Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = anti-SARS-CoV-2 nucleocapsid Ig

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 723 KiB  
Article
The Anti-Nucleocapsid IgG Antibody as a Marker of SARS-CoV-2 Infection for Hemodialysis Patients
by Akemi Hara, Shun Watanabe, Toyoaki Sawano, Yuki Sonoda, Hiroaki Saito, Akihiko Ozaki, Masatoshi Wakui, Tianchen Zhao, Chika Yamamoto, Yurie Kobashi, Toshiki Abe, Takeshi Kawamura, Akira Sugiyama, Aya Nakayama, Yudai Kaneko, Hiroaki Shimmura and Masaharu Tsubokura
Vaccines 2025, 13(7), 750; https://doi.org/10.3390/vaccines13070750 - 13 Jul 2025
Viewed by 610
Abstract
Background: Hemodialysis patients, due to impaired kidney function and compromised immune responses, face increased risks from SARS-CoV-2. Anti-nucleocapsid IgG (anti-IgG N) antibodies are a commonly used marker to assess prior infection in the general population; however, their efficacy for hemodialysis patients remains unclear. [...] Read more.
Background: Hemodialysis patients, due to impaired kidney function and compromised immune responses, face increased risks from SARS-CoV-2. Anti-nucleocapsid IgG (anti-IgG N) antibodies are a commonly used marker to assess prior infection in the general population; however, their efficacy for hemodialysis patients remains unclear. Methods: A retrospective study of 361 hemodialysis patients evaluated anti-IgG N antibodies for detecting prior SARS-CoV-2 infection. Antibody levels were measured using a chemiluminescence immunoassay (CLIA) over the four time points. Boxplots illustrated antibody distribution across sampling stages and infection status. Logistic regression and receiver operating characteristic (ROC) curve analysis determined diagnostic accuracy, sensitivity, specificity, and optimal cutoff values. Results: Among the 361 hemodialysis patients, 36 (10.0%) had SARS-CoV-2 infection. Sex distribution showed a trend toward significance (p = 0.05). Boxplot analysis showed that anti-IgG N levels remained low in non-infected patients but increased in infected patients, peaking at the third sampling. Anti-IgG N demonstrated high diagnostic accuracy (AUC: 0.973–0.865) but declined over time (p = 0.00525). The optimal cutoff at C1 was 0.01 AU/mL (sensitivity 1.00, specificity 0.94). Adjusted models had lower predictive value. Conclusions: Anti-IgG N antibodies showed high diagnostic accuracy for detecting prior SARS-CoV-2 infection in hemodialysis patients, though performance declined over time. These findings highlight the need for tailored diagnostic strategies in this vulnerable population. Full article
Show Figures

Figure 1

29 pages, 5028 KiB  
Article
Moloney Murine Leukemia Virus-like Nanoparticles Pseudo-Typed with SARS-CoV-2 RBD for Vaccination Against COVID-19
by Bernhard Kratzer, Pia Gattinger, Peter A. Tauber, Mirjam Schaar, Al Nasar Ahmed Sehgal, Armin Kraus, Doris Trapin, Rudolf Valenta and Winfried F. Pickl
Int. J. Mol. Sci. 2025, 26(13), 6462; https://doi.org/10.3390/ijms26136462 - 4 Jul 2025
Viewed by 596
Abstract
Virus-like nanoparticles (VNPs) based on Moloney murine leukemia virus represent a well-established platform for the expression of heterologous molecules such as cytokines, cytokine receptors, peptide MHC (pMHC) and major allergens, but their application for inducing protective anti-viral immunity has remained understudied as of [...] Read more.
Virus-like nanoparticles (VNPs) based on Moloney murine leukemia virus represent a well-established platform for the expression of heterologous molecules such as cytokines, cytokine receptors, peptide MHC (pMHC) and major allergens, but their application for inducing protective anti-viral immunity has remained understudied as of yet. Here, we variably fused the wildtype SARS-CoV-2 spike, its receptor-binding domain (RBD) and nucleocapsid (NC) to the minimal CD16b-GPI anchor acceptor sequence for expression on the surface of VNP. Moreover, a CD16b-GPI-anchored single-chain version of IL-12 was tested for its adjuvanticity. VNPs expressing RBD::CD16b-GPI alone or in combination with IL-12::CD16b-GPI were used to immunize BALB/c mice intramuscularly and subsequently to investigate virus-specific humoral and cellular immune responses. CD16b-GPI-anchored viral molecules and IL-12-GPI were well-expressed on HEK-293T-producer cells and purified VNPs. After the immunization of mice with VNPs, RBD-specific antibodies were only induced with RBD-expressing VNPs, but not with empty control VNPs or VNPs solely expressing IL-12. Mice immunized with RBD VNPs produced RBD-specific IgM, IgG2a and IgG1 after the first immunization, whereas RBD-specific IgA only appeared after a booster immunization. Protein/peptide microarray and ELISA analyses confirmed exclusive IgG reactivity with folded but not unfolded RBD and showed no specific IgG reactivity with linear RBD peptides. Notably, booster injections gradually increased long-term IgG antibody avidity as measured by ELISA. Interestingly, the final immunization with RBD–Omicron VNPs mainly enhanced preexisting RBD Wuhan Hu-1-specific antibodies. Furthermore, the induced antibodies significantly neutralized SARS-CoV-2 and specifically enhanced cellular cytotoxicity (ADCC) against RBD protein-expressing target cells. In summary, VNPs expressing viral proteins, even in the absence of adjuvants, efficiently induce functional SARS-CoV-2-specific antibodies of all three major classes, making this technology very interesting for future vaccine development and boosting strategies with low reactogenicity. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

