Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = anti-TNF-α (anti-tumor necrosis factor alpha) agent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2972 KiB  
Article
Flavonoids from Cercidiphyllum japonicum Exhibit Bioactive Potential Against Skin Aging and Inflammation in Human Dermal Fibroblasts
by Minseo Kang, Sanghyun Lee, Dae Sik Jang, Sullim Lee and Daeyoung Kim
Curr. Issues Mol. Biol. 2025, 47(8), 631; https://doi.org/10.3390/cimb47080631 - 7 Aug 2025
Abstract
With increasing interest in natural therapeutic strategies for skin aging, plant-derived compounds have gained attention for their potential to protect against oxidative stress and inflammation. In this study, we investigated the anti-aging and anti-inflammatory effects of flavonoids isolated from Cercidiphyllum japonicum using a [...] Read more.
With increasing interest in natural therapeutic strategies for skin aging, plant-derived compounds have gained attention for their potential to protect against oxidative stress and inflammation. In this study, we investigated the anti-aging and anti-inflammatory effects of flavonoids isolated from Cercidiphyllum japonicum using a tumor necrosis factor-alpha (TNF-α)-stimulated normal human dermal fibroblast (NHDF) model. The aerial parts of C. japonicum were extracted and analyzed by high-performance liquid chromatography (HPLC), leading to the identification of four major compounds: maltol, chlorogenic acid, ellagic acid, and quercitrin. Each compound was evaluated for its antioxidant and anti-aging activities in TNF-α-stimulated NHDFs. Among them, ellagic acid exhibited the most potent biological activity and was selected for further mechanistic analysis. Ellagic acid significantly suppressed intracellular reactive oxygen species (ROS) generation and matrix metalloproteinase-1 (MMP-1) secretion (both p < 0.001), while markedly increasing type I procollagen production (p < 0.01). Mechanistic studies demonstrated that ellagic acid inhibited TNF-α-induced phosphorylation of mitogen-activated protein kinases (MAPKs), downregulated cyclooxygenase-2 (COX-2), and upregulated heme oxygenase-1 (HO-1), a key antioxidant enzyme. Additionally, ellagic acid attenuated the mRNA expression of inflammatory cytokines, including interleukin-6 (IL-6) and interleukin-8 (IL-8), indicating its broad modulatory effects on oxidative and inflammatory pathways. Collectively, these findings suggest that ellagic acid is a promising plant-derived bioactive compound with strong antioxidant and anti-inflammatory properties, offering potential as a therapeutic agent for the prevention and treatment of skin aging. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

17 pages, 4113 KiB  
Article
Protective Effect of Camellia japonica Extract on 2,4-Dinitrochlorobenzene (DNCB)-Induced Atopic Dermatitis in an SKH-1 Mouse Model
by Chaodeng Mo, Md. Habibur Rahman, Thu Thao Pham, Cheol-Su Kim, Johny Bajgai and Kyu-Jae Lee
Int. J. Mol. Sci. 2025, 26(15), 7286; https://doi.org/10.3390/ijms26157286 - 28 Jul 2025
Viewed by 287
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disorder characterized by immune dysregulation and skin barrier impairment. This study evaluated the anti-inflammatory and immunomodulatory effects of Camellia japonica extract in a 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model using SKH-1 hairless mice. Topical application [...] Read more.
Atopic dermatitis (AD) is a common chronic inflammatory skin disorder characterized by immune dysregulation and skin barrier impairment. This study evaluated the anti-inflammatory and immunomodulatory effects of Camellia japonica extract in a 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model using SKH-1 hairless mice. Topical application of Camellia japonica extract for four weeks significantly alleviated AD-like symptoms by reducing epidermal thickness, mast cell infiltration, and overall skin inflammation. Hematological analysis revealed a marked decrease in total white blood cell (WBC) and neutrophil counts. Furthermore, the Camellia japonica extract significantly decreased oxidative stress, as evidenced by reduced serum reactive oxygen species (ROS) and nitric oxide (NO) levels, while enhancing the activity of antioxidant enzymes such as catalase. Importantly, allergic response markers including serum immunoglobulin E (IgE), histamine, and thymic stromal lymphopoietin (TSLP), were also downregulated. At the molecular level, Camellia japonica extract suppressed the expression of key pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and T helper 2 (Th2)-type cytokines such as IL-4 and IL-5, while slightly upregulating the anti-inflammatory cytokine IL-10. Collectively, these findings suggest that Camellia japonica extract effectively modulates immune responses, suppresses allergic responses, attenuates oxidative stress, and promotes skin barrier recovery. Therefore, application of Camellia japonica extract holds the promising effect as a natural therapeutic agent for the prevention and treatment of AD-like skin conditions. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

