Old Drug, New Science: Metformin and the Future of Pharmaceutics
Abstract
1. Introduction
2. Lessons from the Past: Pharmacokinetics and Biopharmaceutics
3. The Gut–Liver Axis and the Rebirth of Metformin Research
4. Formulation Innovations: From Sustained Release to Nanotechnology
4.1. Transporter-Informed Formulation Design
4.2. Manufacturing Quality and Nitrosamine Risk Control
5. Pharmacogenetics and Personalized Pharmaceutics
6. Clinical Perspectives and Translational Relevance
7. Broader Horizons: Repurposing and Translational Opportunities
7.1. Metabolic and Endocrine Repurposing
7.2. Immunometabolic and Regenerative Applications
7.3. Oncology: Mechanistic Rationale and Translational Limits
8. Transporters: The Missing Link in Metformin’s Translational Pharmacology
9. Conclusions: The Pharmaceutics of Longevity
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaudhary, S.; Kulkarni, A. Metformin: Past, Present, and Future. Curr. Diabetes Rep. 2024, 24, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Solini, A.; Tricò, D. Clinical Efficacy and Cost-Effectiveness of Metformin in Different Patient Populations: A Narrative Review of Real-World Evidence. Diabetes Obes. Metab. 2024, 26, 20–30. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 4091, Metformin. PubChem, U.S. National Library of Medicine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Metformin (accessed on 29 December 2025).
- He, Z.; Teng, F.; Yang, Y.; Guo, R.; Wu, M.; Han, F.; Tian, H.; Wang, J.; Hu, Y.; Jiang, Y.; et al. Hydrophilic metformin and hydrophobic biguanides inhibit mitochondrial complex I by distinct mechanisms. Nat. Struct. Mol. Biol. 2025; in press. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Zhang, Y.; Akter, K.A.; Nozohouri, S.; Archie, S.R.; Patel, D.; Villalba, H.; Abbruscato, T. Permeability of Metformin across an In Vitro Blood–Brain Barrier Model during Normoxia and Oxygen-Glucose Deprivation Conditions: Role of Organic Cation Transporters (Octs). Pharmaceutics 2023, 15, 1357. [Google Scholar] [CrossRef]
- Farahani, A.; Farahani, A.; Kashfi, K.; Ghasemi, A. Inhibition of hepatic gluconeogenesis in type 2 diabetes by metformin: Complementary role of nitric oxide. Med. Gas Res. 2025, 15, 507–519. [Google Scholar] [CrossRef]
- Hasanvand, A. The role of AMPK-dependent pathways in cellular and molecular mechanisms of metformin: A new perspective for treatment and prevention of diseases. Inflammopharmacology 2022, 30, 775–788. [Google Scholar] [CrossRef]
- He, L. Metformin and systemic metabolism. Trends Pharmacol. Sci. 2020, 41, 868–881. [Google Scholar] [CrossRef]
- Sakaguchi, K.; Sugawara, K.; Hosokawa, Y.; Ito, J.; Morita, Y.; Mizuma, H.; Watanabe, Y.; Kimura, Y.; Aburaya, S.; Takahashi, M.; et al. Metformin-regulated glucose flux from the circulation to the intestinal lumen. Commun. Med. 2025, 5, 44. [Google Scholar] [CrossRef]
- Rzeczycki, P.; Pęciak, O.; Plust, M.; Droździk, M. Gut Microbiota in the Regulation of Intestinal Drug Transporters: Molecular Mechanisms and Pharmacokinetic Implications. Int. J. Mol. Sci. 2025, 26, 11897. [Google Scholar] [CrossRef]
- Werner, E.; Bell, J. The Preparation of Methylguanidine, and of ββ-Dimethylguanidine by the Interaction of Dicyandiamide, and Methylammonium and Dimethylammonium Chlorides Respectively. J. Chem. Soc. Trans. 1922, 121, 1790–1795. [Google Scholar] [CrossRef]
- Hadden, D.R. Goat’s rue–French lilac–Italian fitch–Spanish sainfoin: Galega officinalis and metformin: The Edinburgh connection. J. R. Coll. Phys. Edinb. 2005, 35, 258–260. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.J. Metformin: Historical overview. Diabetologia 2017, 60, 1566–1576. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J. Du nouveau dans les antidiabétiques. La NN diméthylamino guanyl guanidine (N.N.D.G.). Maroc Med. 1957, 36, 1295–1296. [Google Scholar]
- Sulong, N.A.; Lee, V.S.; Fei, C.C.; Johan, M.R. Exploring Multifaceted Roles of Metformin in Therapeutic Applications, Mechanistic Insights, and Innovations in Drug Delivery Systems Across Biological Contexts: A Systematic Review. Drug Deliv. Transl. Res. 2025, 15, 4043–4066. [Google Scholar] [CrossRef]
- Dutta, S.; Shah, R.B.; Singhal, S.; Dutta, S.B.; Bansal, S.; Sinha, S.; Haque, M. Metformin: A Review of Potential Mechanism and Therapeutic Utility Beyond Diabetes. Drug Des. Dev. Ther. 2023, 17, 1907–1932. [Google Scholar] [CrossRef]
- Markowicz-Piasecka, M.; Huttunen, K.M.; Mateusiak, L.; Mikiciuk-Olasik, E.; Sikora, J. Is Metformin a Perfect Drug? Updates in Pharmacokinetics and Pharmacodynamics. Curr. Pharm. Des. 2017, 23, 2532–2550. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). Glucophage® (Metformin Hydrochloride) Tablets and Glucophage XR® (Metformin Hydrochloride Extended-Release Tablets): Prescribing Information; FDA: Silver Spring, MD, USA, 2017. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/020357s037s039,021202s021s023lbl.pdf (accessed on 29 December 2025).