19 pages, 1306 KiB  
Article
Individuals Infected with SARS-CoV-2 Prior to COVID-19 Vaccination Maintain Vaccine-Induced RBD-Specific Antibody Levels and Viral Neutralization Activity for One Year
by Christina S. Mcconney, Devin Kenney, Christina S. Ennis, Erika L. Smith-Mahoney, Maria Jose Ayuso, Jiabao Zhong, Florian Douam, Manish Sagar and Jennifer E. Snyder-Cappione
Viruses 2025, 17(5), 640; https://doi.org/10.3390/v17050640 - 29 Apr 2025
Viewed by 746
Abstract
The effectiveness of multiple COVID-19 vaccinations in individuals with a history of SARS-CoV-2 infection remains unclear; specifically, elucidation of the durability of anti-viral antibody responses could provide important insights for epidemiological applications. We utilized the BU ELISA protocol to measure the circulating SARS-CoV-2 [...] Read more.
The effectiveness of multiple COVID-19 vaccinations in individuals with a history of SARS-CoV-2 infection remains unclear; specifically, elucidation of the durability of anti-viral antibody responses could provide important insights for epidemiological applications. We utilized the BU ELISA protocol to measure the circulating SARS-CoV-2 receptor-binding domain (RBD) and nucleocapsid (N) specific IgG and IgA antibody levels in a cohort of individuals infected with SARS-CoV-2 in the spring of 2020, with the sample collection spanning six months to two years post-symptom onset. Further, we interrogated the neutralization activity of these samples against the ancestral SARS-CoV-2 (WA-1) and Delta and Omicron (BA.1) variants. Consistent with previous studies, we found a more rapid waning of anti-N compared to anti-RBD antibodies in months prior to the first vaccinations. Vaccine-induced antibody responses in individuals previously infected with SARS-CoV-2 were elevated and sustained for more than one year post-vaccination. Similarly, neutralization activity against WA-1, Delta, and Omicron increased and remained higher than pre-vaccination levels for one year after the first COVID-19 vaccine dose. Collectively, these results indicate that infection followed by vaccination yields robust antibody responses against SARS-CoV-2 that endure for one year. These results suggest that an annual booster would stably boost anti-SARS-CoV-2 antibody responses, preventing infection and disease. Full article
Show Figures

Figure 1

12 pages, 2100 KiB  
Article
Detection of IgG Antibodies Against COVID-19 N-Protein by Hybrid Graphene–Nanorod Sensor
by R. V. A. Boaventura, C. L. Pereira, C. Junqueira, K. B. Gonçalves, N. P. Rezende, I. A. Borges, R. C. Barcelos, F. B. Oréfice, F. F. Bagno, F. G. Fonseca, A. Corrêa, L. S. Gomes and R. G. Lacerda
Biosensors 2025, 15(3), 164; https://doi.org/10.3390/bios15030164 - 4 Mar 2025
Viewed by 1072
Abstract
The COVID-19 pandemic highlighted the global necessity to develop fast, affordable, and user-friendly diagnostic alternatives. Alongside recognized tests such as ELISA, nanotechnologies have since been explored for direct and indirect diagnosis of SARS-CoV-2, the etiological agent of COVID-19. Accordingly, in this work, we [...] Read more.
The COVID-19 pandemic highlighted the global necessity to develop fast, affordable, and user-friendly diagnostic alternatives. Alongside recognized tests such as ELISA, nanotechnologies have since been explored for direct and indirect diagnosis of SARS-CoV-2, the etiological agent of COVID-19. Accordingly, in this work, we report a method to detect anti-SARS-CoV-2 antibodies based on graphene-based field-effect transistors (GFETs), using a nanostructured platform of graphene with added gold nanorods (GNRs) and a specific viral protein. To detect anti-N-protein IgG antibodies for COVID-19 in human sera, gold nanorods were functionalized with the nucleocapsid (N) protein of SARS-CoV-2, and subsequently deposited onto graphene devices. Our test results demonstrate that the sensor is highly sensitive and can detect antibody concentrations as low as 100 pg/mL. Using the sensor to test human sera that were previously diagnosed with ELISA showed a 90% accuracy rate compared to the ELISA results, with the test completed in under 15 min. Integrating graphene and nanorods eliminates the need for a blocker, simplifying sensor fabrication. This hybrid sensor holds robust potential to serve as a simple and efficient point-of-care platform. Full article
(This article belongs to the Special Issue Two-Dimensional Nanomaterials for (Bio)sensing Application)
Show Figures

