Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (187)

Search Parameters:
Keywords = anti-biofouling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3103 KiB  
Article
Resin Composites with Anti-Biofouling Zwitterionic Polymer and Silica/Zirconia Filler for Digital Light Processing (DLP) of Dental Protheses
by Yun-Hee Lee, Jae-Min Jung, Gyu-Nam Kim and Young-Hag Koh
Materials 2025, 18(15), 3677; https://doi.org/10.3390/ma18153677 - 5 Aug 2025
Abstract
This study aimed to develop an innovative resin composite with anti-biofouling properties, tailored to prosthesis fabrication in dentistry using a digital light processing (DLP) 3D-printing technique. The resin composite was formulated using a blend of dental monomers, with the integration of 2-methacryloyloxylethyl phosphorylcholine [...] Read more.
This study aimed to develop an innovative resin composite with anti-biofouling properties, tailored to prosthesis fabrication in dentistry using a digital light processing (DLP) 3D-printing technique. The resin composite was formulated using a blend of dental monomers, with the integration of 2-methacryloyloxylethyl phosphorylcholine (MPC) with anti-biofouling behavior and γ-MPS-treated silica-zirconia powder for simultaneous mechanical reinforcement. The overall characterization of the resin composite was carried out using various contents of MPC incorporated into the resin (0–7 wt%) for examining the rheological behavior, photopolymerization, flexural strength/modulus, microstructure and anti-biofouling efficiency. The resin composite demonstrated a significant reduction in bacterial adhesion (97.4% for E. coli and 86.5% for S. aureus) and protein adsorption (reduced OD value from 1.3 ± 0.4 to 0.8 ± 0.2) with 7 wt% of MPC incorporation, without interfering with photopolymerization to demonstrate potential suitability for 3D printing without issues (p < 0.01, and p < 0.05, respectively). The incorporation and optimization of γ-MPS-treated silica-zirconia powder (10–40 vol%) enhanced mechanical properties, leading to a reasonable flexural strength (103.4 ± 6.1 MPa) and a flexural modulus (4.3 ± 0.4 GPa) at 30 vol% (n = 6). However, a further increase to 40 vol% resulted in a reduction in flexural strength and modulus; nevertheless, the results were above ISO 10477 standards for dental materials. Full article
(This article belongs to the Special Issue Innovative Restorative Dental Materials and Fabrication Techniques)
Show Figures

Figure 1

15 pages, 2594 KiB  
Article
Novel Zwitterionic Hydrogels with High and Tunable Toughness for Anti-Fouling Application
by Kefan Wu, Xiaoyu Guo, Jingyao Feng, Xiaoxue Yang, Feiyang Li, Xiaolin Wang and Hui Guo
Gels 2025, 11(8), 587; https://doi.org/10.3390/gels11080587 - 30 Jul 2025
Viewed by 212
Abstract
Zwitterionic hydrogels have emerged as eco-friendly anti-fouling materials owing to their superior hydration-mediated resistance to biofouling. Nevertheless, their practical utility remains constrained by intrinsically poor mechanical robustness. Herein, this study proposes a novel strategy to develop novel tough zwitterionic hydrogels by freezing the [...] Read more.
Zwitterionic hydrogels have emerged as eco-friendly anti-fouling materials owing to their superior hydration-mediated resistance to biofouling. Nevertheless, their practical utility remains constrained by intrinsically poor mechanical robustness. Herein, this study proposes a novel strategy to develop novel tough zwitterionic hydrogels by freezing the gels’ polymer network. As a proof of concept, a zwitterionic hydrogel was synthesized via copolymerization of hydrophobic monomer phenyl methacrylate (PMA) and hydrophilic cationic monomer N-(3-dimethylaminopropyl) methacrylamide (DMAPMA), followed by post-oxidation to yield a zwitterionic structure. At service temperature, the rigid and hydrophobic PMA segments remain frozen, while the hydrophilic zwitterionic units maintain substantial water content by osmotic pressure. Synergistically, the zwitterionic hydrogel achieves robust toughness and adhesiveness, with high rigidity (66 MPa), strength (4.78 MPa), and toughness (2.53 MJ/m3). Moreover, the hydrogel exhibits a distinct temperature-dependent behavior by manifesting softer and more stretchable behavior after heating, since the thawing of the gel network at high temperatures increases segmental mobility. Therefore, it achieved satisfactory adhesiveness to substrates (80 kPa). Additionally, the hydrogel demonstrated remarkable anti-fouling performance, effectively suppressing biofilm formation and larval attachment. In summary, this work opens up promising prospects for the development of zwitterionic hydrogels with high application potential. Full article
Show Figures