- Graham, G.G.; Punt, J.; Arora, M.; Day, R.O.; Doogue, M.P.; Duong, J.K.; Furlong, T.J.; Greenfield, J.R.; Greenup, L.C.; Kirkpatrick, C.M. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet. 2011, 50, 81–98. [Google Scholar] [CrossRef]
- Tulipano, G. Integrated or Independent Actions of Metformin in Target Tissues Underlying Its Current Use and New Possible Applications in the Endocrine and Metabolic Disorder Area. Int. J. Mol. Sci. 2021, 22, 13068. [Google Scholar] [CrossRef]
- Gong, L.; Goswami, S.; Giacomini, K.M.; Altman, R.B.; Klein, T.E. Metformin Pathways: Pharmacokinetics and Pharmacodynamics. Pharmacogenet. Genom. 2012, 22, 820–827. [Google Scholar] [CrossRef]
- Metry, M.; Shu, Y.; Abrahamsson, B.; Cristofoletti, R.; Dressman, J.B.; Groot, D.W.; Parr, A.; Langguth, P.; Shah, V.P.; Tajiri, T.; et al. Biowaiver Monographs for Immediate-Release Solid Oral Dosage Forms: Metformin Hydrochloride. J. Pharm. Sci. 2021, 110, 1513–1526. [Google Scholar] [CrossRef]
- Maruthur, N.M.; Tseng, E.; Hutfless, S.; Wilson, L.M.; Suarez-Cuervo, C.; Berger, Z.; Chu, Y.; Iyoha, E.; Segal, J.B.; Bolen, S. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: A systematic review and meta-analysis. Ann. Intern. Med. 2016, 164, 740–751. [Google Scholar] [CrossRef]
- Wu, C.Y.; Benet, L.Z. Predicting drug disposition via application of BCS: Transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm. Res. 2005, 22, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Streubel, A.; Siepmann, J.; Bodmeier, R. Gastroretentive drug delivery systems. Expert Opin. Drug Deliv. 2006, 3, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Roy, H.; Brahma, C.K.; Nandi, S.; Parida, K.R. Formulation and design of sustained release matrix tablets of metformin hydrochloride: Influence of hypromellose and polyacrylate polymers. Int. J. Appl. Basic Med. Res. 2013, 3, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Szymczak-Pajor, I.; Drzewoski, J.; Kozłowska, M.; Krekora, J.; Śliwińska, A. The Gut Microbiota-Related Antihyperglycemic Effect of Metformin. Pharmaceuticals 2025, 18, 55. [Google Scholar] [CrossRef]
- Kang, C.W.; Nam, J.H.; Oh, J.H.; Wang, E.K.; Lee, S.H.; Shin, H.J.; Kim, Y.B.; Lee, E.J.; Lim, B.K.; Fang, S.; et al. Novel mechanism whereby metformin improves glucose homeostasis: TXNIP-GLUT1 axis modulation enhances intestinal glucotonic effects. Exp. Mol. Med. 2025, 57, 1775–1788. [Google Scholar] [CrossRef]
- González-Casanova, J.E.; Navarro-Marquez, M.; Saez-Tamayo, T.; Angarita, L.; Durán-Agüero, S.; Fuentes-Barría, H.; Bermúdez, V.; Rojas-Gómez, D.M. New perspectives on the molecular action of metformin in the context of cellular transduction and adipogenesis. Int. J. Mol. Sci. 2025, 26, 3690. [Google Scholar] [CrossRef]
- Lin, H.Y.; Lu, W.; He, Y.; Fu, Y.; Kaneko, K.; Huang, P.; De la Puente-Gomez, A.B.; Wang, C.; Yang, Y.; Li, F.; et al. Low-dose metformin requires brain Rap1 for its antidiabetic action. Sci. Adv. 2025, 11, eadu3700. [Google Scholar] [CrossRef]
- Mueller, N.T.; Differding, M.K.; Zhang, M.; Maruthur, N.M.; Juraschek, S.P.; Miller, E.R., 3rd; Appel, L.J.; Yeh, H.C. Metformin Affects Gut Microbiome Composition and Function and Circulating Short-Chain Fatty Acids: A Randomized Trial. Diabetes Care 2021, 44, 1462–1471. [Google Scholar] [CrossRef]
- Jyoti, D.; Dey, P. Mechanisms and implications of the gut microbial modulation of intestinal metabolic processes. NPJ Metab. Health Dis. 2025, 3, 24. [Google Scholar] [CrossRef]