29 pages, 2331 KiB  
Review
Therapeutic Potential of Tanshinones in Osteolytic Diseases: From Molecular and Cellular Pathways to Preclinical Models
by Rafael Scaf de Molon
Dent. J. 2025, 13(7), 309; https://doi.org/10.3390/dj13070309 - 9 Jul 2025
Viewed by 497
Abstract
Tanshinones are a class of lipophilic diterpenoid quinones extracted from Salvia miltiorrhiza (Dan shen), a widely used herb in traditional Chinese medicine. These compounds, particularly tanshinone IIA (T-IIA) and sodium tanshinone sulfonate (STS), have been acknowledged for their broad spectrum of biological activities, [...] Read more.
Tanshinones are a class of lipophilic diterpenoid quinones extracted from Salvia miltiorrhiza (Dan shen), a widely used herb in traditional Chinese medicine. These compounds, particularly tanshinone IIA (T-IIA) and sodium tanshinone sulfonate (STS), have been acknowledged for their broad spectrum of biological activities, including anti-inflammatory, antioxidant, anti-tumor, antiresorptive, and antimicrobial effects. Recent studies have highlighted the potential of tanshinones in the treatment of osteolytic diseases, characterized by excessive bone resorption, such as osteoporosis, rheumatoid arthritis, and periodontitis. The therapeutic effects of tanshinones in these diseases are primarily attributed to their ability to inhibit osteoclast differentiation and activity, suppress inflammatory cytokine production (e.g., tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6), and modulate critical signaling pathways, including NF-kB, MAPK, PI3K/Akt, and the RANKL/RANK/OPG axis. Additionally, tanshinones promote osteoblast differentiation and mineralization by enhancing the expression of osteogenic markers such as Runx2, ALP, and OCN. Preclinical models have demonstrated that T-IIA and STS can significantly reduce bone destruction and inflammatory cell infiltration in arthritic joints and periodontal tissues while also enhancing bone microarchitecture in osteoporotic conditions. This review aims to provide a comprehensive overview of the pharmacological actions of tanshinones in osteolytic diseases, summarizing current experimental findings, elucidating underlying molecular mechanisms, and discussing the challenges and future directions for their clinical application as novel therapeutic agents in bone-related disorders, especially periodontitis. Despite promising in vitro and in vivo findings, clinical evidence remains limited, and further investigations are necessary to validate the efficacy, safety, and pharmacokinetics of tanshinones in human populations. Full article
(This article belongs to the Special Issue New Perspectives in Periodontology and Implant Dentistry)
Show Figures

Figure 1

26 pages, 1044 KiB  
Review
Immunomodulatory Mechanisms Underlying Neurological Manifestations in Long COVID: Implications for Immune-Mediated Neurodegeneration
by Zaw Myo Hein, Thazin, Suresh Kumar, Muhammad Danial Che Ramli and Che Mohd Nasril Che Mohd Nassir
Int. J. Mol. Sci. 2025, 26(13), 6214; https://doi.org/10.3390/ijms26136214 - 27 Jun 2025
Viewed by 2169
Abstract
The COVID-19 pandemic has revealed the profound and lasting impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the nervous system. Beyond acute infection, SARS-CoV-2 acts as a potent immunomodulatory agent, disrupting immune homeostasis and contributing to persistent inflammation, autoimmunity, and neurodegeneration. [...] Read more.
The COVID-19 pandemic has revealed the profound and lasting impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the nervous system. Beyond acute infection, SARS-CoV-2 acts as a potent immunomodulatory agent, disrupting immune homeostasis and contributing to persistent inflammation, autoimmunity, and neurodegeneration. Long COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), is characterized by a spectrum of neurological symptoms, including cognitive dysfunction, fatigue, neuropathy, and mood disturbances. These are linked to immune dysregulation involving cytokine imbalance, blood–brain barrier (BBB) disruption, glial activation, and T-cell exhaustion. Key biomarkers such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NFL) correlate with disease severity and chronicity. This narrative review examines the immunopathological mechanisms underpinning the neurological sequelae of long COVID, focusing on neuroinflammation, endothelial dysfunction, and molecular mimicry. We also assess the role of viral variants in shaping neuroimmune outcomes and explore emerging diagnostic and therapeutic strategies, including biomarker-guided and immune-targeted interventions. By delineating how SARS-CoV-2 reshapes neuroimmune interactions, this review aims to support the development of precision-based diagnostics and targeted therapies for long COVID-related neurological dysfunction. Emerging approaches include immune-modulatory agents (e.g., anti-IL-6), neuroprotective drugs, and strategies for repurposing antiviral or anti-inflammatory compounds in neuro-COVID. Given the high prevalence of comorbidities, personalized therapies guided by biomarkers and patient-specific immune profiles may be essential. Advancements in vaccine technologies and targeted biologics may also hold promise for prevention and disease modification. Finally, continued interdisciplinary research is needed to clarify the complex virus–immune–brain axis in long COVID and inform effective clinical management. Full article
Show Figures