Graphical abstract

18 pages, 1949 KiB  
Article
Antibody Responses to mRNA COVID-19 Vaccine Among Healthcare Workers in Outpatient Clinics in Japan
by Teruhime Otoguro, Keita Wagatsuma, Toshiharu Hino, The Society of Ambulatory and General Pediatrics of Japan, Yusuke Ichikawa, Tri Bayu Purnama, Yuyang Sun, Jiaming Li, Irina Chon, Hisami Watanabe and Reiko Saito
Vaccines 2025, 13(1), 90; https://doi.org/10.3390/vaccines13010090 - 18 Jan 2025
Viewed by 1356
Abstract
Background: This study aimed to assess the antibody response to SARS-CoV-2 vaccines among healthcare workers (HCWs) from multiple outpatient clinics in Japan, examining the effects of baseline characteristics (e.g., sex, age, underlying condition, smoking history, occupation) and prior infections. Methods: A total of [...] Read more.
Background: This study aimed to assess the antibody response to SARS-CoV-2 vaccines among healthcare workers (HCWs) from multiple outpatient clinics in Japan, examining the effects of baseline characteristics (e.g., sex, age, underlying condition, smoking history, occupation) and prior infections. Methods: A total of 101 HCWs provided serum at four time points between October 2020 and July 2023. HCWs received two to six doses of mRNA vaccine (BNT162b2 or mRNA-1273). Anti-nucleocapsid (N) and anti-spike (S) IgG antibodies against the ancestral Wuhan strain were measured using the Abbott Architect™ SARS-CoV-2 IgG assay. Univariate and regression analysis evaluated factors such as past infections, age, sex, smoking, underlying condition, and occupation. Results: After four to six doses, the median anti-S IgG titer in uninfected HCWs was 1807.30 BAU/mL, compared to 1899.89 BAU/mL in HCWs with prior infections. The median anti-N IgG titer was 0.10 index S/C in uninfected HCWs and 0.39 index S/C in infected HCWs. HCWs with prior infection had anti-S IgG titers 1.1 to 5.8 times higher than those without. Univariate and multivariate analyses indicated infection and vaccination significantly increased anti-S and anti-N IgG titers. Age, sex, smoking history and occupation did not influence antibody titers while underlying conditions were associated with lower anti-N IgG titers. Conclusions: Infection and vaccination were strongly associated with an increase in anti-S and anti-N IgG titers; however, the impact of hybrid immunity appeared to be limited and varied depending on the timing of the sampling. These findings provide valuable insights for developing personalized vaccination strategies and future vaccine development. Full article
Show Figures