Figure 1

14 pages, 8001 KiB  
Article
Preparation of Transparent MTMS/BNNS Composite Siloxane Coatings with Anti-Biofouling Properties
by Lu Cao, Zhutao Ding, Qi Chen, Yefeng Ji, Ying Xiong, Yun Gao and Zhongyan Huo
Coatings 2025, 15(7), 769; https://doi.org/10.3390/coatings15070769 - 29 Jun 2025
Viewed by 386
Abstract
With the rapid development of marine renewable energy, especially offshore photovoltaic systems, the problem of biofouling of photovoltaic equipment in the marine environment has become increasingly prominent. The attachment of marine organisms such as algae will significantly affect the photoelectric conversion efficiency of [...] Read more.
With the rapid development of marine renewable energy, especially offshore photovoltaic systems, the problem of biofouling of photovoltaic equipment in the marine environment has become increasingly prominent. The attachment of marine organisms such as algae will significantly affect the photoelectric conversion efficiency of photovoltaic panels, thereby reducing the stability and economy of the system. In this study, a composite siloxane coating was designed and prepared. Methyltrimethoxysilane (MTMS) was used as the organosilicon component. The negative potential of the coating was significantly enhanced by incorporating hexagonal boron nitride nanosheets (h-BNNS). This negative potential and the negative charge on the surface of marine organisms, especially algae, would produce electrostatic repulsion, which can effectively reduce the attachment of organisms. The results show that the prepared coating exhibits excellent performance in anti-biofouling, adhesion, chemical stability, transparency, and self-cleaning properties. The transparency of the coating reached 92.7%. After immersion with Chlorella for 28 days, the coverage percentage on the coating surface was only 0.98%, while the coverage percentage on the blank sample was 23.25%. The corrosion resistance and salt resistance of the coating also ensure its stability in complex marine environments, and it has broad application prospects. Full article
(This article belongs to the Special Issue Advanced Polymer Coatings: Materials, Methods, and Applications)
Show Figures

Graphical abstract

14 pages, 1243 KiB  
Review
Tertiary Amine Oxide-Containing Zwitterionic Polymers: From Material Design to Biomedical Applications
by Jian Shen, Tao Sun and Yunke Bi
Pharmaceutics 2025, 17(7), 846; https://doi.org/10.3390/pharmaceutics17070846 - 27 Jun 2025
Viewed by 355
Abstract
Tertiary amine oxide (TAO)-containing zwitterionic polymers are a class of zwitterionic materials formed by the oxidation of tertiary amine groups. In recent years, polymers such as poly(2-(N-oxide-N,N-diethylamino)ethyl methacrylate) (OPDEA) have gained significant attention due to their unique antifouling properties, dynamic cell membrane affinity, [...] Read more.
Tertiary amine oxide (TAO)-containing zwitterionic polymers are a class of zwitterionic materials formed by the oxidation of tertiary amine groups. In recent years, polymers such as poly(2-(N-oxide-N,N-diethylamino)ethyl methacrylate) (OPDEA) have gained significant attention due to their unique antifouling properties, dynamic cell membrane affinity, and responsiveness to microenvironments. These characteristics have made them promising candidates in drug delivery, antibiofouling, and precision therapy. Compared to traditional polyethylene glycol (PEG), these polymers not only exhibit long-circulation properties but can also overcome biological barriers through active transport mechanisms, making them a research hotspot in the field of next-generation biomaterials. This review comprehensively summarizes the recent advancements in this field, covering aspects such as the synthesis, properties, applications, and mechanisms of TAO-containing zwitterionic polymers. Full article
Show Figures