Figure 1

17 pages, 3798 KiB  
Article
Integrative Wound-Healing Effects of Clinacanthus nutans Extract and Schaftoside Through Anti-Inflammatory, Endothelial-Protective, and Antiviral Mechanisms
by Nipitpawn Limpanich, Pattarasuda Chayapakdee, Kullanun Mekawan, Saruda Thongyim, Rujipas Yongsawas, Phanuwit Khamwong, Yingmanee Tragoolpua, Thida Kaewkod, Siriphorn Jangsutthivorawat, Jarunee Jungklang, Usawadee Chanasut, Angkhana Inta, Phatchawan Arjinajarn, Aussara Panya and Hataichanok Pandith
Int. J. Mol. Sci. 2025, 26(13), 6029; https://doi.org/10.3390/ijms26136029 - 23 Jun 2025
Viewed by 857
Abstract
Clinacanthus nutans (Burm.f.) Lindau is a Southeast Asian medicinal plant traditionally used for treating skin inflammation and infections. This study evaluated its wound-healing potential through anti-inflammatory, cytoprotective, and antiviral mechanisms. HPLC-DAD analysis identified schaftoside as the major flavonoid in the 95% ethanolic leaf [...] Read more.
Clinacanthus nutans (Burm.f.) Lindau is a Southeast Asian medicinal plant traditionally used for treating skin inflammation and infections. This study evaluated its wound-healing potential through anti-inflammatory, cytoprotective, and antiviral mechanisms. HPLC-DAD analysis identified schaftoside as the major flavonoid in the 95% ethanolic leaf extract. In the lipopolysaccharide (LPS)-stimulated murine macrophage cell line (RAW 264.7), both C. nutans extract (5 and 50 μg/mL) and its flavonoid schaftoside (5 and 20 μg/mL) significantly downregulated the expression of pro-inflammatory genes, including cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and prostaglandin E2 (PGE2), under both pre-treatment and post-treatment conditions. ELISA confirmed dose-dependent inhibition of human COX-2 enzymatic activity, reaching up to 99.3% with the extract and 86.9% with schaftoside. In the endothelial cell models (CCL-209), the extract exhibited low cytotoxicity and effectively protected cells from LPS-induced apoptosis, preserving vascular integrity critical to tissue regeneration. Antiviral assays demonstrated suppression of HSV-2 replication, particularly during early infection, which may help prevent infection-related delays in wound healing. Collectively, these findings suggest that C. nutans and schaftoside promote wound repair by attenuating inflammatory responses, supporting endothelial survival, and controlling viral reactivation. These multifunctional properties highlight their potential as natural therapeutic agents for enhancing wound-healing outcomes. Full article
(This article belongs to the Special Issue Molecular Advances in Burn and Wound Healing)
Show Figures

Graphical abstract

17 pages, 2399 KiB  
Article
In Vitro Antioxidant and Anti-Neuroinflammatory Effects of Elsholtzia blanda (Benth.) Benth.
by Yeo Dae Yoon, Krishna K. Shrestha and Seung-Hwa Baek
Life 2025, 15(6), 983; https://doi.org/10.3390/life15060983 - 19 Jun 2025
Viewed by 666
Abstract
Elsholtzia blanda (Benth.) Benth. (EBB) is a traditional plant in Nepal with bioactive properties, including antioxidant, cytotoxic, and antitumor activities. In this study, a methanol EBB extract was tested to evaluate the anti-inflammatory effect against lipopolysaccharide (LPS)-induced microglial (BV2) cells. EBB effectively suppressed [...] Read more.
Elsholtzia blanda (Benth.) Benth. (EBB) is a traditional plant in Nepal with bioactive properties, including antioxidant, cytotoxic, and antitumor activities. In this study, a methanol EBB extract was tested to evaluate the anti-inflammatory effect against lipopolysaccharide (LPS)-induced microglial (BV2) cells. EBB effectively suppressed LPS-induced nitric oxide production and inhibited the secretion of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6. In LPS-stimulated BV2 cells, EBB significantly inhibited inducible nitric oxide synthase (iNOS), TNF-α, IL-6, IL-1β, IL-8, IL-18, and IL-10 mRNA expression in a concentration-dependent manner. In particular, EBB significantly reduced the protein expression of iNOS and cyclooxygenase-2, which were upregulated by LPS. Further, EBB could alleviate the inflammatory response in microglia by suppressing the phosphorylation of mitogen-activated protein kinases. EBB also attenuated LPS-induced reactive oxygen species (ROS) in BV2 cells. In addition, EBB enhanced heme oxygenase-1 (HO-1) protein and mRNA expression. The present results show that an EBB extract could effectively suppress the neuroinflammatory response induced by LPS in BV2 cells. Accordingly, an EBB extract is a promising preventive agent against diseases involving neuroinflammatory responses. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

