objectives: Population aging increases the healthcare burden of chronic diseases. We aimed to characterize the sociodemographic and clinical characteristics of Aged Madrid, a cohort comprising 98.6% of the population aged 75 years and older in Madrid, Spain. Methods: Observational study with [...] Read more.
Background/Objectives: Population aging increases the healthcare burden of chronic diseases. We aimed to characterize the sociodemographic and clinical characteristics of Aged Madrid, a cohort comprising 98.6% of the population aged 75 years and older in Madrid, Spain. Methods: Observational study with a five-year retrospective baseline period (2015–2019) to assess baseline vascular and metabolic risk. Data were taken from primary care electronic medical records, hospital discharge summaries, and pharmacy records. Results: 587,603 individuals (mean age: 84 years ± 5.8 years, 61.3% women) were analysed. Obesity affected 31.3% (more frequent in women), while type 2 diabetes occurred in 23.8% (predominantly in men). Hypertension (52.8%), dyslipidaemia (61.6%), and chronic kidney disease (21.7%) were more frequent in women. Atrial fibrillation was the leading cardiovascular condition in women (15.1%), while acute myocardial infarction predominated in men (8.2%). The most prescribed drug classes were antihypertensives (53.8%), statins (44.2%), and oral antidiabetics (26.4%). Among antihypertensives, diuretics (53.9%), ACE inhibitors (27.4%), and ARBs (25.3%) were most used, often in combinations such as diuretics + ACE inhibitors (30.1%). Diabetes treatments favoured metformin and DPP-4 inhibitors; 5.2% received insulin. Conclusions: Sex-based differences emerged in biochemical, anthropometric, and lifestyle variables. Men showed a higher prevalence of cardiovascular diseases and several cardiometabolic risk factors, while women used fewer lipid-lowering and antidiabetic agents. Diuretics were the predominant antihypertensives, and antidiabetic therapy largely followed guideline recommendations. Although 60% of statin users had no prior cardiovascular disease, and their use was concentrated mainly among individuals with major cardiometabolic risk conditions and declined with advancing age, suggesting an age- and risk-sensitive prescribing pattern rather than indiscriminate use. Full article
(This article belongs to the Section Epidemiology & Public Health)
Show Figures

Figure 1

17 pages, 1186 KB  
Article
Changes in Insulin Resistance with Different Weight Loss Methods in Patients with Type Two Diabetes Mellitus and Hypertension: A Comparative Clinical Trial
by Kuat Oshakbayev, Aigul Durmanova, Gani Kuttymuratov, Nurzhan Bikhanov, Altay Nabiyev, Timur Suleimenov, Alisher Idrissov, Tomiris Shakhmarova, Zhanel Mirmanova, Saule Rakhimova, Ulan Kozhamkulov and Ainur Akilzhanova
J. Clin. Med. 2026, 15(2), 546; https://doi.org/10.3390/jcm15020546 - 9 Jan 2026
Viewed by 205
Abstract
Background: The comparative effects of pharmacological treatment, bariatric surgery, and diet on insulin resistance (IR) remain unclear. Aim: To study the comparative effects of the methods on IR: pharmacologic, bariatric surgery, and very-low-calorie diet (VLCD) in patients with type 2 diabetes mellitus (T2DM) [...] Read more.
Background: The comparative effects of pharmacological treatment, bariatric surgery, and diet on insulin resistance (IR) remain unclear. Aim: To study the comparative effects of the methods on IR: pharmacologic, bariatric surgery, and very-low-calorie diet (VLCD) in patients with type 2 diabetes mellitus (T2DM) and hypertension. Methods: Design: a 90-day prospective, multicenter, comparative clinical trial including 130 adult patients divided into three groups: Drug, Surgery, and VLCD. Endpoints: HOMA-IR; weight loss; and HbA1c, systolic/diastolic blood pressure (SBP/DBP). Results: At 90 days, weight loss in the Surgery (−19.8%) and VLCD groups (−17.4%) was significant (p < 0.0001), while in the Drug group, the loss was insignificant (−6.5%; p = 0.06). SBP/DBP in the Drug group decreased by −9.5% (p = 0.0002) and −4.1% (p = 0.09), respectively. SBP/DBP in the Surgery group decreased by −13.6% and −10.6%, respectively (p < 0.001), and in the VLCD group, by −23.3% and 21.3%, respectively (p < 0.0001). HOMA-IR in Drug, Surgery, and VLCD groups decreased by −42.2% (p = 0.004), −87.6% (p < 0.0001), and −88.7% (p < 0.0001), respectively. In the Drug group, HOMA-IR did not reach the normal level. Correlation-regression analysis revealed a direct correlation between weight loss and a decrease in HOMA-IR (r = 0.526; F = 33.2, p < 0.0001). HOMA-IR decreases by 65% if weight decreases by 10%; if weight decreases by 25%, then HOMA-IR decreases by 83%. Conclusions: HOMA-IR was associated with weight loss: the greater the weight loss, the lower the HOMA-IR. Weight loss leads to a reduction in the need for antidiabetic/antihypertensive drugs in patients with T2DM and hypertension. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