- Shahwar, D.; Baqai, S.; Khan, F.; Khan, M.I.; Javaid, S.; Hameed, A.; Raza, A.; Saleem Uddin, S.; Hazrat, H.; Rahman, M.H.; et al. Proteomic Analysis of Rap1A GTPase Signaling-Deficient C57BL/6 Mouse Pancreas and Functional Studies Identify an Essential Role of Rap1A in Pancreas Physiology. Int. J. Mol. Sci. 2024, 25, 8013. [Google Scholar] [CrossRef] [PubMed]
- Cherra, S.J., 3rd; Lamb, R. Interactions between Ras and Rap signaling pathways during neurodevelopment in health and disease. Front. Mol. Neurosci. 2024, 17, 1352731. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Bajracharya, R.; Min, J.Y.; Han, J.-W.; Park, B.J.; Han, H.-K. Strategic Approaches for Colon Targeted Drug Delivery: An Overview of Recent Advancements. Pharmaceutics 2020, 12, 68. [Google Scholar] [CrossRef]
- Fujita, Y.; Inagaki, N. Metformin: Clinical Topics and New Mechanisms of Action. Diabetol. Int. 2016, 8, 4–6. [Google Scholar] [CrossRef]
- Shirasaka, Y.; Seki, M.; Hatakeyama, M.; Kurokawa, Y.; Uchiyama, H.; Takemura, M.; Yasugi, Y.; Kishimoto, H.; Tamai, I.; Wang, J.; et al. Multiple transport mechanisms involved in the intestinal absorption of metformin: Impact on the nonlinear absorption kinetics. J. Pharm. Sci. 2022, 111, 1531–1541. [Google Scholar] [CrossRef] [PubMed]
- Nishii, R.; Xue, Y.; Huo, R.; Chen, J.; Shen, H.; Chen, Y.; Ogasawara, K. Evaluating the utility of endogenous OCT2 and MATE1/2-K biomarkers for DDI assessment in early clinical settings. J. Pharm. Sci. 2025, 114, 103776. [Google Scholar] [CrossRef]
- Cheng, M.; Ren, L.; Jia, X.; Wang, J.; Cong, B. Understanding the action mechanisms of metformin in the gastrointestinal tract. Front. Pharmacol. 2024, 15, 1347047. [Google Scholar] [CrossRef]
- Shin, N.R.; Lee, J.C.; Lee, H.Y.; Kim, M.S.; Whon, T.W.; Lee, M.S.; Bae, J.W. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014, 63, 727–735. [Google Scholar] [CrossRef]
- Wu, H.; Esteve, E.; Tremaroli, V.; Khan, M.T.; Caesar, R.; Mannerås-Holm, L.; Ståhlman, M.; Olsson, L.M.; Serino, M.; Planas-Fèlix, M.; et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 2017, 23, 850–858. [Google Scholar] [CrossRef]
- Zmysłowski, A.; Książek, I.; Szterk, A. N-Nitrosodimethylamine contamination in the metformin finished products. Molecules 2020, 25, 5304. [Google Scholar] [CrossRef]
- Schlingemann, J.; Boucley, C.; Hickert, S.; Bourasseau, L.; Walker, M.; Celdran, C.; Chemarin, T.; Pegues, C.; Fritzsche, M.; Keitel, J.; et al. Avoiding N-nitrosodimethylamine formation in metformin pharmaceuticals by limiting dimethylamine and nitrite. Int. J. Pharm. 2022, 620, 121740. [Google Scholar] [CrossRef] [PubMed]
- Dharani, S.; Mohamed, E.M.; Rahman, Z.; Khan, M.A. Patient in-use stability testing of FDA-approved metformin combination products for N-nitrosamine impurity. AAPS PharmSciTech 2024, 25, 19. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration (FDA). Control of Nitrosamine Impurities in Human Drugs—Guidance for Industry; FDA: Silver Spring, MD, USA, 2020. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/control-nitrosamine-impurities-human-drugs (accessed on 29 December 2025).
- European Medicines Agency (EMA). Scientific Review of the Risk of Nitrosamine Impurities in Human Medicines; EMA: Amsterdam, The Netherlands, 2020; Available online: https://www.ema.europa.eu/en/human-regulatory-overview/post-authorisation/pharmacovigilance-post-authorisation/referral-procedures-human-medicines/nitrosamine-impurities/scientific-review-risk-nitrosamine-impurities-human-medicines (accessed on 29 December 2025).
- World Intellectual Property Organization. Improved Process for the Preparation of Metformin Hydrochloride. WIPO Patent WO 2019/154769 A1, 15 August 2019. Available online: https://patents.google.com/patent/WO2019154769A1/en (accessed on 29 December 2025).