Figure 1

15 pages, 1673 KiB  
Article
Tracking Immunity: An Increased Number of COVID-19 Boosters Increases the Longevity of Anti-RBD and Anti-RBD-Neutralizing Antibodies
by Ching-Wen Hou, Stacy Williams, Veronica Boyle, Alexa Roeder, Bradley Bobbett, Izamar Garcia, Giavanna Caruth, Mitch Magee, Yunro Chung, Douglas F. Lake, Joshua LaBaer and Vel Murugan
Vaccines 2025, 13(1), 61; https://doi.org/10.3390/vaccines13010061 - 12 Jan 2025
Cited by 2 | Viewed by 1620
Abstract
Background/Objectives: Since the World Health Organization declared COVID-19 a pandemic in March 2020, the virus has caused multiple waves of infection globally. Arizona State University (ASU), the largest four-year university in the United States, offers a uniquely diverse setting for assessing immunity within [...] Read more.
Background/Objectives: Since the World Health Organization declared COVID-19 a pandemic in March 2020, the virus has caused multiple waves of infection globally. Arizona State University (ASU), the largest four-year university in the United States, offers a uniquely diverse setting for assessing immunity within a large community. This study aimed to test our hypothesis that an increased number of exposures to SARS-CoV-2 RBD through vaccination/boosters/infection will increase SARS-CoV-2 antibody seroprevalence by increasing the longevity of anti-RBD and anti-RBD-neutralizing antibodies. Methods: A serosurvey was conducted at ASU from 30 January to 3 February 2023. Participants completed questionnaires about demographics, respiratory infection history, symptoms, and COVID-19 vaccination status. Blood samples were analyzed for anti-receptor binding domain (RBD) IgG and anti-nucleocapsid (NC) antibodies, offering a comprehensive view of immunity from both natural infection and vaccination. Results: The seroprevalence of anti-RBD IgG antibodies was 96.2% (95% CI: 94.8–97.2%), and 64.9% (95% CI: 61.9–67.8%) of participants had anti-NC antibodies. Anti-RBD IgG levels correlated strongly with neutralizing antibody levels, and participants who received more vaccine doses showed higher levels of both anti-RBD IgG and neutralizing antibodies. Increasing the number of exposures through vaccination and/or infection resulted in higher and long-lasting antibodies. Conclusions: The high levels of anti-RBD antibodies observed reflect substantial vaccine uptake within this population. Ongoing vaccination efforts, especially as new variants emerge, are essential to maintaining protective antibody levels. These findings underscore the importance of sustained public health initiatives to support broad-based immunity and protection. Full article
(This article belongs to the Special Issue Understanding Immune Responses to COVID-19 Vaccines)
Show Figures

Figure 1

15 pages, 296 KiB  
Article
Humoral and Cellular Immunity After Vaccination Against SARS-CoV-2 in Relapsing-Remitting Multiple Sclerosis Patients Treated with Interferon Beta and Dimethyl Fumarate
by Marcin Bazylewicz, Monika Zajkowska, Monika Gudowska-Sawczuk, Rafał Kułakowski, Jan Mroczko, Dagmara Mirowska-Guzel, Joanna Kulikowska-Łoś, Agata Czarnowska, Barbara Mroczko, Jan Kochanowicz and Alina Kułakowska
Biomedicines 2025, 13(1), 153; https://doi.org/10.3390/biomedicines13010153 - 9 Jan 2025
Viewed by 1244
Abstract
Background/Objectives: The impact of vaccines against SARS-CoV-2 on the immunity of patients with multiple sclerosis (PwMS) is still not fully known. Further clarification could help address medical concerns related to the use of immunosuppressive and immunomodulatory medications, known as disease-modifying therapies (DMTs), in [...] Read more.
Background/Objectives: The impact of vaccines against SARS-CoV-2 on the immunity of patients with multiple sclerosis (PwMS) is still not fully known. Further clarification could help address medical concerns related to the use of immunosuppressive and immunomodulatory medications, known as disease-modifying therapies (DMTs), in PwMS, as well as ensure adequate protection against severe outcomes of COVID-19. Therefore, the aim of our study was to evaluate the humoral and cellular immune response in PwMS treated with DMTs. Methods: The concentrations of IgG Spike (S) anti-SARS-CoV-2 antibodies and IgG Nucleocapsid (N) anti-SARS-CoV-2 antibodies, as well as interferon-gamma (IFN-γ) titers were analyzed in PwMS groups treated with dimethyl fumarate (DMF), interferon beta (IFN), and healthy control group. Results: Almost 100% of PwMS experienced seroconversion, which resulted from either vaccination and/or prior infection. Additionally, there were no significant differences between the study and control groups in terms of IgG (S) and (N) anti-SARS-CoV-2 antibody levels. However, interferon-gamma titers were lower in both PwMS groups, which may indicate adequate humoral and decreased cellular response to the examined PwMS. Additionally, after the division of the whole study group into two subgroups according to the time since the last vaccination, IgG (S) anti-SARS-CoV-2 and IFN-γ concentrations were significantly lower in the case of patients who were immunized more than 200 days before sample collection. No differences were observed in the case of subgroups in which sample collection was less than 200 days after vaccination when compared to the control group. Conclusions: This could indicate a time-related decrease in immunity in PwMS treated with DMTs. Full article
14 pages, 1577 KiB  
Article
Symptomatology and IgG Levels before and after SARS-CoV-2 Omicron Breakthrough Infections in Vaccinated Individuals
by Nigella M. Paula, Emerson Joucoski, Valter A. Baura, Emanuel M. Souza, Fabio O. Pedrosa, Alan G. Gonçalves and Luciano F. Huergo
Vaccines 2024, 12(10), 1149; https://doi.org/10.3390/vaccines12101149 - 8 Oct 2024
Viewed by 1322
Abstract
(1) Background: After the COVID-19 pandemic, there is concern regarding the immunity of the population to SARS-CoV-2 variants, particularly the Omicron variant and its sub-lineages. (2) Methods: The study involved analyzing the immune response and symptomatology of 27 vaccinated individuals who were subsequently [...] Read more.
(1) Background: After the COVID-19 pandemic, there is concern regarding the immunity of the population to SARS-CoV-2 variants, particularly the Omicron variant and its sub-lineages. (2) Methods: The study involved analyzing the immune response and symptomatology of 27 vaccinated individuals who were subsequently infected by Omicron sub-lineages. Blood samples were collected for serological analysis, including the detection of IgG antibodies reactive to the Nucleocapsid (N) and Spike (S) antigens of SARS-CoV-2. Additionally, participants were interviewed to assess the intensity of symptoms during the infection. (3) Results: Despite the high levels of anti-Spike IgG observed after vaccination, all participants were infected by Omicron sub-lineages. The most common symptoms reported by participants were fever or chills, sore throat, and cough. The levels of anti-Spike IgG found prior to infection did not correlate with symptom intensity post-infection. However, it was observed that high post-infection anti-Nucleocapsid IgG levels correlated with mild symptoms during the course of the disease, suggesting a potential role for anti-N antibodies in symptom intensity. (4) Conclusions: In line with previous studies, the high levels of IgG anti-Spike resulting from vaccination did not provide complete protection against infection by the Omicron variant. Additionally, our data suggest that anti-Nucleocapsid IgG titers are negatively correlated with the intensity of the symptoms during mild infections. Full article
(This article belongs to the Special Issue Immune Effectiveness of COVID-19 Vaccines)
Show Figures