19 pages, 912 KB  
Review
Old Drug, New Science: Metformin and the Future of Pharmaceutics
by Alfredo Caturano, Davide Nilo, Roberto Nilo, Marta Chiara Sircana, Enes Erul, Katarzyna Zielińska, Vincenzo Russo, Erica Santonastaso and Ferdinando Carlo Sasso
Pharmaceutics 2026, 18(1), 77; https://doi.org/10.3390/pharmaceutics18010077 - 7 Jan 2026
Viewed by 350
Abstract
Metformin, a 60-year-old biguanide and cornerstone of type 2 diabetes therapy, continues to challenge and inspire modern pharmaceutical science. Despite its chemical simplicity, metformin displays highly complex pharmacokinetic and pharmacodynamic behavior driven by transporter dependence, luminal activity, and formulation-sensitive exposure. Originally regarded as [...] Read more.
Metformin, a 60-year-old biguanide and cornerstone of type 2 diabetes therapy, continues to challenge and inspire modern pharmaceutical science. Despite its chemical simplicity, metformin displays highly complex pharmacokinetic and pharmacodynamic behavior driven by transporter dependence, luminal activity, and formulation-sensitive exposure. Originally regarded as limited by low permeability and incomplete absorption, metformin has emerged as a paradigm for gut-targeted therapy, controlled- and delayed-release systems, and personalized pharmaceutics. Growing evidence has repositioned the intestine, rather than systemic plasma exposure, as a major site of action, highlighting the central role of organic cation transporters and multidrug efflux systems in determining efficacy, variability, and gastrointestinal tolerability. Beyond metabolic control, insights into transporter regulation, pharmacogenetics, microbiome interactions, and manufacturing quality have expanded metformin’s relevance as a model compound for contemporary drug development. Advances in formulation design, quality-by-design manufacturing, and regulatory control have further reinforced its clinical robustness, while repurposing efforts in oncology, immunometabolism, and regenerative medicine underscore its translational potential. This review integrates mechanistic pharmacology, formulation science, and clinical translation to position metformin not merely as an antidiabetic agent, but as a didactic model illustrating the evolution of pharmaceutics from molecule-centered design to system-oriented, precision-driven therapy. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