- Tarry-Adkins, J.L.; Grant, I.D.; Ozanne, S.E.; Reynolds, R.M.; Aiken, C.E. Efficacy and Side Effect Profile of Different Formulations of Metformin: A Systematic Review and Meta-Analysis. Diabetes Ther. 2021, 12, 1901–1914. [Google Scholar] [CrossRef] [PubMed]
- Wadher, K.J.; Kakde, R.B.; Umekar, M.J. Study on Sustained-Release Metformin Hydrochloride from Matrix Tablet: Influence of Hydrophilic Polymers and In Vitro Evaluation. Int. J. Pharm. Investig. 2011, 1, 157–163. [Google Scholar] [CrossRef]
- Cirilli, M.; Moutaharrik, S.; Palugan, L.; Coldani, M.E.; Buscarini, A.; Bruni, G.; Gazzaniga, A.; Maroni, A.; Foppoli, A.; Cerea, M. Gastroretentive Systems for Prolonged Release of Metformin Based on Osmotically Driven Expansion. Int. J. Pharm. 2025, 681, 125856. [Google Scholar] [CrossRef]
- Kotha, A.A.; Ahmad, S.U.; Dewan, I.; Bhuiyan, M.A.; Rahman, F.I.; Naina Mohamed, I.; Reza, M.S. Metformin Hydrochloride Loaded Mucoadhesive Microspheres and Nanoparticles for Anti-Hyperglycemic and Anticancer Effects Using Factorial Experimental Design. Drug Des. Dev. Ther. 2023, 17, 3661–3684. [Google Scholar] [CrossRef]
- Mall, J.; Naseem, N.; Haider, M.F.; Rahman, M.A.; Khan, S.; Siddiqui, S.N. Nanostructured Lipid Carriers as a Drug Delivery System: A Comprehensive Review with Therapeutic Applications. Intell. Pharm. 2024, 3, 243–255. [Google Scholar] [CrossRef]
- Abd-El Hafeez, S.I.; Eleraky, N.E.; Hafez, E.; Abouelmagd, S.A. Design and Optimization of Metformin Hydrophobic Ion Pairs for Efficient Encapsulation in Polymeric Drug Carriers. Sci. Rep. 2022, 12, 5737. [Google Scholar] [CrossRef]
- Tsolaki, E.; McCartney, F.; Healy, A.M.; Brayden, D.J.; Ferguson, S. Solidified Ionic Liquid-Based Formulations of Metformin with Enhanced GI Epithelial Permeability. Int. J. Pharm. 2025, 678, 125649. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, Y.; Yuhong, J.; Xin, P.; Han, J.L.; Du, Y.; Yu, X.; Zhu, R.; Zhang, M.; Chen, W.; et al. Advances in Nanotechnology for Enhancing the Solubility and Bioavailability of Poorly Soluble Drugs. Drug Des. Dev. Ther. 2024, 18, 1469–1495. [Google Scholar] [CrossRef]
- Wen, C.; Tang, J.; Cao, L.; Fan, M.; Lin, X.; Liu, G.; Liang, L.; Liu, X.; Zhang, J.; Li, Y.; et al. Strategic Approaches for Co-Encapsulation of Bioactive Compounds: Technological Advances and Mechanistic Insight. Foods 2025, 14, 2024. [Google Scholar] [CrossRef]
- Caturano, A.; Nilo, R.; Nilo, D.; Russo, V.; Santonastaso, E.; Galiero, R.; Rinaldi, L.; Monda, M.; Sardu, C.; Marfella, R.; et al. Advances in Nanomedicine for Precision Insulin Delivery. Pharmaceuticals 2024, 17, 945. [Google Scholar] [CrossRef] [PubMed]
- Galiero, R.; Caturano, A.; Vetrano, E.; Monda, M.; Marfella, R.; Sardu, C.; Salvatore, T.; Rinaldi, L.; Sasso, F.C. Precision Medicine in Type 2 Diabetes Mellitus: Utility and Limitations. Diabetes Metab. Syndr. Obes. 2023, 16, 3669–3689. [Google Scholar] [CrossRef] [PubMed]
- Naja, K.; Anwardeen, N.; Al-Hariri, M.; Al Thani, A.A.; Elrayess, M.A. Pharmacometabolomic Approach to Investigate the Response to Metformin in Patients with Type 2 Diabetes: A Cross-Sectional Study. Biomedicines 2023, 11, 2164. [Google Scholar] [CrossRef] [PubMed]
- Caturano, A.; Galiero, R.; Pafundi, P.C. Metformin for Type 2 Diabetes. JAMA 2019, 322, 1312. [Google Scholar] [CrossRef]
- AlKreathy, H.M.; Alzahrani, A.A.; Esmat, A.; Damanhouri, Z.A. Effects of Genetic Variants of Organic Cation Transporters on Metformin Response in Newly Diagnosed Patients with Type 2 Diabetes. Medicine 2024, 103, e40684. [Google Scholar] [CrossRef]
- Stocker, S.L.; Morrissey, K.M.; Yee, S.W.; Castro, R.A.; Xu, L.; Dahlin, A.; Ramirez, A.H.; Roden, D.M.; Wilke, R.A.; McCarty, C.A.; et al. The Effect of Novel Promoter Variants in MATE1 and MATE2 on the Pharmacokinetics and Pharmacodynamics of Metformin. Clin. Pharmacol. Ther. 2013, 93, 186–194. [Google Scholar] [CrossRef]
- Anwardeen, N.R.; Naja, K.; Elrayess, M.A. Advancements in precision medicine: Multi-omics approach for tailored metformin treatment in type 2 diabetes. Front. Pharmacol. 2024, 15, 1506767. [Google Scholar] [CrossRef]