Figure 1

17 pages, 2486 KiB  
Article
Antifouling Mussel-Inspired Hydrogel with Furanone-Loaded ZIF-8 for Quorum Sensing-Mediated Marine Antifouling
by Yanbin Xiong, Junnan Cui, Xiaodan Liu, Haobo Shu and Pan Cao
Gels 2025, 11(6), 466; https://doi.org/10.3390/gels11060466 - 18 Jun 2025
Viewed by 477
Abstract
Marine biofouling, the process of marine microorganisms, algae, and invertebrates attaching to and forming biofilms on ship hulls, underwater infrastructure, and marine equipment in ocean environments, severely impacts shipping and underwater operations by increasing fuel consumption, maintenance costs, and corrosion risks, and by [...] Read more.
Marine biofouling, the process of marine microorganisms, algae, and invertebrates attaching to and forming biofilms on ship hulls, underwater infrastructure, and marine equipment in ocean environments, severely impacts shipping and underwater operations by increasing fuel consumption, maintenance costs, and corrosion risks, and by threatening marine ecosystem stability via invasive species transport. This study reports the development of a hydrogel-metal-organic framework (MOF)-quorum sensing inhibitor (QSI) antifouling coating on 304 stainless steel (SS) substrates. Inspired by mussel adhesion, a hydrophilic bionic hydrogel was first constructed via metal ion coordination. The traditional metal ion source was replaced with a zeolitic imidazolate framework-8 (ZIF-8) loaded with 2-(5H)-furanone (HF, a QSI) without altering coating formation. Physicochemical characterization using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), the Brunauer–Emmett–Teller (BET) method, and the diffraction of x-rays (XRD) confirmed successful HF loading into ZIF-8 with intact crystal structures. Antifouling tests showed HF@ZIF-8 enhanced antibacterial inhibition against Staphylococcus aureus (97.28%) and Escherichia coli (>97%) and suppressed Chromobacterium violaceum CV026 pigment synthesis at 0.25 mg/mL (sub-growth concentration). The reconstructed PG/PVP/PEI/HF@ZIF-8 coating achieved 72.47% corrosion inhibition via synergistic anodic protection and physical shielding. This work provides a novel green approach for surface antifouling and drag reduction, highlighting MOF-loaded QSIs as promising additives to enhance the antifouling performance of hydrogel coatings, anti-corrosion performance, and QSI performance for sustainable marine engineering applications. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

24 pages, 4306 KiB  
Article
Hydraulic Performance and Mitigation of Biofouling in Drippers Applying Aquaculture Effluent with Anti-Clogging Fertilizer
by Layla Bruna Lopes Reges, Rafael Oliveira Batista, Lidianne Leal Rocha, Gustavo Lopes Muniz, Laio Ariel Leite de Paiva, Francisco Éder Rodrigues de Oliveira, José Francismar de Medeiros, Antônio Gustavo de Luna Souto, Luiz Fernando de Sousa Antunes, Eulene Francisco da Silva, Norlan Leonel Ramos Cruz and Luara Patrícia Lopes Morais
AgriEngineering 2025, 7(6), 189; https://doi.org/10.3390/agriengineering7060189 - 13 Jun 2025
Viewed by 513
Abstract
Water scarcity in Brazil’s semi-arid region necessitates the agricultural reuse of aquaculture effluents, although emitter clogging remains a challenge. This study evaluated clogging mitigation in drip irrigation systems using liquid anti-clogging fertilizer. The experiment employed a split–split–plot scheme with three water treatments (supply [...] Read more.
Water scarcity in Brazil’s semi-arid region necessitates the agricultural reuse of aquaculture effluents, although emitter clogging remains a challenge. This study evaluated clogging mitigation in drip irrigation systems using liquid anti-clogging fertilizer. The experiment employed a split–split–plot scheme with three water treatments (supply water, aquaculture effluent, and effluent with liquid fertilizer) and three emitter types (ST, SL, and GA), assessing performance over 360 h. A water quality analysis at 0, 160, and 360 h complemented hydraulic evaluations of the average flow rate variation and Christiansen uniformity coefficient measured every 40 h. Energy-dispersive X-ray spectroscopy, X-ray diffractometry, and scanning electron microscopy were used to characterize biofouling. The results showed that the liquid fertilizer mitigated the clogging by biofouling in the three types of emitters, but only the ST emitter presented acceptable hydraulic performance rates. There are relationships between the anti-clogging effect of the liquid fertilizer, the structural characteristics of the emitters, and the flow velocity inside the labyrinths. The SL dripper applying only aquaculture effluent presented the highest clogging rate due to biofouling. Agricultural reuse is a strategy for the rational use of water resources that is of great relevance for arid and semi-arid regions and can insert aquaculture into the circular economy. Full article
(This article belongs to the Section Agricultural Irrigation Systems)
Show Figures

