Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = anti−snake venom metalloproteinase activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1470 KiB  
Article
Coffea arabica Extracts and Metabolites with Potential Inhibitory Activity of the Major Enzymes in Bothrops asper Venom
by Erika Páez, Yeisson Galvis-Pérez, Jaime Andrés Pereañez, Lina María Preciado and Isabel Cristina Henao-Castañeda
Pharmaceuticals 2025, 18(8), 1151; https://doi.org/10.3390/ph18081151 - 1 Aug 2025
Viewed by 143
Abstract
Background/Objectives: Most snakebite incidents in Latin America are caused by species of the Bothrops genus. Their venom induces severe local effects, against which antivenom therapy has limited efficacy. Metabolites derived from Coffea arabica have demonstrated anti-inflammatory and anticoagulant properties, suggesting their potential [...] Read more.
Background/Objectives: Most snakebite incidents in Latin America are caused by species of the Bothrops genus. Their venom induces severe local effects, against which antivenom therapy has limited efficacy. Metabolites derived from Coffea arabica have demonstrated anti-inflammatory and anticoagulant properties, suggesting their potential as therapeutic agents to inhibit the local effects induced by B. asper venom. Methods: Three enzymatic assays were performed: inhibition of the procoagulant and amidolytic activities of snake venom serine proteinases (SVSPs); inhibition of the proteolytic activity of snake venom metalloproteinases (SVMPs); and inhibition of the catalytic activity of snake venom phospholipases A2 (PLA2s). Additionally, molecular docking studies were conducted to propose potential inhibitory mechanisms of the metabolites chlorogenic acid, caffeine, and caffeic acid. Results: Green and roasted coffee extracts partially inhibited the enzymatic activity of SVSPs and SVMPs. Notably, the green coffee extract, at a 1:20 ratio, effectively inhibited PLA2 activity. Among the individual metabolites tested, partial inhibition of SVSP and PLA2 activities was observed, whereas no significant inhibition of SVMP proteolytic activity was detected. Chlorogenic acid was the most effective metabolite, significantly prolonging plasma coagulation time and achieving up to 82% inhibition at a concentration of 62.5 μM. Molecular docking analysis revealed interactions between chlorogenic acid and key active site residues of SVSP and PLA2 enzymes from B. asper venom. Conclusions: The roasted coffee extract demonstrated the highest inhibitory effect on venom toxins, potentially due to the formation of bioactive compounds during the Maillard reaction. Molecular modeling suggests that the tested inhibitors may bind to and occupy the substrate-binding clefts of the target enzymes. These findings support further in vivo research to explore the use of plant-derived polyphenols as adjuvant therapies in the treatment of snakebite envenoming. Full article
Show Figures

Graphical abstract

17 pages, 1021 KiB  
Article
Strophanthus sarmentosus Extracts and the Strophanthus Cardenolide Ouabain Inhibit Snake Venom Proteases from Echis ocellatus
by Julius Abiola, Olapeju Aiyelaagbe, Akindele Adeyi, Babafemi Ajisebiola and Simone König
Molecules 2025, 30(12), 2625; https://doi.org/10.3390/molecules30122625 - 17 Jun 2025
Viewed by 576
Abstract
Strophanthus sarmentosus is recognised for various ethnomedicinal applications, including treatment after snakebites. However, only limited scientific evidence exists on its antivenomous capabilities. This study investigates the efficacy of methanol and ethylacetate extracts from S. sarmentosus leaves and roots against Echis ocellatus venom. A [...] Read more.
Strophanthus sarmentosus is recognised for various ethnomedicinal applications, including treatment after snakebites. However, only limited scientific evidence exists on its antivenomous capabilities. This study investigates the efficacy of methanol and ethylacetate extracts from S. sarmentosus leaves and roots against Echis ocellatus venom. A non-toxic range for the extracts was determined in rats, and assays were performed to test their anti-hemorrhagic and anti-hemolytic activity as well as their influence on venom-induced blood clotting. In all of these experiments, the extracts demonstrated significant positive effects equal to or better than antivenom. Moreover, the extracts strongly inhibited and even abolished the digestion of the vasoactive neuropeptide bradykinin by snake venom metalloproteinases. Strophantus plants are known for their high content of cardiac glycosides, one of which is the commercially available ouabain, that by itself also considerably inhibited venom-induced bradykinin cleavage. Although ouabain is only present in low amounts in S. sarmentosus when compared to other cardenolides of similar structure, it can be hypothesized that members of this substance class may also have inhibitory properties against venom proteases. S. sarmentosus additionally contains bioactive substances such as flavonoids, terpenoids, tannins, saponins, and alkaloids, which contribute to its protective effects. The study provides scientific data to explain the success of the traditional use of S. sarmentosus plant extracts as a first aid against envenomation in rural Africa. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