- García-García, I.; Seco-Meseguer, E.; Borobia, A.M.; Carcas-Sansuán, A.J. Implementing pharmacogenetics in clinical trials: Considerations about current methodological, ethical, and regulatory challenges. Expert Rev. Clin. Pharmacol. 2024, 17, 1–10. [Google Scholar] [CrossRef]
- Chan, P.; Shao, L.; Tomlinson, B.; Zhang, Y.; Liu, Z.M. Metformin transporter pharmacogenomics: Insights into drug disposition—Where are we now? Expert Opin. Drug Metab. Toxicol. 2018, 14, 1149–1159. [Google Scholar] [CrossRef]
- Caspar, S.M.; Schneider, T.; Meienberg, J.; Matyas, G. Added Value of Clinical Sequencing: WGS-Based Profiling of Pharmacogenes. Int. J. Mol. Sci. 2020, 21, 2308. [Google Scholar] [CrossRef]
- Stillhart, C.; Vučićević, K.; Augustijns, P.; Basit, A.W.; Batchelor, H.; Flanagan, T.R.; Gesquiere, I.; Greupink, R.; Keszthelyi, D.; Koskinen, M.; et al. Impact of Gastrointestinal Physiology on Drug Absorption in Special Populations—An UNGAP Review. Eur. J. Pharm. Sci. 2020, 147, 105280. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Yarmush, M.L.; Maguire, T. Physiologically Based Pharmacokinetic Models: Integration of In Silico Approaches with Micro Cell Culture Analogues. Curr. Drug Metab. 2012, 13, 863–880. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Chen, Q. The Future of Pharmaceuticals: Artificial Intelligence in Drug Discovery and Development. J. Pharm. Anal. 2025, 15, 101248. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Gonzalez, D.; Woodhead, J.L.; Bhargava, P.; Ramanathan, M. Leveraging In Silico and Artificial Intelligence Models to Advance Drug Disposition and Response Predictions across the Lifespan. Clin. Transl. Sci. 2025, 18, e70272. [Google Scholar] [CrossRef]
- Ozbek, O.; Genc, D.E.; Ulgen, K.O. Advances in Physiologically Based Pharmacokinetic (PBPK) Modeling of Nanomaterials. ACS Pharmacol. Transl. Sci. 2024, 7, 2251–2279. [Google Scholar] [CrossRef]
- UK Prospective Diabetes Study (UKPDS) Group. Effect of Intensive Blood-Glucose Control with Metformin on Complications in Overweight Patients with Type 2 Diabetes. Lancet 1998, 352, 854–865. [Google Scholar] [CrossRef]
- Holman, R.R.; Paul, S.K.; Bethel, M.A.; Matthews, D.R.; Neil, H.A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 2008, 359, 1577–1589. [Google Scholar] [CrossRef]
- O’Connor, L.; Bailey-Whyte, M.; Bhattacharya, M.; Butera, G.; Hardell, K.N.L.; Seidenberg, A.B.; Castle, P.E.; Loomans-Kropp, H.A. Association of Metformin Use and Cancer Incidence: A Systematic Review and Meta-Analysis. J. Natl. Cancer Inst. 2024, 116, 518–529. [Google Scholar] [CrossRef]
- Rehman, A.; Satyam, S.M.; El-Tanani, M.; Prabhakar, S.; Kumari, R.; Shetty, P.; Mohammed, S.S.N.; Nafees, Z.; Alomar, B. Metformin Beyond Diabetes: A Precision Gerotherapeutic and Immunometabolic Adjuvant for Aging and Cancer. Cancers 2025, 17, 2466. [Google Scholar] [CrossRef]
- Campbell, J.M.; Stephenson, M.D.; de Courten, B.; Chapman, I.; Bellman, S.M.; Aromataris, E. Metformin Use Associated with Reduced Risk of Dementia in Patients with Diabetes: A Systematic Review and Meta-Analysis. J. Alzheimers Dis. 2018, 65, 1225–1236. [Google Scholar] [CrossRef] [PubMed]
- Agius, L.; Ford, B.E.; Chachra, S.S. The Metformin Mechanism on Gluconeogenesis and AMPK Activation: The Metabolite Perspective. Int. J. Mol. Sci. 2020, 21, 3240. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, T.; Pafundi, P.C.; Morgillo, F.; Di Liello, R.; Galiero, R.; Nevola, R.; Marfella, R.; Monaco, L.; Rinaldi, L.; Adinolfi, L.E.; et al. Metformin: An Old Drug against Old Age and Associated Morbidities. Diabetes Res. Clin. Pract. 2020, 160, 108025. [Google Scholar] [CrossRef] [PubMed]
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; Ajjan, R.A.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B.; et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar] [CrossRef]
- Nevola, R.; Alfano, M.; Pafundi, P.C.; Brin, C.; Gragnano, F.; Calabrò, P.; Adinolfi, L.E.; Rinaldi, L.; Sasso, F.C.; Caturano, A. Cardiorenal impact of SGLT-2 inhibitors: A conceptual revolution in the management of type 2 diabetes, heart failure and chronic kidney disease. Rev. Cardiovasc. Med. 2022, 23, 106. [Google Scholar] [CrossRef]