Figure 1

23 pages, 4562 KiB  
Review
Biomimetic Superhydrophobic Surfaces: From Nature to Application
by Yingke Wang, Jiashun Li, Haoran Song, Fenxiang Wang, Xuan Su, Donghe Zhang and Jie Xu
Materials 2025, 18(12), 2772; https://doi.org/10.3390/ma18122772 - 12 Jun 2025
Cited by 1 | Viewed by 754
Abstract
Research on bionic superhydrophobic surfaces draws inspiration from the microstructures and wetting mechanisms of natural organisms such as lotus leaves, water striders, and butterfly wings, offering innovative approaches for developing artificial functional surfaces. By synergistically combining micro/nano hierarchical structures with low surface energy [...] Read more.
Research on bionic superhydrophobic surfaces draws inspiration from the microstructures and wetting mechanisms of natural organisms such as lotus leaves, water striders, and butterfly wings, offering innovative approaches for developing artificial functional surfaces. By synergistically combining micro/nano hierarchical structures with low surface energy chemical modifications, researchers have devised various fabrication strategies—including laser etching, sol-gel processes, electrochemical deposition, and molecular self-assembly—to achieve superhydrophobic surfaces characterized by contact angles exceeding 150° and sliding angles below 5°. These technologies have found widespread applications in self-cleaning architectural coatings, efficient oil–water separation membranes, anti-icing materials for aviation, and anti-biofouling medical devices. This article begins by examining natural organisms exhibiting superhydrophobic properties, elucidating the principles underlying their surface structures and the wetting states of droplets on solid surfaces. Subsequently, it categorizes and highlights key fabrication methods and application domains of superhydrophobic surfaces, providing an in-depth and comprehensive discussion. Full article
Show Figures

Figure 1

15 pages, 586 KiB  
Article
Antifouling Properties of N,N′-Dialkylated Tetraazamacrocyclic Polyamines and Their Metal Complexes
by Mathieu Berchel, Dorsaf Malouch, Maryline Beyler, Maryline Fauchon, Yannick Toueix, Claire Hellio and Paul-Alain Jaffrès
Molecules 2025, 30(11), 2368; https://doi.org/10.3390/molecules30112368 - 29 May 2025
Cited by 1 | Viewed by 341
Abstract
The prevention of biofouling (biological fouling) became a major economic and environmental issue. In the present study, we designed a series of four cyclam and cyclen derivatives with a modulation of their lipophilicity by introducing either two benzyl (Bn) groups or two tetradecyl [...] Read more.
The prevention of biofouling (biological fouling) became a major economic and environmental issue. In the present study, we designed a series of four cyclam and cyclen derivatives with a modulation of their lipophilicity by introducing either two benzyl (Bn) groups or two tetradecyl (C14) chains in the structure to produce (Cyclam(Bn)2, Cyclam(C14)2, Cyclen(Bn)2 and Cyclen(C14)2). Additionally, copper (Cu) and zinc (Zn) complexes of each compound were prepared and evaluated as potential antifouling candidates against two models of Vibrio species (V. natriegens and V. aestuarianus). The results highlight that no significant antifouling activity was measured for the metal free polyazamacrocyclic derivatives. However, for the metal complexes, the nature of the cation (Cu2+ or Zn2+) modulates both the growth and adhesion capacities of the two bacteria. Overall, in most cases, Zn complexes showed better activity than the Cu complexes, revealing the importance of the metal cation. Moreover, in the cyclam series, the anti-adhesion properties could be linked to a biocidal effect while a full anti-adhesion activity was observed in the cyclen series. Full article
(This article belongs to the Special Issue Chemical Design and Synthesis of Antimicrobial Drugs)
Show Figures