22 pages, 2622 KiB  
Article
SIRT1-Mediated Epigenetic Protective Mechanisms of Phytosome-Encapsulated Zea mays L. var. ceratina Tassel Extract in a Rat Model of PM2.5-Induced Cardiovascular Inflammation
by Wipawee Thukham-Mee, Jintanaporn Wattanathorn and Nut Palachai
Int. J. Mol. Sci. 2025, 26(12), 5759; https://doi.org/10.3390/ijms26125759 - 16 Jun 2025
Viewed by 465
Abstract
Cardiovascular injury caused by fine particulate matter (PM2.5) exposure is an escalating public health concern due to its role in triggering systemic inflammation and oxidative stress. This study elucidates the sirtuin 1 (SIRT1)-mediated epigenetic mechanisms underlying the protective effects of phytosome-encapsulated Zea mays [...] Read more.
Cardiovascular injury caused by fine particulate matter (PM2.5) exposure is an escalating public health concern due to its role in triggering systemic inflammation and oxidative stress. This study elucidates the sirtuin 1 (SIRT1)-mediated epigenetic mechanisms underlying the protective effects of phytosome-encapsulated Zea mays L. var. ceratina tassel extract (PZT) in a rat model of PM2.5-induced cardiovascular inflammation. Male Wistar rats were pretreated with PZT (100, 200, and 400 mg/kg body weight) for 21 days before and throughout a 27-day PM2.5 exposure period. SIRT1 expression and associated inflammatory and oxidative stress markers were evaluated in cardiac and vascular tissues. The findings revealed that PZT significantly upregulated SIRT1 expression, a key epigenetic regulator known to modulate inflammatory and antioxidant pathways. The activation of SIRT1 inhibited the nuclear factor-kappa B (NF-κB) signaling pathway, leading to a reduction in pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) within cardiac tissue. In vascular tissue, treatment with PZT reduced the levels of tumor necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β), thereby mitigating inflammatory and fibrotic responses. Furthermore, SIRT1 activation by PZT enhanced the antioxidant defense system by upregulating superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), which was associated with a decrease in malondialdehyde (MDA), a marker of lipid peroxidation. Collectively, these results demonstrate that PZT confers cardiovascular protection through SIRT1-dependent epigenetic modulation, mitigating PM2.5-induced inflammation, oxidative stress, and tissue remodeling. The dual anti-inflammatory and antioxidant actions of PZT via SIRT1 activation highlight its potential as a functional food-based preventative agent for reducing cardiovascular risk in polluted environments. Full article
Show Figures

Figure 1

14 pages, 2479 KiB  
Article
Bauhinia forficata Link Protects HaCaT Keratinocytes from H2O2-Induced Oxidative Stress and Inflammation via Nrf2/PINK1 and NF-κB Signaling Pathways
by Qiwen Zheng, Xiangji Jin, Trang Thi Minh Nguyen, Jae-Woo Kim, Yong-Min Kim and Tae-Hoo Yi
Plants 2025, 14(12), 1751; https://doi.org/10.3390/plants14121751 - 7 Jun 2025
Viewed by 758
Abstract
Oxidative stress has been directly implicated in the pathogenesis of various skin disorders, making it a promising target for therapeutic intervention. Bauhinia forficata Link (BFL), commonly referred to as “plant insulin,” is well known for its antioxidant and antihyperglycemic properties; however, its potential [...] Read more.
Oxidative stress has been directly implicated in the pathogenesis of various skin disorders, making it a promising target for therapeutic intervention. Bauhinia forficata Link (BFL), commonly referred to as “plant insulin,” is well known for its antioxidant and antihyperglycemic properties; however, its potential role in skin protection remains unexplored. In this study, we investigated the protective effects of BFL against H2O2-induced oxidative stress and inflammation in HaCaT keratinocytes. The major phytochemical constituents of BFL were identified by high-performance liquid chromatography (HPLC). Its antioxidant capacity was evaluated using 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-Diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC), and superoxide dismutase (SOD). In an H2O2-induced oxidative stress model, we assessed intracellular reactive oxygen species (ROS) levels and apoptosis using flow cytometry. Cellular respiration was analyzed using a Seahorse XFp analyzer, while molecular mechanisms were examined by reverse transcription polymerase chain reaction (RT-PCR) and western blotting. Our results demonstrated that BFL significantly reduced intracellular ROS levels and apoptosis, primarily by activating the nuclear factor erythroid 2–related factor 2 (Nrf2)/PINK1 pathway, which promoted mitochondrial quality control and redox homeostasis. Additionally, BFL suppressed inflammatory responses by downregulating the nuclear factor-κB (NF-κB) signaling pathway and reducing the secretion of pro-inflammatory cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor-alpha (TNF-α). These findings suggest that BFL is a potent antioxidant and anti-inflammatory agent, with potential as an adjunctive therapy for oxidative stress-related skin conditions. Full article
Show Figures