27 pages, 2457 KB  
Article
Agent- and Dose-Specific Intestinal Obstruction Safety of GLP-1 Receptor Agonists and SGLT2 Inhibitors: A Network Meta-Analysis of Randomized Trials
by Jiann-Jy Chen, Chih-Wei Hsu, Chao-Ming Hung, Mein-Woei Suen, Hung-Yu Wang, Wei-Chieh Yang, Brendon Stubbs, Yen-Wen Chen, Tien-Yu Chen, Wei-Te Lei, Andre F. Carvalho, Shih-Pin Hsu, Yow-Ling Shiue, Bing-Yan Zeng, Cheng-Ta Li, Kuan-Pin Su, Chih-Sung Liang, Bing-Syuan Zeng and Ping-Tao Tseng
Int. J. Mol. Sci. 2026, 27(2), 608; https://doi.org/10.3390/ijms27020608 - 7 Jan 2026
Viewed by 207
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists and sodium–glucose cotransporter-2 (SGLT2) inhibitors have reshaped pharmacological management of type 2 diabetes, but emerging safety signals suggest a possible association with intestinal obstruction. Because many candidates for these agents already harbor risk factors for ileus and bowel [...] Read more.
Glucagon-like peptide-1 (GLP-1) receptor agonists and sodium–glucose cotransporter-2 (SGLT2) inhibitors have reshaped pharmacological management of type 2 diabetes, but emerging safety signals suggest a possible association with intestinal obstruction. Because many candidates for these agents already harbor risk factors for ileus and bowel obstruction, clarifying agent- and dose-specific gastrointestinal safety is clinically important. We aimed to re-evaluate the risk of intestinal obstruction across individual GLP-1 receptor agonists and SGLT2 inhibitors, with particular attention to dose stratification. We systematically searched eight databases through 21 January 2025 to identify randomized controlled trials (RCTs) comparing GLP-1 receptor agonists or SGLT2 inhibitors with placebo or active comparators in adults. The primary outcome was incident intestinal obstruction (small or large bowel). A frequentist random-effects network meta-analysis estimated odds ratios (ORs) with 95% confidence intervals (CIs) across drugs and dose tiers; Bayesian models and surface under the cumulative ranking (SUCRA) metrics were used for sensitivity analyses and treatment ranking. Risk of bias and certainty of evidence were assessed with standard Cochrane and GRADE-adapted tools. Fifty RCTs (47 publications; 192,359 participants) met inclusion criteria. Overall, canagliflozin use was associated with a higher incidence of intestinal obstruction than control therapies (OR 2.56, 95% CI 1.01–6.49), corresponding to an absolute risk difference of 0.15% and a number needed to harm of 658. High-dose canagliflozin (300 mg/day) showed the clearest signal (OR 3.42, 95% CI 1.08–10.76). In contrast, liraglutide was associated with a lower risk of intestinal obstruction (OR 0.44, 95% CI 0.24–0.81), with an absolute risk reduction of 0.34% and a number needed to treat of 295. No other GLP-1 receptor agonist or SGLT2 inhibitor demonstrated a statistically significant increase in obstruction risk. Frequentist and Bayesian analyses yielded concordant estimates and rankings. From a randomized-trial perspective, intestinal obstruction risk is not elevated for most GLP-1 receptor agonists and SGLT2 inhibitors. A dose-dependent safety signal was observed only for high-dose canagliflozin, whereas liraglutide may confer a protective effect. These findings refine gastrointestinal safety profiles for modern antidiabetic agents and may inform perioperative bowel management, drug selection, and dose optimization in patients at risk for ileus or adhesive obstruction. Full article
(This article belongs to the Special Issue Targeted Peptide Drugs for Metabolic Diseases)
Show Figures