Figure 1

20 pages, 4911 KiB  
Article
Tannic Acid/Lysozyme-Assembled Loose Nanofiltration Membrane with Outstanding Antifouling Properties for Efficient Dye/Salt Separation
by Jianmao Yang, Xuzhao Yan, Shuai Liu, Mengchen Shi, Ying Huang, Fang Li and Xiaofeng Fang
Separations 2025, 12(5), 129; https://doi.org/10.3390/separations12050129 - 16 May 2025
Viewed by 503
Abstract
Precise separation and antifouling capabilities are critical for the application of membrane separation technology. In this work, we developed a multiplayer layer-by-layer assembly strategy to sequentially deposit tannic acid (TA) and lysozyme (Lys) onto polyethersulfone/iron (PES/Fe) ultrafiltration membrane substrates, enabling the simple and [...] Read more.
Precise separation and antifouling capabilities are critical for the application of membrane separation technology. In this work, we developed a multiplayer layer-by-layer assembly strategy to sequentially deposit tannic acid (TA) and lysozyme (Lys) onto polyethersulfone/iron (PES/Fe) ultrafiltration membrane substrates, enabling the simple and efficient fabrication of a biofouling-resistant loose nanofiltration (LNF) membrane with superior dye/salt separation performance. This approach fully leverages the multifunctionality of TA by exploiting its coordination with Fe3⁺ and non-covalent interactions with Lys. The obtained PES/Fe-TA-Lys LNF membrane exhibits a pure water flux of 57.5 L·m−2·h−1, along with exceptional dye rejection rates (98.3% for Congo Red (CR), 99.2% for Methyl Blue (MB), 98.4% for Eriochrome Black T (EBT), and 67.6% for Acid Orange 74 (AO74)) while maintaining minimal salt retention (8.2% for Na2SO4, 4.3% for MgSO4, 3.5% for NaCl, and 2.4% for MgCl2). The PES/Fe-TA-Lys LNF membrane also displays outstanding antifouling performance against bovine serum albumin (BSA), humic acid (HA), and CR, along with strong biofouling resistance against Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) via synergistic anti-adhesion and biofilm inhibiting effects. This work presents a novel and scalable approach to fabricating biofouling-resistant LNF membranes, offering great potential for dye/salt separation in textile wastewater treatment. Full article
Show Figures

Figure 1

2 pages, 634 KiB  
Correction
Correction: Zahid et al. Fabrication and Characterization of Sulfonated Graphene Oxide-Doped Polymeric Membranes with Improved Anti-Biofouling Behavior. Membranes 2021, 11, 563
by Muhammad Zahid, Anum Rashid, Saba Akram, H. M. Fayzan Shakir, Zulfiqar Ahmad Rehan, Talha Javed, Rubab Shabbir and Mahmoud M. Hessien
Membranes 2025, 15(5), 131; https://doi.org/10.3390/membranes15050131 - 29 Apr 2025
Viewed by 477
Abstract
In the original publication [...] Full article
(This article belongs to the Special Issue Microfluidics and MEMS Technology for Membranes)
Show Figures