Graphical abstract

21 pages, 946 KiB  
Review
Immunomodulatory and Anti-Inflammatory Properties of Honey and Bee Products
by Bashar Saad
Immuno 2025, 5(2), 19; https://doi.org/10.3390/immuno5020019 - 30 May 2025
Viewed by 1639
Abstract
Honey and other bee products, including propolis, royal jelly, and bee pollen, are widely recognized for their medicinal properties. Among their numerous biological activities, their anti-inflammatory and immunomodulatory effects have gained significant attention in recent years. Immune and inflammatory disorders contribute significantly to [...] Read more.
Honey and other bee products, including propolis, royal jelly, and bee pollen, are widely recognized for their medicinal properties. Among their numerous biological activities, their anti-inflammatory and immunomodulatory effects have gained significant attention in recent years. Immune and inflammatory disorders contribute significantly to the development of chronic conditions, including cancer and diabetes. Bee-derived products, along with their bioactive compounds such as polyphenols, have shown promising therapeutic effects in modulating inflammatory mediators. Studies indicate that these products help regulate tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), and interleukin-7 (IL-7) levels while reducing reactive oxygen species (ROS) production. Additionally, both in vitro and in vivo research, along with clinical studies, highlight their role in enhancing immune responses by activating B and T lymphocytes. This review explores the molecular mechanisms underlying these properties, emphasizing the role of bioactive compounds such as flavonoids, phenolic acids, and proteins in modulating immune responses and reducing inflammation. Evidence from in vitro, in vivo, and clinical studies suggests that honey and bee products influence cytokine production, regulate immune cell activity, and mitigate oxidative stress, making them potential therapeutic agents for inflammatory and immune-related disorders. To gather relevant information, databases such as Google Scholar, PubMed, and ScienceDirect were searched using various keyword combinations, including immunomodulatory, anti-inflammatory, bee products, honey, propolis, royal jelly, bee venom, and bee pollen. Given their anti-inflammatory, immune-protective, antioxidant, anti-apoptotic, and antimicrobial properties, bee products remain a subject of interest for further clinical evaluation. Full article
Show Figures

Figure 1

14 pages, 5489 KiB  
Article
Naringenin Exhibits Antiglioma Activity Related to Aryl Hydrocarbon Receptor Activity and IL-6, CCL2, and TNF-α Expression
by Monique Reis de Santana, Deivison Silva Argolo, Irlã Santos Lima, Cleonice Creusa dos Santos, Maurício Moraes Victor, Gabriel dos Santos Ramos, Ravena Pereira do Nascimento, Henning Ulrich and Silvia Lima Costa
Brain Sci. 2025, 15(3), 325; https://doi.org/10.3390/brainsci15030325 - 20 Mar 2025
Cited by 1 | Viewed by 727
Abstract
Background: Glioblastoma (GBM) is a highly aggressive brain tumor characterized by rapid cell proliferation, invasive behavior, and chemoresistance. The aryl hydrocarbon receptor (AhR) is implicated in chemoresistance and immune evasion, making it a promising therapeutic target. Natural compounds such as flavonoids have gained [...] Read more.
Background: Glioblastoma (GBM) is a highly aggressive brain tumor characterized by rapid cell proliferation, invasive behavior, and chemoresistance. The aryl hydrocarbon receptor (AhR) is implicated in chemoresistance and immune evasion, making it a promising therapeutic target. Natural compounds such as flavonoids have gained attention for their anti-inflammatory, antioxidant, and anticancer properties. Among them, naringenin, a citrus-derived flavonoid, exerts antiproliferative, pro-apoptotic, and immunomodulatory effects. Objectives: This study investigated the antiglioma effects of the flavonoid naringenin on the viability, growth, and migration of glioma cells and its potential role as an AhR modulator. Methods: Human (U87) and rat (C6) glioma cell lines were exposed to naringenin (10–300 µM) alone or in combination with the AhR agonist indole-3-carbinol (50 µM) for 24 to 48 h. Cell viability, scratch wound, and cell migration assays were performed. The expression of inflammatory markers was also analyzed by RT-qPCR. Results: Naringenin exerted dose- and time-dependent inhibition of cell viability and migration. The treatment decreased the gene expression of interleukin-6 (IL-6) and chemokine (CCL2), alongside increased tumor necrosis factor-alpha (TNF-α) expression, an effect reversed by the AhR agonist. Conclusions: These findings highlight naringenin’s potential as an antiglioma agent and its role in AhR signaling. Full article
Show Figures