- Palmiero, G.; Cesaro, A.; Galiero, R.; Loffredo, G.; Caturano, A.; Vetrano, E.; Rinaldi, L.; Salvatore, T.; Ruggiero, R.; Rosaria Di Palo, M.; et al. Impact of gliflozins on cardiac remodeling in patients with type 2 diabetes mellitus & reduced ejection fraction heart failure: A pilot prospective study. GLISCAR study. Diabetes Res. Clin. Pract. 2023, 200, 110686. [Google Scholar] [CrossRef]
- Muskiet, M.H.A.; Tonneijck, L.; Smits, M.M.; van Baar, M.J.B.; Kramer, M.H.H.; Hoorn, E.J.; Joles, J.A.; van Raalte, D.H. GLP-1 and the kidney: From physiology to pharmacology and outcomes in diabetes. Nat. Rev. Nephrol. 2017, 13, 605–628. [Google Scholar] [CrossRef]
- Nabrdalik, K.; Hendel, M.; Irlik, K.; Kwiendacz, H.; Łoniewski, I.; Bucci, T.; Alam, U.; Lip, G.Y.H.; Gumprecht, J.; Skonieczna-Żydecka, K. Gastrointestinal adverse events of metformin treatment in patients with type 2 diabetes mellitus: A systematic review and meta-analysis with meta-regression of observational studies. BMC Endocr. Disord. 2024, 24, 206. [Google Scholar] [CrossRef]
- Infante, M.; Leoni, M.; Caprio, M.; Fabbri, A. Long-term metformin therapy and vitamin B12 deficiency: An association to bear in mind. World J. Diabetes 2021, 12, 916–931. [Google Scholar] [CrossRef]
- Brown, J.B.; Conner, C.; Nichols, G.A. Secondary failure of metformin monotherapy in clinical practice. Diabetes Care 2010, 33, 501–506. [Google Scholar] [CrossRef]
- Crowley, M.J.; Diamantidis, C.J.; McDuffie, J.R.; Cameron, B.; Stanifer, J.; Mock, C.K.; Kosinski, A.; Wang, X.; Tang, S.; Williams, J.W., Jr. Metformin use in patients with historical contraindications or precautions. In APPENDIX A, FDA Safety Announcements for Metformin; Department of Veterans Affairs (US): Washington, DC, USA, 2016. Available online: https://www.ncbi.nlm.nih.gov/books/NBK409379/ (accessed on 29 December 2025).
- See, K.C. Metformin-Associated Lactic Acidosis: A Mini Review of Pathophysiology, Diagnosis and Management in Critically Ill Patients. World J. Diabetes 2024, 15, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Rivera, D.; Onisko, N.; Cao, J.D.; Koyfman, A.; Long, B. High-Risk and Low-Prevalence Diseases: Metformin Toxicities. Am. J. Emerg. Med. 2023, 72, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Groth, O.; Roider, G.; Graw, M. Medikamenteninduzierte Todesfälle bei Niereninsuffizienz [Fatalities Associated with Failure to Adjust Drug Dose in Patients with Renal Insufficiency: A Retrospective Study at the Institute of Forensic Medicine in Munich (2019–2023)]. MMW Fortschritte Med. 2024, 166, 48–51. [Google Scholar] [CrossRef]
- Mariano, F.; Biancone, L. Metformin, Chronic Nephropathy and Lactic Acidosis: A Multi-Faceted Issue for the Nephrologist. J. Nephrol. 2021, 34, 1127–1135. [Google Scholar] [CrossRef]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of Hyperglycemia in Type 2 Diabetes, 2022: A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022, 45, 2753–2786. [Google Scholar] [CrossRef]
- Agur, T.; Steinmetz, T.; Goldman, S.; Zingerman, B.; Bielopolski, D.; Nesher, E.; Fattal, I.; Meisel, E.; Rozen-Zvi, B. The Impact of Metformin on Kidney Disease Progression and Mortality in Diabetic Patients Using SGLT2 Inhibitors: A Real-World Cohort Study. Cardiovasc. Diabetol. 2025, 24, 97. [Google Scholar] [CrossRef]
- Masouri, M.M.; Ebrahimi, R.; Noori, S. An Updated Systematic Review and Meta-Analysis on the Efficacy and Safety of Metformin as Add-On Therapy to Insulin in Patients with Type 1 Diabetes. Endocrinol. Diabetes Metab. 2025, 8, e70060. [Google Scholar] [CrossRef]
- Bao, J.; Zhao, Y.; Xu, X.; Ling, S. Advances in the Use of Metformin for Liver Disease. Curr. Med. Chem. 2025, 32, 3591–3605. [Google Scholar] [CrossRef]
- Cichocka, E.; Maj-Podsiadło, A.; Gumprecht, J. Polycystic Ovary Syndrome and Type 1 Diabetes—The Current State of Knowledge. Endokrynol. Pol. 2024, 75, 479–485. [Google Scholar] [CrossRef]