Figure 1

26 pages, 400 KB  
Review
Metformin Beyond Glycemic Control: Cardiovascular Protection and Diabetes Prevention
by Georgios E. Zakynthinos, Georgios I. Tsironikos, Evangelos Oikonomou, Konstantinos Kalogeras, Gerasimos Siasos and Vasiliki Tsolaki
J. Cardiovasc. Dev. Dis. 2026, 13(1), 33; https://doi.org/10.3390/jcdd13010033 - 6 Jan 2026
Viewed by 219
Abstract
Metformin, the most widely prescribed oral antihyperglycemic agent, is established as the first-line therapy for type 2 diabetes mellitus (T2DM) owing to its efficacy, affordability, and safety. Increasing evidence indicates that its benefits extend beyond glycemic control, encompassing cardiovascular protection and diabetes prevention [...] Read more.
Metformin, the most widely prescribed oral antihyperglycemic agent, is established as the first-line therapy for type 2 diabetes mellitus (T2DM) owing to its efficacy, affordability, and safety. Increasing evidence indicates that its benefits extend beyond glycemic control, encompassing cardiovascular protection and diabetes prevention in individuals at elevated cardiometabolic risk. Mechanistic studies demonstrate that metformin exerts pleiotropic effects through activation of AMP-activated protein kinase, modulation of the gut microbiota, inhibition of pro-inflammatory and oxidative stress pathways, and improvements in endothelial function, lipid metabolism, and insulin sensitivity. These actions address core drivers of atherosclerosis and metabolic dysfunction, many of which occur independently of glucose lowering. In patients with T2DM, the cardiovascular benefits of metformin are well recognized, including reductions in all-cause mortality and cardiovascular events. In individuals without diabetes but at high cardiovascular risk—such as those with prediabetes, obesity, or metabolic syndrome—evidence is more limited, as most data are derived from subgroup analyses or trials with surrogate endpoints. Nonetheless, consistent signals suggest that metformin may delay the progression from prediabetes to overt diabetes and potentially confer vascular protection, particularly in carefully selected high-risk populations. Clinical trials and meta-analyses have demonstrated that metformin reduces incident diabetes by approximately one quarter in high-risk adults, with stronger effects observed in younger, overweight individuals, women with prior gestational diabetes, and those treated for longer durations. However, uncertainties remain regarding its long-term cost-effectiveness, optimal dosing strategies, and cardiovascular benefits in non-diabetic populations. The ongoing VA-IMPACT trial (NCT02915198) is expected to clarify whether metformin reduces major cardiovascular events in prediabetic patients with atherosclerotic disease. Taken together, metformin represents more than an antidiabetic drug. Its pleiotropic mechanisms, favorable safety profile, and low cost support its potential integration into broader cardiometabolic prevention strategies, including primary prevention. Expanding its role beyond diabetes management may offer a cost-effective, widely accessible intervention with significant public health impact. Full article
28 pages, 2173 KB  
Article
The Relationship Between Bone Health Status of Post-Menopausal Women with Non-Functional Adrenal Tumours/Mild Autonomous Cortisol Secretion and Their Baseline Morning Adrenocorticotropic Level
by Alexandra-Ioana Trandafir, Oana-Claudia Sima, Nina Ionovici, Dana Manda, Mihai Costachescu and Mara Carsote
Diagnostics 2026, 16(2), 180; https://doi.org/10.3390/diagnostics16020180 - 6 Jan 2026
Viewed by 286
Abstract
Background. Glucocorticoid-induced osteoporosis represents a well-known type of secondary osteoporosis (SOp). While the most prevalent sub-category includes corticotherapy, another important contributor is represented by Cushing’s syndrome. In this traditional landscape, adrenal incidentalomas do not involve a standard cause of SOp, since most [...] Read more.
Background. Glucocorticoid-induced osteoporosis represents a well-known type of secondary osteoporosis (SOp). While the most prevalent sub-category includes corticotherapy, another important contributor is represented by Cushing’s syndrome. In this traditional landscape, adrenal incidentalomas do not involve a standard cause of SOp, since most of them are non-functioning adrenal tumours (NFATs). Yet, 30–40% of them are not entirely “non-functioning”, due to mild autonomous cortisol secretion (MACS). Despite not being a guideline-based diagnosis, a lower ACTH might point to various NFATs/MACS complications. Objective. This study aimed to determine the relationship between the bone health status of post-menopausal women with NFATs/MACS and their baseline morning ACTH level. The bone health indicators were DXA, FRAX, and bone remodelling markers. Methods. This was a retrospective, real-life, transversal study in adult females who were hospitalized in a single tertiary centre of endocrinology. They were all anti-osteoporotic drug-naïve. The subjects underwent CT and DXA scanning and a 1 mg dexamethasone suppression test (DST). Results. The cohort (sample size of N = 84 patients, 61.49 ± 7.86 years) had a type 2 diabetes rate of 18%, arterial hypertension rate of 75%, and a dyslipidemia rate of 78%. Median ACTH was 11.89 pg/mL. The prevalence of MACS was 30.95%. The mean largest tumour diameter (LTD) was 2.25 ± 0.99 cm. ACTH correlated with second-day cortisol after the 1 mg DST (r = −0.301, p = 0.024), and LTD (r = −0.434, p < 0.001). ROC analysis for the bone resorption marker CrossLaps showed an AUC of 0.647 (p = 0.05), with the highest Youden index for the cut-off at 0.32 ng/mL (sensitivity 87.50%, specificity 39.50%). Bone impairment (osteoporosis + osteopenia) was found in 65% of patients, with an osteoporotic fracture prevalence of 4.76%. The lowest mean T-score (−1.12 ± 1.00) showed osteopenia, and the median trabecular bone score pointed a partially degraded microarchitecture [median (interquartile interval): 1.320 (1.230, 1.392)]. FRAX and FRAXplus estimations correlated with bone mineral density (BMD) at all three central DXA sites, regardless of the ACTH cut-off. Patients with a low ACTH (<10 pg/mL) displayed similar bone/adrenal features when compared to those with normal ACTH, except forbut they had a higher MACS rate (45.45% versus 21.57%, p = 0.021) and a larger LTD (2.67 ± 0.98 versus 1.98 ± 0.92 cm, p = 0.003). Fracture estimation showed that only in patients with a low ACTH, the 10-year fracture risk for major osteoporotic fractures (MOF) adjusted for lumbar BMD was lower than the risk for MOF adjusted for diabetes (p = 0.036), and the 10-year hip fracture risk was lower when adjusted for lumbar BMD (p = 0.007). ACTH correlated with lumbar BMD (r = 0.591, p = 0.002) only in the group with an ACTH < 10 pg/mL, suggesting its potential usefulness as a bone biomarker in these cases. On the other hand, MACS-negative subjects with a low ACTH versus those with a normal ACTH showed higher CrossLaps (0.60 ± 0.27 versus 0.42 ± 0.21 ng/mL, p = 0.022), indicating an elevated bone resorption even in patients with tumours that are regarded as true non-secretors. Conclusions. A subgroup of patients diagnosed with NFATs/MACS might be prone to skeletal damage, and biomarkers such as ACTH (specifically, suppressed ACTH) might serve as a surrogate pointer to help refine this higher risk in daily practice. Further research to address other ACTH cut-offs will place ACTH assays in the overall bone status evaluation in these patients, most probably not as a single biomarker, but in addition to other assays. Full article
(This article belongs to the Special Issue Current Diagnosis and Management of Metabolic Bone Disease)
Show Figures