Figure 5

18 pages, 7158 KiB  
Article
A Robust Natural Rubber–Polyzwitterion Composite Hydrogel for Highly Enhanced Marine Anti-Biofouling
by Ye Sun, Dominic John, Yuxin Yan, Xueliang Feng, Qingrong Wei, Chunxin Ma, Zhenzhong Liu, Haimei Mao, Tuck-Whye Wong and Yun Chen
Gels 2025, 11(3), 203; https://doi.org/10.3390/gels11030203 - 14 Mar 2025
Viewed by 751
Abstract
Polyzwitterion (PZW) hydrogel has excellent marine anti-biofouling performance, but it is difficult to effectively work for a long time in natural seawater due to its weak mechanical strength. In this study, a new natural rubber (NR)-PZW composite hydrogel has been reported for long-term [...] Read more.
Polyzwitterion (PZW) hydrogel has excellent marine anti-biofouling performance, but it is difficult to effectively work for a long time in natural seawater due to its weak mechanical strength. In this study, a new natural rubber (NR)-PZW composite hydrogel has been reported for long-term anti-biofouling by simply dispersing NR latex into the poly(sulfobetaine methacrylate) (PSBMA) hydrogel network. First of all, owing to the PZW hydrogel network having an anti-polyelectrolyte effect, this NR-PZW hydrogel can provide outstanding anti-biofouling performance, including broad-spectrum anti-bacteria, anti-algae, and anti-protein properties in marine environments. Furthermore, it has a composited natural rubber nanoparticle with a hydrophilic negatively charged outer protein membrane, which can uniformly disperse in the hydrogel to significantly improve its mechanical properties. Therefore, this composited hydrogel can provide not only highly enhanced tensile strength (0.52 MPa) but also ultra-high breaking elongation (738%), which can effectually resist harsh seawater environments. As a result, the NR-PZW composite hydrogel can achieve excellent anti-biofouling performance for more than 3 months within a real marine environment. This work can provide an excellent, robust polyzwitterionic hydrogel for long-term marine anti-biofouling, which will also inspire new strategies for anti-biofouling materials. Full article
(This article belongs to the Special Issue Customizing Hydrogels: A Journey from Concept to End-Use Properties)
Show Figures

Figure 1

27 pages, 8871 KiB  
Article
Integrated Biological and Chemical Investigation of Indonesian Marine Organisms Targeting Anti-Quorum-Sensing, Anti-Biofilm, Anti-Biofouling, and Anti-Biocorrosion Activities
by Novriyandi Hanif, Jihan Azmi Miftah, Henny Dwi Yanti, Emmanuel Tope Oluwabusola, Vira Amanda Zahra, Nurul Farhana Salleh, Binu Kundukad, Lik Tong Tan, Nicole J. de Voogd, Nisa Rachmania, Marcel Jaspars, Staffan Kjelleberg, Dedi Noviendri, Anggia Murni and Junichi Tanaka
Molecules 2025, 30(6), 1202; https://doi.org/10.3390/molecules30061202 - 7 Mar 2025
Viewed by 2768
Abstract
Microorganisms play a significant role in biofouling and biocorrosion within the maritime industry. Addressing these challenges requires an innovative and integrated approach utilizing marine natural products with beneficial properties. A comprehensive screening of 173 non-toxic EtOAc and H₂O extracts derived from diverse marine [...] Read more.
Microorganisms play a significant role in biofouling and biocorrosion within the maritime industry. Addressing these challenges requires an innovative and integrated approach utilizing marine natural products with beneficial properties. A comprehensive screening of 173 non-toxic EtOAc and H₂O extracts derived from diverse marine organisms collected in Indonesian waters was conducted using a robust panel of assays. These included antimicrobial tests and classical biosurfactant assays (drop collapse and oil displacement), as well as anti-quorum-sensing (QS) and anti-biofilm assays. These screening efforts identified five active extracts with promising activities. Among these, EtOAc extracts of the marine tunicate Sigilina cf. signifera (0159-22e) and the marine sponge Lamellodysidea herbacea (0194-24c) demonstrated significant anti-biofouling activity against Perna indica and anti-biocorrosion performance (mpy 10.70 ± 0.70 for S. cf. signifera; 7.87 ± 0.86 for L. herbacea; 13.60 ± 1.70 for positive control Tetracorr CI-2915). Further chemical analyses of the active extracts, including LC-HR-MS/MS, MS-based molecular networking, and chemoinformatics, revealed the presence of both known and new bioactive compounds. These included tambjamines and polybrominated diphenyl ethers (PBDEs), which are likely contributors to the observed bioactivities. Subsequent investigations uncovered new anti-QS and anti-biofilm properties in synthetic and natural PBDEs 112 previously derived from L. herbacea. Among these, 8 exhibited the most potent anti-QS activity, with an IC50 value of 15 µM, while 4 significantly reduced biofilm formation at a concentration of 1 µM. This study highlights the potential of marine-derived compounds in addressing biofouling and biocorrosion challenges in a sustainable and effective manner. Full article
Show Figures