Figure 1

16 pages, 2100 KiB  
Article
A Population-Based Study of SARS-CoV-2 IgG Antibody Responses to Vaccination in Manitoba
by Brielle Martens, Paul Van Caeseele, Jared Bullard, Carla Loeppky, Yichun Wei, Joss Reimer, Lyle R. McKinnon, Souradet Y. Shaw, Jason Kindrachuk and Derek R. Stein
Vaccines 2024, 12(10), 1095; https://doi.org/10.3390/vaccines12101095 - 26 Sep 2024
Viewed by 1513
Abstract
Understanding variables that influence antibody responses to COVID-19 vaccination within a population can provide valuable information on future vaccination strategies. In this population-based study, we examined the antibody responses to COVID-19 vaccination in Manitoba using residual serum specimens collected between January 2021 and [...] Read more.
Understanding variables that influence antibody responses to COVID-19 vaccination within a population can provide valuable information on future vaccination strategies. In this population-based study, we examined the antibody responses to COVID-19 vaccination in Manitoba using residual serum specimens collected between January 2021 and March 2022 (n = 20,365). Samples were tested for spike and nucleocapsid IgG against SARS-CoV-2 using clinically validated assays. We assessed the impacts of multiple factors on post-vaccination antibody titres including type of vaccine, age, sex, geographic location, number of doses received, and timing of vaccination. Our investigation demonstrated that vaccination with one dose of Moderna mRNA-1273 elicited higher anti-spike IgG titres overall compared to Pfizer BNT162b2 vaccination, while one dose of Pfizer BNT162b2 followed by a second dose of Moderna mRNA-1273 exhibited higher titres than two doses of Pfizer BNT162b2 or Moderna mRNA-1273, irrespective of age. Age and time post-vaccination had considerable effects on antibody responses, with older age groups exhibiting lower anti-spike IgG titres than younger ages, and titres of those vaccinated with Pfizer BNT162b2 waning faster than those vaccinated with Moderna mRNA-1273 or a combination of Pfizer BNT162b2 and Moderna mRNA-1273. Antibody titres did not appear to be affected by sex or geographic location. Our results identify how factors such as age and type of vaccine can influence antibody responses to vaccination, and how antibody titres wane over time. This information highlights the importance of tailoring vaccine regimens to specific populations, especially those at increased risk of severe COVID-19 and can be used to inform future vaccination strategies, scheduling of booster doses, and public health measures. Full article
Show Figures