Figure 1

17 pages, 3064 KiB  
Article
Characterization and Anti-Inflammatory Effects of Akkermansia muciniphila-Derived Extracellular Vesicles
by Sasa Zhao, Jie Xiang, Minhazul Abedin, Jingyi Wang, Zhiwen Zhang, Zhongwei Zhang, Hua Wu and Junsong Xiao
Microorganisms 2025, 13(2), 464; https://doi.org/10.3390/microorganisms13020464 - 19 Feb 2025
Cited by 1 | Viewed by 1655
Abstract
Bacterial extracellular vesicles (EVs) play a pivotal role in host–microbe communication. Akkermansia muciniphila, a symbiotic bacterium essential for intestinal health, is hypothesized to exert its effects via EVs. Here, we successfully isolated and characterized EVs derived from A. muciniphila (Am-EVs) using ultracentrifugation. [...] Read more.
Bacterial extracellular vesicles (EVs) play a pivotal role in host–microbe communication. Akkermansia muciniphila, a symbiotic bacterium essential for intestinal health, is hypothesized to exert its effects via EVs. Here, we successfully isolated and characterized EVs derived from A. muciniphila (Am-EVs) using ultracentrifugation. Am-EVs exhibited a double-membrane structure, with an average diameter of 92.48 ± 0.28 nm and a proteomic profile comprising 850 proteins. In an in vitro model of lipopolysaccharide (LPS)-induced inflammation in human colorectal adenocarcinoma cells (Caco-2), treatment with both 25 and 50 μg/mL Am-EVs significantly reduced oxidative stress markers, including reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA), while restoring catalase activity (CAT). Am-EVs also suppressed the expression of pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6). Subsequent transcriptomic sequencing and Western blot experiments revealed that Am-EVs attenuate the MAPK signaling pathway by downregulating TRIF, MyD88, p38 MAPK, and FOS while upregulating TGFBR2. These findings suggest that Am-EVs mediate anti-inflammatory effects through modulation of MAPK signaling, highlighting their potential as therapeutic agents in intestinal inflammation. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

18 pages, 6173 KiB  
Article
Ameliorative Effect of N-Acetylcysteine Against 5-Fluorouracil-Induced Cardiotoxicity via Targeting TLR4/NF-κB and Nrf2/HO-1 Pathways
by Omer Abdelbagi, Medhat Taha, Abdullah G. Al-Kushi, Mohammad Ahmad Alobaidy, Tourki A. S. Baokbah, Hatem A. Sembawa, Zohor Asaad Azher, Rami Obaid, Omar Babateen, Bayan T. Bokhari, Naeem F. Qusty and Hesham A. Malak
Medicina 2025, 61(2), 335; https://doi.org/10.3390/medicina61020335 - 14 Feb 2025
Viewed by 1202
Abstract
Background and Objectives: 5-Fluorouracil (5-FU) is a widely prescribed and effective chemotherapeutic drug, but its cardiotoxic side effects pose a significant challenge to its use. Identifying a protective agent that does not affect its anticancer efficacy is essential. Our study aimed to [...] Read more.
Background and Objectives: 5-Fluorouracil (5-FU) is a widely prescribed and effective chemotherapeutic drug, but its cardiotoxic side effects pose a significant challenge to its use. Identifying a protective agent that does not affect its anticancer efficacy is essential. Our study aimed to investigate the cardioprotective effect of N-acetyl cysteine (NAC) against 5-FU-induced cardiac injury and to elucidate the underlying mechanisms. Materials and Methods: This study included four experimental groups, each with eight rats (n = 8): Group I (control group), Group II (NAC group), Group III (5-FU group), and Group IV (combined group 5-FU+NAC). Cardiac enzymes, oxidative stress, inflammatory, and apoptotic markers were investigated, and cardiac sections from the different groups were histologically examined. Results: Co-treatment of 5-FU with NAC resulted in significantly lower levels of cardiac enzymes (alanine transaminase (ALT) by 62.1%, aspartate transaminase (AST) by 73.6%, lactate dehydrogenase (LDH) by 55.8%, and creatine kinase (CK) by 57.3%) compared to the 5-FU group, along with marked improvements in heart tissue histology. Additionally, NAC enhanced the activity of cardiac antioxidant enzymes (superoxide dismutase (SOD) by 295.6%, catalase (CAT) by 181%, and glutathione peroxidase (GPx) by 320.9%) while decreasing malondialdehyde (MDA) by 51.1%, a marker of membranous lipid peroxidation. This might be due to significant upregulation of the nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway at the gene and protein levels. The combined treatment significantly decreased the gene expression of the toll-like receptor 4 (TLR4)/nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) pathway. Furthermore, it downregulated the protein levels of inflammatory markers, including tumor necrosis factor-alpha (TNF-α) by 29.9%, interleukin-1 beta (IL-1β) by 21.9%, and interleukin-6 (IL-6) by 49.3%. Moreover, it upregulated the antiapoptotic marker B-cell lymphoma 2 (Bcl-2) protein levels by 269% and decreased apoptotic indicators Bcl-2-associated protein x (Bax) by 57.9% and caspase-3 by 30.6% compared to the 5-FU group. Conclusions: This study confirmed that NAC prevented the cardiotoxic effect of 5-FU through its antioxidant, anti-inflammatory, and antiapoptotic properties, suggesting its potential application as an adjuvant therapy in chemotherapy to alleviate 5-FU-induced cardiotoxicity. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