Figure 1

21 pages, 5470 KB  
Article
Structure-Based Virtual Screening and In Silico Evaluation of Marine Algae Metabolites as Potential α-Glucosidase Inhibitors for Antidiabetic Drug Discovery
by Bouchra Rossafi, Oussama Abchir, Fatimazahra Guerguer, Kasim Sakran Abass, Imane Yamari, M’hammed El Kouali, Abdelouahid Samadi and Samir Chtita
Pharmaceuticals 2026, 19(1), 98; https://doi.org/10.3390/ph19010098 - 5 Jan 2026
Viewed by 243
Abstract
Background/Objectives: Diabetes mellitus is a serious global disease characterized by chronic hyperglycemia, resulting from defects in insulin secretion, insulin action, or both. It represents a major health concern affecting millions of people worldwide. This condition can lead to severe complications significantly affecting patients’ [...] Read more.
Background/Objectives: Diabetes mellitus is a serious global disease characterized by chronic hyperglycemia, resulting from defects in insulin secretion, insulin action, or both. It represents a major health concern affecting millions of people worldwide. This condition can lead to severe complications significantly affecting patients’ quality of life. Due to the limitations and side effects of current therapies, the search for safer and more effective antidiabetic agents, particularly from natural sources, has gained considerable attention. This study investigates the antidiabetic potential of seaweed-derived compounds through structure-based virtual screening targeting α-glucosidase. Methods: A library of compounds derived from the Seaweed Metabolite Database was subjected to a hierarchical molecular docking protocol against α-glucosidase. Extra Precision (XP) docking was employed to identify the top-ranked ligands based on their binding affinities. Drug-likeness was assessed according to Lipinski’s Rule of Five, followed by pharmacokinetic and toxicity predictions to evaluate ADMET properties. Density Functional Theory (DFT) calculations were performed to analyze the electronic properties and chemical reactivity of the selected compounds. Furthermore, molecular dynamics simulations were carried out to examine the stability and dynamic behavior of the ligand–enzyme complexes. Results: Following XP docking and ADMET prediction, four promising compounds were selected: Colensolide A, Rhodomelol, Callophycin A, and 7-(2,3-dibromo-4,5-dihydroxybenzyl)-3,7-dihydro-1H-purine-2,6-dione. Molecular dynamics simulations further confirmed the structural stability and strong binding interactions of these compounds within the α-glucosidase active site. Conclusions: This investigation demonstrated the important role of seaweed-derived compounds in inhibiting α-glucosidase activity. Further experimental validation is warranted to confirm their biological activity and therapeutic potential. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

37 pages, 7273 KB  
Review
From Painkillers to Antidiabetics: Structural Modification of NSAID Scaffolds for Drug Repurposing
by Anđela Gogić, Miloš Nikolić, Nikola Nedeljković, Nebojša Zdravković, Marina Vesović and Ana Živanović
Future Pharmacol. 2026, 6(1), 2; https://doi.org/10.3390/futurepharmacol6010002 - 2 Jan 2026
Viewed by 231
Abstract
The treatment of diabetes in the modern era, with its growing patient population, represents a significant challenge due to the wide range of adverse effects associated with medications that target complex biochemical processes. Consequently, researchers are investigating the hypoglycemic potential of existing drugs. [...] Read more.
The treatment of diabetes in the modern era, with its growing patient population, represents a significant challenge due to the wide range of adverse effects associated with medications that target complex biochemical processes. Consequently, researchers are investigating the hypoglycemic potential of existing drugs. Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used to treat pain, fever, and various inflammatory conditions. Recent studies have shown that NSAIDs, particularly salicylates, can influence glycemia through multiple mechanisms, including inhibition of gastrointestinal enzymes, blockade of KATP channels, activation of AMP-activated protein kinase (AMPK), and inhibition of NF-κB signaling, among others. Accordingly, this review explores the hypoglycemic potential of NSAIDs as well as their derivatives, and the diverse mechanisms through which these molecules may influence glucose homeostasis. Full article
Show Figures