Graphical abstract

15 pages, 2911 KiB  
Article
Extend Plastron Longevity on Superhydrophobic Surface Using Gas Soluble and Gas Permeable Polydimethylsiloxane (PDMS)
by Ankit Gupta and Hangjian Ling
Biomimetics 2025, 10(1), 45; https://doi.org/10.3390/biomimetics10010045 - 13 Jan 2025
Viewed by 1221
Abstract
The gas (or plastron) trapped between micro/nano-scale surface textures, such as that on superhydrophobic surfaces, is crucial for many engineering applications, including drag reduction, heat and mass transfer enhancement, anti-biofouling, anti-icing, and self-cleaning. However, the longevity of the plastron is significantly affected by [...] Read more.
The gas (or plastron) trapped between micro/nano-scale surface textures, such as that on superhydrophobic surfaces, is crucial for many engineering applications, including drag reduction, heat and mass transfer enhancement, anti-biofouling, anti-icing, and self-cleaning. However, the longevity of the plastron is significantly affected by gas diffusion, a process where gas molecules slowly diffuse into the ambient liquid. In this work, we demonstrated that plastron longevity could be extended using a gas-soluble and gas-permeable polydimethylsiloxane (PDMS) surface. We performed experiments for PDMS surfaces consisting of micro-posts and micro-holes. We measured the plastron longevity in undersaturated liquids by an optical method. Our results showed that the plastron longevity increased with increasing the thickness of the PDMS surface, suggesting that gas initially dissolved between polymer chains was transferred to the liquid, delaying the wetting transition. Numerical simulations confirmed that a thicker PDMS material released more gas across the PDMS–liquid interface, resulting in a higher gas concentration near the plastron. Furthermore, we found that plastron longevity increased with increasing pressure differences across the PDMS material, indicating that the plastron was replenished by the gas injected through the PDMS. With increasing pressure, the mass flux caused by gas injection surpassed the mass flux caused by the diffusion of gas from plastron to liquid. Overall, our results provide new solutions for extending plastron longevity and will have significant impacts on engineering applications where a stable plastron is desired. Full article
(This article belongs to the Special Issue Superhydrophobic Surfaces: Challenges, Solutions and Applications)
Show Figures