17 pages, 3264 KiB  
Article
Mitigating Post-Subarachnoid Hemorrhage Complications: Anti-Inflammatory and Anti-Apoptotic Effects of Anakinra in an Experimental Study
by Güven Kılıç, Berk Enes Engin, Amir Halabi, Cengiz Tuncer, Mehmet Ali Sungur, Merve Alpay, Adem Kurtuluş, Hakan Soylu, Ali Gök and Ömer Polat
J. Clin. Med. 2025, 14(4), 1253; https://doi.org/10.3390/jcm14041253 - 14 Feb 2025
Cited by 1 | Viewed by 833
Abstract
Background: Subarachnoid hemorrhage (SAH) is a severe neurological condition with high mortality and morbidity rates, often exacerbated by secondary complications such as inflammation, cerebral vasospasm, and apoptosis. Proinflammatory cytokines, including interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6), play critical roles [...] Read more.
Background: Subarachnoid hemorrhage (SAH) is a severe neurological condition with high mortality and morbidity rates, often exacerbated by secondary complications such as inflammation, cerebral vasospasm, and apoptosis. Proinflammatory cytokines, including interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6), play critical roles in these pathological processes. Anakinra, an IL-1 receptor antagonist, has demonstrated significant anti-inflammatory effects in various disease models. This study aimed to evaluate the efficacy of anakinra in mitigating inflammation, vasospasm, and apoptosis in an experimental rat model of SAH. Methods: Thirty-two male Sprague Dawley rats were divided into four groups: Control (healthy), SAH (no treatment), Saline (0.2 mL saline subcutaneously), and Anakinra (50 mg/kg subcutaneously, twice daily). Proinflammatory markers (CRP, TNF-α, IL-1, IL-6, and fibrinogen) were measured in serum and cerebrospinal fluid (CSF) at 3, 7, and 10 days post-SAH. Basilar artery diameter was evaluated histopathologically, and Caspase-3 expression was assessed immunohistochemically to determine apoptotic activity. Results: SAH significantly increased levels of CRP, TNF-α, IL-1, IL-6, and fibrinogen in both serum and CSF, reduced basilar artery diameter, and elevated Caspase-3 expression compared to the Control group. Saline treatment provided limited improvements, with inflammatory markers and histopathological parameters remaining elevated. Anakinra treatment significantly reduced inflammatory markers, restored basilar artery diameter, and lowered Caspase-3 expression, highlighting its efficacy in mitigating inflammation, vasospasm, and apoptosis. Conclusions: Anakinra effectively suppresses inflammation, alleviates cerebral vasospasm, and inhibits apoptosis in an experimental model of SAH. These findings suggest its potential as a therapeutic agent for managing SAH and its complications. Further research is needed to explore its clinical applicability and long-term effects. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