- Zhou, Z.; Luo, G.; Li, C.; Zhang, P.; Chen, W.; Li, X.; Tang, J.; Qing, L. Metformin induces M2 polarization via AMPK/PGC-1α/PPAR-γ pathway to improve peripheral nerve regeneration. Am. J. Transl. Res. 2023, 15, 3778–3792. [Google Scholar]
- Kalyanaraman, B.; Cheng, G.; Hardy, M.; Ouari, O.; Sikora, A.; Zielonka, J.; Dwinell, M. Mitochondria-targeted metformins: Anti-tumour and redox signalling mechanisms. Interface Focus 2017, 7, 20160109. [Google Scholar] [CrossRef] [PubMed]
- Amengual-Cladera, E.; Morla-Barcelo, P.M.; Morán-Costoya, A.; Sastre-Serra, J.; Pons, D.G.; Valle, A.; Roca, P.; Nadal-Serrano, M. Metformin: From Diabetes to Cancer—Unveiling Molecular Mechanisms and Therapeutic Strategies. Biology 2024, 13, 302. [Google Scholar] [CrossRef] [PubMed]
- Di Magno, L.; Di Pastena, F.; Bordone, R.; Coni, S.; Canettieri, G. The Mechanism of Action of Biguanides: New Answers to a Complex Question. Cancers 2022, 14, 3220. [Google Scholar] [CrossRef]
- Torunoglu, S.T.; Zajda, A.; Tampio, J.; Markowicz-Piasecka, M.; Huttunen, K.M. Metformin derivatives—Researchers’ friends or foes? Biochem. Pharmacol. 2023, 215, 115743. [Google Scholar] [CrossRef]
- Abbasi, M.; Heath, B.; McGinness, L. Advances in Metformin-Delivery Systems for Diabetes and Obesity Management. Diabetes Obes. Metab. 2024, 26, 3513–3529. [Google Scholar] [CrossRef]
- Feng, J.; Wang, X.; Ye, X.; Ares, I.; Lopez-Torres, B.; Martínez, M.; Martínez-Larrañaga, M.R.; Wang, X.; Anadón, A.; Martínez, M.A. Mitochondria as an Important Target of Metformin: The Mechanism of Action, Toxic and Side Effects, and New Therapeutic Applications. Pharmacol. Res. 2022, 177, 106114. [Google Scholar] [CrossRef]
- Finisguerra, V.; Dvorakova, T.; Formenti, M.; Van Meerbeeck, P.; Mignion, L.; Gallez, B.; Van den Eynde, B.J. Metformin improves cancer immunotherapy by directly rescuing tumor-infiltrating CD8 T lymphocytes from hypoxia-induced immunosuppression. J. Immunother. Cancer 2023, 11, e005719. [Google Scholar] [CrossRef]
- Rashad, A.A.; Elshafie, M.F.; Mangoura, S.A.; Akool, E.S. Modulatory effect of metformin and its transporters on immune infiltration in tumor microenvironment: A bioinformatic study with experimental validation. Discov. Oncol. 2025, 16, 973. [Google Scholar] [CrossRef]
- Abdelmoneim, M.; Aboalela, M.A.; Naoe, Y.; Matsumura, S.; Eissa, I.R.; Bustos-Villalobos, I.; Sibal, P.A.; Takido, Y.; Kodera, Y.; Kasuya, H. The Impact of Metformin on Tumor-Infiltrated Immune Cells: Preclinical and Clinical Studies. Int. J. Mol. Sci. 2023, 24, 13353. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Zhao, Z.; Jiang, J.; Geng, G. Effects of long-term metformin intake on postoperative clinicopathological characteristics in patients with invasive lung adenocarcinoma and type 2 diabetes mellitus: A retrospective analysis. PLoS ONE 2025, 20, e0329277. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Hu, J.; Ma, H. Clinical effect of treatment with metformin for type 2 diabetes on non-small cell lung cancer patients undergoing immunotherapy: A retrospective study. Int. J. Gen. Med. 2024, 17, 6595–6604. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, X. Advances in research on the anticancer properties and mechanisms of metformin in lung cancer. Br. J. Hosp. Med. 2024, 85, 1–14. [Google Scholar] [CrossRef]
- Bhati, F.K.; Bhat, M.K. An Anti-Neoplastic Tale of Metformin through Its Transport. Life Sci. 2024, 357, 123060. [Google Scholar] [CrossRef]
- Cai, H.; Zhang, Y.; Han, T.K.; Everett, R.S.; Thakker, D.R. Cation-Selective Transporters Are Critical to the AMPK-Mediated Antiproliferative Effects of Metformin in Human Breast Cancer Cells. Int. J. Cancer 2016, 138, 2281–2292. [Google Scholar] [CrossRef]
- Chowdhury, S.; Yung, E.; Pintilie, M.; Muaddi, H.; Chaib, S.; Yeung, M.; Fusciello, M.; Sykes, J.; Pitcher, B.; Hagenkort, A.; et al. MATE2 Expression Is Associated with Cancer Cell Response to Metformin. PLoS ONE 2016, 11, e0165214. [Google Scholar] [CrossRef]
- Pan, C.; Lee, L.T.O. Membrane drug transporters in cancer: From chemoresistance mechanism to therapeutic strategies. Biochim. Biophys. Acta Rev. Cancer 2025, 1880, 189272. [Google Scholar] [CrossRef]