Figure 1

24 pages, 6262 KiB  
Article
New Brusatol Derivatives as Anti-Settlement Agents Against Barnacles, Targeting HSP90: Design, Synthesis, Biological Evaluation, and Molecular Docking Investigations
by Wang Jiang, Tongtong Luan, Pei Cao, Zhonghui Ma and Zhiwei Su
Int. J. Mol. Sci. 2025, 26(2), 593; https://doi.org/10.3390/ijms26020593 - 12 Jan 2025
Viewed by 1199
Abstract
The increasing challenge of marine biofouling, mainly due to barnacle settlement, necessitates the development of effective antifoulants with minimal environmental toxicity. In this study, fifteen derivatives of brusatol were synthesized and characterized using 13C-NMR, 1H-NMR, and mass spectrometry. All the semi-synthesized [...] Read more.
The increasing challenge of marine biofouling, mainly due to barnacle settlement, necessitates the development of effective antifoulants with minimal environmental toxicity. In this study, fifteen derivatives of brusatol were synthesized and characterized using 13C-NMR, 1H-NMR, and mass spectrometry. All the semi-synthesized compounds obtained using the Multi-Target-Directed Ligand (MTDL) strategy, when evaluated as anti-settlement agents against barnacles, showed promising activity. Compound 3 exhibited the highest anti-settlement capacity, with an EC50 value of 0.1475 μg/mL, an LC50/EC50 ratio of 42.2922 (>15 indicating low toxicity), and a resuscitation rate of 71.11%, while it showed no significant phenotypic differences in the zebrafish embryos after treatment for 48 h. The toxicity screening of zebrafish also demonstrated the low ecotoxicity of the selected compounds. Furthermore, homology modeling of the HSP90 structure was performed based on related protein sequences in barnacles. Subsequently, molecular docking studies were conducted on HSP90 using these newly synthesized derivatives. Molecular docking analyses showed that most activated derivatives displayed low binding energies with HSP90, aligning well with the biological results. They were found to interact with key residues in the binding site, specifically ARG243, TYR101, and LEU73. These computational findings are anticipated to aid in predicting the enzyme targets of the tested inhibitors and their potential interactions, thus facilitating the design of novel antifoulants in future research endeavors. Full article
Show Figures

Graphical abstract

19 pages, 10301 KiB  
Article
Biocompatible Carbon Dots/Polyurethane Composites as Potential Agents for Combating Bacterial Biofilms: N-Doped Carbon Quantum Dots/Polyurethane and Gamma Ray-Modified Graphene Quantum Dots/Polyurethane Composites
by Zoran Marković, Sladjana Dorontić, Svetlana Jovanović, Janez Kovač, Dušan Milivojević, Dragana Marinković, Marija Mojsin and Biljana Todorović Marković
Pharmaceutics 2024, 16(12), 1565; https://doi.org/10.3390/pharmaceutics16121565 - 6 Dec 2024
Cited by 3 | Viewed by 1380
Abstract
Background: Pathogen bacteria appear and survive on various surfaces made of steel or glass. The existence of these bacteria in different forms causes significant problems in healthcare facilities and society. Therefore, the surface engineering of highly potent antimicrobial coatings is highly important in [...] Read more.
Background: Pathogen bacteria appear and survive on various surfaces made of steel or glass. The existence of these bacteria in different forms causes significant problems in healthcare facilities and society. Therefore, the surface engineering of highly potent antimicrobial coatings is highly important in the 21st century, a period that began with a series of epidemics. Methods: In this study, we prepared two types of photodynamic polyurethane-based composite films encapsulated by N-doped carbon quantum dots and graphene quantum dots irradiated by gamma rays at a dose of 50 kGy, respectively. Further, we investigated their structural, optical, antibacterial, antibiofouling and biocompatibility properties. Results: Nanoelectrical and nanomechanical microscopy measurements revealed deviations in the structure of these quantum dots and polyurethane films. The Young’s modulus of elasticity of the carbon and graphene quantum dots was several times lower than that for single-walled carbon nanotubes (SWCNTs) with chirality (6,5). The electrical properties of the carbon and graphene quantum dots were quite similar to those of the SWCNTs (6,5). The polyurethane films with carbon quantum dots were much more elastic and smoother than the films with graphene quantum dots. Antibacterial tests indicated excellent antibacterial activities of these films against a wide range of tested bacteria, whereas the antibiofouling activities of both composite films showed the best results against the Staphylococcus aureus and Escherichia coli biofilms. Biocompatibility studies showed that neither composite film exhibited any cytotoxicity or hemolysis. Conclusions: Obtained results indicate that these composite films could be used as antibacterial surfaces in the healthcare facilities. Full article
Show Figures

Figure 1

Back to TopTop