Figure 1

12 pages, 6357 KiB  
Article
The Seraph 100® Microbind Affinity Blood Filter Does Not Alter Levels of Circulating or Mucosal Antibodies in Critical COVID-19 Patients
by Tonia L. Conner, Pooja Vir, Eric D. Laing, Ian J. Stewart, Edward Mitre and Kathleen P. Pratt
Antibodies 2024, 13(3), 65; https://doi.org/10.3390/antib13030065 - 6 Aug 2024
Cited by 1 | Viewed by 2022
Abstract
PURIFY-OBS-1 is an observational study evaluating the safety and efficacy of Seraph 100® Microbind Affinity Blood Filter (Seraph 100) use for COVID-19 patients with respiratory failure admitted to the intensive care unit (ICU). The Seraph 100 is a hemoperfusion device containing heparin-coated [...] Read more.
PURIFY-OBS-1 is an observational study evaluating the safety and efficacy of Seraph 100® Microbind Affinity Blood Filter (Seraph 100) use for COVID-19 patients with respiratory failure admitted to the intensive care unit (ICU). The Seraph 100 is a hemoperfusion device containing heparin-coated beads that can bind to, and reduce levels of, some circulating pathogens and inflammatory molecules. This study evaluated whether treatment with the Seraph 100 affected circulating and mucosal antibody levels in critically ill COVID-19 subjects. SARS-CoV-2 anti-spike and anti-nucleocapsid IgG and IgA levels in serum were evaluated at enrollment and on days 1, 4, 7, and 28 after Seraph 100 application, while anti-spike and nucleocapsid IgG, IgA, and secretory IgA levels in tracheal aspirates were evaluated at enrollment and on days 1, 2, 3, 7, and 28. Serum samples were also collected from the pre- and post-filter lines at 1 and 4 h following Seraph 100 application to evaluate the direct impact of the filter on circulating antibody levels. Treatment with the Seraph 100 did not alter the levels of circulating or mucosal antibodies in critically ill COVID-19 subjects admitted to the ICU. Full article
(This article belongs to the Section Humoral Immunity)
Show Figures

Graphical abstract

20 pages, 2466 KiB  
Article
Determinants of Systemic SARS-CoV-2-Specific Antibody Responses to Infection and to Vaccination: A Secondary Analysis of Randomised Controlled Trial Data
by Juana Claus, Thijs ten Doesschate, Esther Taks, Priya A. Debisarun, Gaby Smits, Rob van Binnendijk, Fiona van der Klis, Lilly M. Verhagen, Marien I. de Jonge, Marc J. M. Bonten, Mihai G. Netea and Janneke H. H. M. van de Wijgert
Vaccines 2024, 12(6), 691; https://doi.org/10.3390/vaccines12060691 - 20 Jun 2024
Cited by 1 | Viewed by 1556
Abstract
SARS-CoV-2 infections elicit antibodies against the viral spike (S) and nucleocapsid (N) proteins; COVID-19 vaccines against the S-protein only. The BCG-Corona trial, initiated in March 2020 in SARS-CoV-2-naïve Dutch healthcare workers, captured several epidemic peaks and the introduction of COVID-19 vaccines during the [...] Read more.
SARS-CoV-2 infections elicit antibodies against the viral spike (S) and nucleocapsid (N) proteins; COVID-19 vaccines against the S-protein only. The BCG-Corona trial, initiated in March 2020 in SARS-CoV-2-naïve Dutch healthcare workers, captured several epidemic peaks and the introduction of COVID-19 vaccines during the one-year follow-up. We assessed determinants of systemic anti-S1 and anti-N immunoglobulin type G (IgG) responses using trial data. Participants were randomised to BCG or placebo vaccination, reported daily symptoms, SARS-CoV-2 test results, and COVID-19 vaccinations, and donated blood for SARS-CoV-2 serology at two time points. In the 970 participants, anti-S1 geometric mean antibody concentrations (GMCs) were much higher than anti-N GMCs. Anti-S1 GMCs significantly increased with increasing number of immune events (SARS-CoV-2 infection or COVID-19 vaccination): 104.7 international units (IU)/mL, 955.0 IU/mL, and 2290.9 IU/mL for one, two, and three immune events, respectively (p < 0.001). In adjusted multivariable linear regression models, anti-S1 and anti-N log10 concentrations were significantly associated with infection severity, and anti-S1 log10 concentration with COVID-19 vaccine type/dose. In univariable models, anti-N log10 concentration was also significantly associated with acute infection duration, and severity and duration of individual symptoms. Antibody concentrations were not associated with long COVID or long-term loss of smell/taste. Full article
(This article belongs to the Section Epidemiology and Vaccination)
Show Figures