Graphical abstract

14 pages, 280 KB  
Review
Cardiovascular Disease and Diabetes: A New Challenge in the Treatment and Management
by Graziano Riccioni, Chiara Notarangelo, Mario Riccioni and Nicolantonio D’Orazio
Int. J. Mol. Sci. 2026, 27(1), 354; https://doi.org/10.3390/ijms27010354 - 29 Dec 2025
Viewed by 559
Abstract
Cardiovascular diseases (CVDs) represent one of the leading causes of morbidity and mortality in patients with diabetes. However, a correct and effective glycaemic control obtained by pharmacologic interventions, such as the use the novel glucose-lowering agents, demonstrated efficacy in reducing the risk of [...] Read more.
Cardiovascular diseases (CVDs) represent one of the leading causes of morbidity and mortality in patients with diabetes. However, a correct and effective glycaemic control obtained by pharmacologic interventions, such as the use the novel glucose-lowering agents, demonstrated efficacy in reducing the risk of both cardiovascular events and mortality. The latest classes of glucose-lowering drugs introduced in the clinical practice are DPP4 inhibitors (sitagliptin, saxagliptin, vildagliptin, linagliptin, and alogliptin), GLP-1 receptor agonists (semaglutide, liraglutide, albiglutide, dulaglutide, exenatide, and lixenatide), and SGLT-2 inhibitors (empaglifozin, canaglifozin, and dapaglifozin). Multiple lines of evidence show that all these new drugs associated with the treatment of diabetic disease have the same effectiveness as the traditional antidiabetic drugs, and excellent cardiovascular safety, highlighting their potential in significantly reducing major cardiovascular events and mortality. The aim of our review is to summarise the clinical efficacy of these recently introduced drugs to optimise treatment strategies, especially in the early phase of diabetic disease. Full article
23 pages, 6790 KB  
Article
Sitagliptin Potentiates the Anticancer Activity of Doxorubicin Through ROS-Driven Apoptosis and MMP/TIMP Regulation in HeLa Cells
by Aşkın Evren Güler, Mehmet Cudi Tuncer and İlhan Özdemir
Pharmaceutics 2026, 18(1), 38; https://doi.org/10.3390/pharmaceutics18010038 - 26 Dec 2025
Viewed by 323
Abstract
Background/Objectives: Cervical cancer remains a major global health challenge, and treatment resistance limits the long-term success of chemotherapy. Drug repurposing strategies offer new opportunities for improving therapeutic outcomes by combining existing agents with established chemotherapeutics. Sitagliptin, a DPP-4 inhibitor commonly used in [...] Read more.
Background/Objectives: Cervical cancer remains a major global health challenge, and treatment resistance limits the long-term success of chemotherapy. Drug repurposing strategies offer new opportunities for improving therapeutic outcomes by combining existing agents with established chemotherapeutics. Sitagliptin, a DPP-4 inhibitor commonly used in type 2 diabetes, has recently gained attention for its potential anticancer effects. This study aimed to investigate the cytotoxic, apoptotic, and anti-metastatic effects of sitagliptin and doxorubicin, individually and in combination, on human cervical cancer cells (HeLa), and to determine whether their combined use exerts a synergistic anticancer effect. Methods: HeLa cells were treated for 48 h with increasing concentrations of sitagliptin, doxorubicin, or their combination. Cell viability was assessed using the MTT assay. Apoptosis was evaluated by Annexin V-FITC/PI staining and caspase-8/9 activity assays. Synergy was quantified using the Chou–Talalay method, and Combination Index (CI) values were used to determine synergistic interactions. Intracellular ROS levels were measured using the DCFDA assay. Migration and invasion capacities were analyzed using wound healing and Transwell assays. MMP-1, MMP-2, TIMP-1, and TIMP-2 levels were quantified via ELISA with normalization to viable cell counts. Gene expression levels of PI3K/Akt and MAPK/ERK pathway components were measured by qRT-PCR. Bioinformatic analyses (STRING, GeneMANIA, GO, KEGG) were performed to identify common molecular targets and enriched pathways affected by both agents. Results: The combination of sitagliptin and doxorubicin significantly reduced cell viability and demonstrated a synergistic interaction (CI < 1). Combined treatment induced a marked increase in ROS production and significantly elevated apoptosis rates compared to monotherapies. Caspase-8 and caspase-9 activities were also higher in the combination group. Migration and invasion assays revealed substantial suppression of cell motility and invasive capacity. After normalization to viable cell numbers, MMP and TIMP reductions remained significant, confirming true biological inhibition rather than cell-death–related artifacts. qRT-PCR analyses showed downregulation of Akt and ERK expression, indicating suppression of key survival and proliferation pathways. Bioinformatic analyses supported these findings by highlighting enrichment in apoptotic, oxidative stress, and metastasis-related pathways. Conclusions: Sitagliptin enhances the anticancer efficacy of doxorubicin by amplifying ROS-mediated apoptosis, inhibiting migration and invasion, and modulating PI3K/Akt and MAPK/ERK signaling in cervical cancer cells. The combination exhibits a clear synergistic effect and demonstrates strong potential as a supportive therapeutic strategy. These findings warrant further in vivo and clinical-level investigations to evaluate the translational applicability of sitagliptin in cervical cancer therapy. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Graphical abstract