11 pages, 1358 KiB  
Communication
Anti-Inflammatory Potential of Umckalin Through the Inhibition of iNOS, COX-2, Pro-Inflammatory Cytokines, and MAPK Signaling in LPS-Stimulated RAW 264.7 Cells
by So-Yeon Oh and Chang-Gu Hyun
Future Pharmacol. 2025, 5(1), 6; https://doi.org/10.3390/futurepharmacol5010006 - 21 Jan 2025
Cited by 1 | Viewed by 1487
Abstract
Background/Objectives: Umckalin, a coumarin derivative abundantly present in the root extract of Pelargonium sidoides, is a key bioactive compound known for its antimicrobial, antiviral, antitubercular, and immunomodulatory properties. Its therapeutic potential has been extensively studied, particularly in the context of respiratory diseases. [...] Read more.
Background/Objectives: Umckalin, a coumarin derivative abundantly present in the root extract of Pelargonium sidoides, is a key bioactive compound known for its antimicrobial, antiviral, antitubercular, and immunomodulatory properties. Its therapeutic potential has been extensively studied, particularly in the context of respiratory diseases. This study aimed to evaluate the potential of umckalin as a therapeutic agent for chronic inflammatory diseases and to elucidate its underlying mechanisms of action. Methods: Using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages as an experimental model, we investigated the inhibitory effects of umckalin on inflammatory mediators and cytokine production. We measured levels of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β), and assessed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Additionally, the regulation of MAPK signaling pathways, including JNK, p38 MAPK, and ERK, was analyzed. Results: The results demonstrated that umckalin significantly reduced the levels of NO, PGE2, TNF-α, IL-6, and IL-1β in LPS-stimulated RAW 264.7 cells. Umckalin also suppressed the expression of iNOS and COX-2, leading to decreased NO and PGE2 production. Furthermore, umckalin effectively regulated inflammatory responses by reducing the phosphorylation of MAPK signaling pathways, including JNK, p38 MAPK, and ERK. Conclusions: These findings indicate that umckalin inhibits the production of TNF-α, IL-6, IL-1β, and NO, while regulating MAPK signaling pathways, thereby suppressing the expression of iNOS and COX-2. This study highlights the potent anti-inflammatory effects of umckalin and suggests its potential as a promising candidate for the treatment of chronic inflammatory diseases. Full article
(This article belongs to the Special Issue Novel Therapeutic Approach to Inflammation and Pain)
Show Figures

Figure 1

20 pages, 6034 KiB  
Article
Therapeutic Potential of Clove Oil in Mitigating Cadmium-Induced Hepatorenal Toxicity Through Antioxidant, Anti-Inflammatory, and Antiapoptotic Mechanisms
by Inas M. Elgharib, Fatma M. Abdelhamid, Gehad E. Elshopakey, Hatem Sembawa, Talat A. Albukhari, Waheed A. Filimban, Rehab M. Bagadood, Mohamed E. El-Boshy and Engy F. Risha
Pharmaceuticals 2025, 18(1), 94; https://doi.org/10.3390/ph18010094 - 14 Jan 2025
Viewed by 1920
Abstract
Hazardous heavy metals, particularly cadmium (Cd), are widely distributed in the environment and cause oxidative stress in various animal and human organs. Clove oil (CLO), a common aromatic spice, has been used as a traditional medication as it has potent anti-inflammatory, antioxidant, and [...] Read more.
Hazardous heavy metals, particularly cadmium (Cd), are widely distributed in the environment and cause oxidative stress in various animal and human organs. Clove oil (CLO), a common aromatic spice, has been used as a traditional medication as it has potent anti-inflammatory, antioxidant, and hepatoprotective properties. Background/Objectives: This study aimed to investigate the antioxidant, antiapoptotic, and anti-inflammatory effects of clove oil (CLO) against hepatorenal toxicity induced by cadmium (Cd). Methods: Twenty rats were equally divided into four groups: a control group, a Cd group treated with 15 mg/kg b.wt CdCl2, a CLO group administered 200 mg/kg b.wt CLO, and a Cd+CLO group. All groups were orally treated for 4 weeks. Results: Cadmium (Cd) exposure caused anemia and hepatorenal damage, as evidenced by increased serum levels of urea, creatinine, uric acid, total bilirubin (including its direct and indirect fractions), and elevated activities of liver enzymes such as alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP). However, total protein and albumin levels decreased. Furthermore, there was a decrease in the levels of glutathione, glutathione transferase, and catalase in the liver antioxidant profiles. Meanwhile, malondialdehyde levels increased. Cadmium toxicity caused elevated expression of liver apoptosis markers, such as tumor necrosis factor-alpha (TNF-α) and caspase-3, and inflammation. CLO ameliorated the oxidative effects of Cd through decreasing urea (27.4%), creatinine (41.6%), liver enzymes, and hepatic apoptotic markers while increasing levels of total protein, albumin, and hepatic values of SOD (60.37%), CAT (64.49%), GSH (50.41%), and GST (9.16%). Conclusions: Hematological and biochemical parameters, as well as the antioxidant system, improved following clove oil treatment, leading to a reduction in hepatorenal damage. Therefore, it is possible to conclude that CLO protects rats from inflammation, apoptosis, and hepatorenal oxidative damage caused by Cd poisoning. Comprehensive translational research is required to validate CLO’s efficacy and safety of use in humans. Future studies should focus on elucidating the precise molecular mechanisms, optimal dosing strategies, and potential synergistic effects of CLO with other therapeutic agents. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

Back to TopTop