Figure 1

14 pages, 2274 KiB  
Article
High Concentration of Anti-SARS-CoV-2 Antibodies 2 Years after COVID-19 Vaccination Stems Not Only from Boosters but Also from Widespread, Often Unrecognized, Contact with the Virus
by Jakub Swadźba, Andrzej Panek, Paweł Wąsowicz, Tomasz Anyszek and Emilia Martin
Vaccines 2024, 12(5), 471; https://doi.org/10.3390/vaccines12050471 - 28 Apr 2024
Cited by 4 | Viewed by 3669
Abstract
This study follows 99 subjects vaccinated with Pfizer/BioNTech COVID-19 vaccines over two years, with particular focus on the last year of observation (between days 360 and 720). The response to the vaccination was assessed with Diasorin’s SARS-CoV-2 TrimericSpike IgG. Screening for SARS-CoV-2 infection [...] Read more.
This study follows 99 subjects vaccinated with Pfizer/BioNTech COVID-19 vaccines over two years, with particular focus on the last year of observation (between days 360 and 720). The response to the vaccination was assessed with Diasorin’s SARS-CoV-2 TrimericSpike IgG. Screening for SARS-CoV-2 infection was performed with Abbott’s SARS-CoV-2 Nucleocapsid IgG immunoassay. Data from questionnaires were also analyzed. Two years after the first vaccine dose administration, 100% of the subjects were positive for anti-spike SARS-CoV-2 IgG and the median antibody level was still high (3600 BAU/mL), dropping insignificantly over the last year. Simultaneously, a substantial increase in seropositivity in anti-nucleocapsid SARS-CoV-2 IgG was noted, reaching 33%. There was no statistically significant agreement between anti-N seropositivity and reported COVID-19. Higher anti-spike concentrations and lower COVID-19 incidence was seen in the older vaccinees. It was noted that only subjects boosted between days 360 and 720 showed an increase in anti-spike IgG concentrations. The higher antibody concentrations (median 7440 BAU/mL) on day 360 were noted in participants not infected over the following year. Vaccination, including booster administrations, and natural, even unrecognized, contact with SARS-CoV-2 entwined two years after the primary vaccination, leading to high anti-spike antibody concentrations. Full article
(This article belongs to the Special Issue 2nd Edition of Antibody Response to Infection and Vaccination)
Show Figures

Figure 1

11 pages, 635 KiB  
Article
Immunogenicity of Two Doses of BNT162b2 mRNA COVID-19 Vaccine with a ChAdOx1-S Booster Dose among Navy Personnel in Mexico
by Yanet Ventura-Enríquez, Evelyn Cortina-De la Rosa, Elizabeth Díaz-Padilla, Sandra Murrieta, Silvia Segundo-Martínez, Verónica Fernández-Sánchez and Cruz Vargas-De-León
Viruses 2024, 16(4), 551; https://doi.org/10.3390/v16040551 - 1 Apr 2024
Cited by 1 | Viewed by 1860
Abstract
Booster doses of the SARS-CoV-2 vaccine have been recommended to improve and prolong immunity, address waning immunity over time, and contribute to the control of the COVID-19 pandemic. A heterologous booster vaccine strategy may offer advantages over a homologous approach. To compare the [...] Read more.
Booster doses of the SARS-CoV-2 vaccine have been recommended to improve and prolong immunity, address waning immunity over time, and contribute to the control of the COVID-19 pandemic. A heterologous booster vaccine strategy may offer advantages over a homologous approach. To compare the immunogenicity of two doses of BNT162b2 mRNA COVID-19 vaccine with a ChAdOx1-S booster dose, immunoglobulin G (IgG) anti-spike (anti-S) and anti-nucleocapsid (anti-N) antibody titers (Ab) were compared over 1 year and post-booster vaccination. Results showed that, at 3- to 9-month assessments in vaccinated subjects, an-ti-N Ab were undetectable in participants with no history of COVID-19. In contrast, anti-S Ab measurements were lower than those with COVID-19, and a decrease was observed during the 9 months of observation. After booster vaccination, no differences were found in anti-S between participants who reported a history of COVID-19 and those who did not. Anti-S levels were higher after booster vaccination measurement vs. at 9 months in participants with COVID-19 and without COVID-19, i.e., independent of an infection history. Vaccine administration elicited a response of higher anti-S IgG levels in those infected before vaccination, although levels decreased during the first nine months. IgG anti-N titers were higher in participants with a history of declared infection and who were asymptomatic. The ChAdOx1-S booster increased anti-S Ab levels in participants regardless of whether they had been infected or not to a significantly higher value than with the first two vaccines. These findings underscore the importance of booster vaccination in eliciting a robust and sustained immune response against COVID-19, regardless of the prior infection status. Full article
(This article belongs to the Special Issue Evaluation of COVID-19 Booster Vaccine Effects)
Show Figures