17 pages, 5735 KiB  
Article
Combination of Rhamnetin and RXP03 Mitigates Venom-Induced Toxicity in Murine Models: Preclinical Insights into Dual-Target Antivenom Therapy
by Jianqi Zhao, Guangyao Liu, Xiao Shi and Chunhong Huang
Toxins 2025, 17(6), 280; https://doi.org/10.3390/toxins17060280 - 4 Jun 2025
Viewed by 634
Abstract
Snakebite is a significant global public health challenge, and the limited application of antivenom has driven the exploration of novel therapies. Combination therapy using small-molecule drugs targeting phospholipases A2 (PLA2) and metalloproteinases (SVMP) in venom shows great potential. Although Rhamnetin and RXP03 [...] Read more.
Snakebite is a significant global public health challenge, and the limited application of antivenom has driven the exploration of novel therapies. Combination therapy using small-molecule drugs targeting phospholipases A2 (PLA2) and metalloproteinases (SVMP) in venom shows great potential. Although Rhamnetin and RXP03 exhibit notable anti-phospholipase and anti-metalloproteinase activities, respectively, their antiophidic potential remains poorly explored. This study aims to evaluate the inhibitory effects of Rhamnetin and RXP03 on snake venom toxicity. Methodologically, we conducted in vitro enzymatic assays to quantify PLA2/SVMP inhibition, murine models of envenomation (subcutaneous/intramuscular venom injection) to assess local tissue damage and systemic toxicity, and histopathological/biochemical analyses. In vitro experiments demonstrated that Rhamnetin effectively inhibited PLA2 activity while RXP03 showed potent suppression of SVMP activity, with their combination significantly reducing venom-induced hemorrhagic activity. In murine models, the combined therapy markedly alleviated venom-triggered muscle toxicity and ameliorated oxidative stress. Furthermore, the combination enhanced motor performance and survival rate in mice, improved serum biochemical parameters, corrected coagulation disorders, and attenuated pathological damage in liver, kidney, heart, and lung tissues. This research demonstrates that dual-targeted therapy against metalloproteinases and phospholipases in snake venom can effectively prevent a series of injuries caused by snake venom. Collectively, the combined application of Rhamnetin and RXP03 exhibits significant inhibitory effects on a variety of venom-induced toxicities, providing pharmacological evidence for the development of antivenom therapies. However, the efficacy validation in this study was limited to murine models, and there is a discrepancy with clinical needs for delayed treatment in real-world envenomation scenarios. Despite these limitations, the findings provide robust preclinical evidence supporting the Rhamnetin–RXP03 combination therapy as a cost-effective, broad-spectrum antivenom strategy. Future studies are required to optimize dosing regimens and evaluate clinical translatability. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