20 pages, 4456 KB  
Article
Enhanced Adsorption of Metformin Using Cu and ZnO Nanoparticles Anchored on Carboxylated Graphene Oxide
by Abeer H. Aljadaani, Amr A. Yakout and Hany Abdel-Aal
Polymers 2026, 18(1), 71; https://doi.org/10.3390/polym18010071 - 26 Dec 2025
Viewed by 332
Abstract
Pharmaceutical residues are increasingly emerging in global drinking water sources, posing serious ecological and public health challenges by altering the physicochemical balance of aquatic systems. Among available purification approaches, adsorption remains one of the most promising techniques due to its simplicity, cost-effectiveness, and [...] Read more.
Pharmaceutical residues are increasingly emerging in global drinking water sources, posing serious ecological and public health challenges by altering the physicochemical balance of aquatic systems. Among available purification approaches, adsorption remains one of the most promising techniques due to its simplicity, cost-effectiveness, and efficiency. In this work, a ternary nanocomposite of Cu- and ZnO-decorated carboxylated graphene oxide (Cu/ZnO@CGO) was synthesized and utilized for highly efficient and ultrafast removal of the antidiabetic drug metformin from aqueous environments. The adsorption mechanism arises from a synergistic combination of surface complexation on Cu nanoparticles, cation–π and π–π electron donor–acceptor interactions with the CGO aromatic structure, and hydrogen bonding through the amino groups of metformin and the oxygen-rich functional moieties of ZnO and CGO. The nanocomposite was thoroughly characterized using FTIR, XPS, XRD, SEM, HRTEM, and TGA analyses, confirming its well-defined hybrid structure. Unlike conventional single-phase or binary systems, the Cu/ZnO@CGO nanocomposite demonstrated remarkable cooperative effects that enhanced its performance through the integration of metal–ligand coordination, π–π stacking, cation–π forces, and hydrogen bonding. These interactions contributed to an outstanding adsorption capacity of 232.56 mg·g−1 and an exceptionally fast equilibrium time of only 25 min. Moreover, the material maintained excellent reusability, with merely a 4.1% decline in efficiency after five regeneration cycles, and achieved almost complete removal of metformin (99.7 ± 3.4%) from several real water samples, namely river, tap, and bottled water. The unique structural design of Cu/ZnO@CGO prevents CGO aggregation and facilitates efficient contaminant capture even at trace concentrations, establishing it as a highly competitive and sustainable adsorbent for pharmaceutical wastewater treatment. Overall, this study highlights a novel and rationally engineered nanocomposite whose synergistic surface chemistry bridges adsorption and detoxification, providing valuable insight into the next generation of multifunctional graphene-based materials for environmental remediation. Full article
(This article belongs to the Special Issue Polymeric Materials Based on Graphene Derivatives and Composites)
Show Figures

Figure 1

Back to TopTop