Figure 1

17 pages, 2701 KiB  
Article
SARS-CoV-2-Specific Immune Responses in Vaccination and Infection during the Pandemic in 2020–2022
by Wakana Inoue, Yuta Kimura, Shion Okamoto, Takuto Nogimori, Akane Sakaguchi-Mikami, Takuya Yamamoto and Yasuko Tsunetsugu-Yokota
Viruses 2024, 16(3), 446; https://doi.org/10.3390/v16030446 - 13 Mar 2024
Viewed by 2120
Abstract
To gain insight into how immunity develops against SARS-CoV-2 from 2020 to 2022, we analyzed the immune response of a small group of university staff and students who were either infected or vaccinated. We investigated the levels of receptor-binding domain (RBD)-specific and nucleocapsid [...] Read more.
To gain insight into how immunity develops against SARS-CoV-2 from 2020 to 2022, we analyzed the immune response of a small group of university staff and students who were either infected or vaccinated. We investigated the levels of receptor-binding domain (RBD)-specific and nucleocapsid (N)-specific IgG and IgA antibodies in serum and saliva samples taken early (around 10 days after infection or vaccination) and later (around 1 month later), as well as N-specific T-cell responses. One patient who had been infected in 2020 developed serum RBD and N-specific IgG antibodies, but declined eight months later, then mRNA vaccination in 2021 produced a higher level of anti-RBD IgG than natural infection. In the vaccination of naïve individuals, vaccines induced anti-RBD IgG, but it declined after six months. A third vaccination boosted the IgG level again, albeit to a lower level than after the second. In 2022, when the Omicron variant became dominant, familial transmission occurred among vaccinated people. In infected individuals, the levels of serum anti-RBD IgG antibodies increased later, while anti-N IgG peaked earlier. The N-specific activated T cells expressing IFN γ or CD107a were detected only early. Although SARS-CoV-2-specific salivary IgA was undetectable, two individuals showed a temporary peak in RBD- and N-specific IgA antibodies in their saliva on the second day after infection. Our study, despite having a small sample size, revealed that SARS-CoV-2 infection triggers the expected immune responses against acute viral infections. Moreover, our findings suggest that the temporary mucosal immune responses induced early during infection may provide better protection than the currently available intramuscular vaccines. Full article
Show Figures

Figure 1

22 pages, 4102 KiB  
Article
The Nucleocapsid Protein of SARS-CoV-2, Combined with ODN-39M, Is a Potential Component for an Intranasal Bivalent Vaccine with Broader Functionality
by Yadira Lobaina, Rong Chen, Edith Suzarte, Panchao Ai, Vivian Huerta, Alexis Musacchio, Ricardo Silva, Changyuan Tan, Alejandro Martín, Laura Lazo, Gerardo Guillén-Nieto, Ke Yang, Yasser Perera and Lisset Hermida
Viruses 2024, 16(3), 418; https://doi.org/10.3390/v16030418 - 8 Mar 2024
Cited by 6 | Viewed by 2303
Abstract
Despite the rapid development of vaccines against COVID-19, they have important limitations, such as safety issues, the scope of their efficacy, and the induction of mucosal immunity. The present study proposes a potential component for a new generation of vaccines. The recombinant nucleocapsid [...] Read more.
Despite the rapid development of vaccines against COVID-19, they have important limitations, such as safety issues, the scope of their efficacy, and the induction of mucosal immunity. The present study proposes a potential component for a new generation of vaccines. The recombinant nucleocapsid (N) protein from the SARS-CoV-2 Delta variant was combined with the ODN-39M, a synthetic 39 mer unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN), used as an adjuvant. The evaluation of its immunogenicity in Balb/C mice revealed that only administration by intranasal route induced a systemic cross-reactive, cell-mediated immunity (CMI). In turn, this combination was able to induce anti-N IgA in the lungs, which, along with the specific IgG in sera and CMI in the spleen, was cross-reactive against the nucleocapsid protein of SARS-CoV-1. Furthermore, the nasal administration of the N + ODN-39M preparation, combined with RBD Delta protein, enhanced the local and systemic immune response against RBD, with a neutralizing capacity. Results make the N + ODN-39M preparation a suitable component for a future intranasal vaccine with broader functionality against Sarbecoviruses. Full article
(This article belongs to the Special Issue Molecular Epidemiology of SARS-CoV-2: 2nd Edition)
Show Figures

Figure 1

Back to TopTop