- Saadh, M.J.; Mustafa, M.A.; Qassem, L.Y.; Ghadir, G.K.; Alaraj, M.; Alubiady, M.H.S.; Zain Al-Abdeen, S.H.; Shakier, H.G.; Alshahrani, M.Y.; Zwamel, A.H. Targeting hypoxic and acidic tumor microenvironment by nanoparticles: A review. J. Drug Deliv. Sci. Technol. 2024, 96, 105660. [Google Scholar] [CrossRef]


| Product Type | Release Mechanism/Technology | Dosing Frequency | Pharmaceutic Considerations |
|---|---|---|---|
| Immediate-release | Conventional tablet; rapid disintegration | 2–3 times daily | High solubility but low permeability (BCS III); short intestinal window; risk of GI intolerance. |
| Extended-release (XR/SR/ER) | Hydrophilic polymer matrices; gel-forming systems | Once daily | Smoother plasma profile; reduced GI side effects; requires hydration-controlled release. |
| Osmotic-controlled release | Osmotically driven drug release via semipermeable membrane | Once daily | Designed for sustained release independent of GI pH; larger tablet size. |
| Gastro-retentive systems | Gel-expansion or polymer-swelling technologies | Once daily | Prolongs gastric residence time to enhance proximal gut absorption where transporters are abundant. |
| Delayed-release (DR) | Enteric coating dissolving at higher pH | Once daily | Minimizes systemic exposure; targets distal-gut mechanisms; beneficial in renal impairment. |
| Fixed-dose combinations | Co-formulated IR or XR tablets depending on partner drug | Once or twice daily | Requires compatibility of dissolution profiles; improves adherence; biopharmaceutic complexity depends on co-formulated agent. |
| Transporter | Tissue Distribution | Function | Regulatory Mechanisms | Impact on Pharmacology | Translational/Clinical Implication | Formulation Relevance |
|---|---|---|---|---|---|---|
| OCT1 (SLC22A1) | Liver, intestine | Uptake | Genetic polymorphisms, epigenetic control | Determines hepatic accumulation and efficacy | Determines glucose-lowering efficacy; biomarker of response | Release rate and targeting influence hepatic delivery |
| OCT2 (SLC22A2) | Kidney (basolateral) | Uptake | Genetic polymorphisms | Affects renal clearance | Influences clearance and nephrotoxicity risk | Dose and formulation adjustment |
| OCT3 (SLC22A3) | Broad (intestine, heart, tumor cells) | Uptake | Epigenetic and transcriptional control | Variable tissue-specific uptake | Explains heterogeneous tumor response | Prolonged luminal exposure; tissue targeting |
| PMAT (SLC29A4) | Intestine, brain | Uptake | pH-sensitive transport | Influences absorption and CNS distribution | Affects GI tolerance and CNS exposure | Delayed-release, gut-targeted systems |
| MATE1 (SLC47A1) | Kidney, liver (apical) | Efflux | Transcriptional and environmental regulation (pH, hypoxia) | Controls intracellular exposure | Controls systemic exposure | Formulation/dose modulation |
| MATE2-K (SLC47A2) | Kidney | Efflux | Genetic variants | Modifies systemic clearance | Risk of accumulation in CKD | Personalized dosing strategies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Caturano, A.; Nilo, D.; Nilo, R.; Sircana, M.C.; Erul, E.; Zielińska, K.; Russo, V.; Santonastaso, E.; Sasso, F.C. Old Drug, New Science: Metformin and the Future of Pharmaceutics. Pharmaceutics 2026, 18, 77. https://doi.org/10.3390/pharmaceutics18010077
Caturano A, Nilo D, Nilo R, Sircana MC, Erul E, Zielińska K, Russo V, Santonastaso E, Sasso FC. Old Drug, New Science: Metformin and the Future of Pharmaceutics. Pharmaceutics. 2026; 18(1):77. https://doi.org/10.3390/pharmaceutics18010077
Chicago/Turabian StyleCaturano, Alfredo, Davide Nilo, Roberto Nilo, Marta Chiara Sircana, Enes Erul, Katarzyna Zielińska, Vincenzo Russo, Erica Santonastaso, and Ferdinando Carlo Sasso. 2026. "Old Drug, New Science: Metformin and the Future of Pharmaceutics" Pharmaceutics 18, no. 1: 77. https://doi.org/10.3390/pharmaceutics18010077
APA StyleCaturano, A., Nilo, D., Nilo, R., Sircana, M. C., Erul, E., Zielińska, K., Russo, V., Santonastaso, E., & Sasso, F. C. (2026). Old Drug, New Science: Metformin and the Future of Pharmaceutics. Pharmaceutics, 18(1), 77. https://doi.org/10.3390/pharmaceutics18010077