28 pages, 13740 KiB  
Article
A Novel P-III Metalloproteinase from Bothrops barnetti Venom Degrades Extracellular Matrix Proteins, Inhibits Platelet Aggregation, and Disrupts Endothelial Cell Adhesion via α5β1 Integrin Receptors to Arginine–Glycine–Aspartic Acid (RGD)-Containing Molecules
by Pedro Henrique de Caires Schluga, Debora Larangote, Ana Maria de Melo, Guilherme Kamienski Lobermayer, Daniel Torrejón, Luciana Souza de Oliveira, Valeria Gonçalves Alvarenga, Dan Erick Vivas-Ruiz, Silvio Sanches Veiga, Eladio Flores Sanchez and Luiza Helena Gremski
Toxins 2024, 16(11), 486; https://doi.org/10.3390/toxins16110486 - 9 Nov 2024
Cited by 2 | Viewed by 2111
Abstract
Viperid snake venoms are notably abundant in metalloproteinases (proteins) (SVMPs), which are primarily responsible for inducing hemorrhage and disrupting the hemostatic process and tissue integrity in envenomed victims. In this study, barnettlysin-III (Bar-III), a hemorrhagic P-III SVMP, was purified from the venom of [...] Read more.
Viperid snake venoms are notably abundant in metalloproteinases (proteins) (SVMPs), which are primarily responsible for inducing hemorrhage and disrupting the hemostatic process and tissue integrity in envenomed victims. In this study, barnettlysin-III (Bar-III), a hemorrhagic P-III SVMP, was purified from the venom of the Peruvian snake Bothrops barnetti. Bar-III has a molecular mass of approximately 50 kDa and is a glycosylation-dependent functional metalloproteinase. Some biochemical properties of Bar-III, including the full amino acid sequence deduced from its cDNA, are reported. Its enzymatic activity is increased by Ca2+ ions and inhibited by an excess of Zn2+. Synthetic metalloproteinase inhibitors and EDTA also inhibit its proteolytic action. Bar-III degrades several plasma and ECM proteins, including fibrin(ogen), fibronectin, laminin, and nidogen. Platelets play a key role in hemostasis and thrombosis and in other biological process, such as inflammation and immunity, and platelet activation is driven by the platelet signaling receptors, glycoprotein (GP)Ib-IX-V, which binds vWF, and GPVI, which binds collagen. Moreover, Bar-III inhibits vWF- and convulxin-induced platelet aggregation in human washed platelets by cleaving the recombinant A1 domain of vWF and GPVI into a soluble ectodomain fraction of ~55 kDa (sGPVI). Bar-III does not reduce the viability of cultured endothelial cells; however, it interferes with the adhesion of these cells to fibronectin, vitronectin, and RGD peptides, as well as their migration profile. Bar-III binds specifically to the surface of these cells, and part of this interaction involves α5β1 integrin receptors. These results contribute to a better comprehension of the pathophysiology of snakebite accidents/incidents and could be used as a tool to explore novel and safer anti-venom therapeutics. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

18 pages, 2788 KiB  
Article
Commercial Antivenoms Exert Broad Paraspecific Immunological Binding and In Vitro Inhibition of Medically Important Bothrops Pit Viper Venoms
by Jaffer Alsolaiss, Nessrin Alomran, Laura Hawkins and Nicholas R. Casewell
Toxins 2023, 15(1), 1; https://doi.org/10.3390/toxins15010001 - 20 Dec 2022
Cited by 11 | Viewed by 2625
Abstract
Snakebite envenoming is a life threatening neglected tropical disease that represents a considerable public health concern in the tropics. Viperid snakes of the genus Bothrops are among those of greatest medical importance in Latin America, and they frequently cause severe systemic haemotoxicity and [...] Read more.
Snakebite envenoming is a life threatening neglected tropical disease that represents a considerable public health concern in the tropics. Viperid snakes of the genus Bothrops are among those of greatest medical importance in Latin America, and they frequently cause severe systemic haemotoxicity and local tissue destructive effects in human victims. Although snakebite antivenoms can be effective therapeutics, their efficacy is undermined by venom toxin variation among snake species. In this study we investigated the extent of paraspecific venom cross-reactivity exhibited by three distinct anti-Bothrops antivenoms (Soro antibotrópico-crotálico, BothroFav and PoliVal-ICP) against seven different Bothrops pit viper venoms from across Latin America. We applied a range of in vitro assays to assess the immunological binding and recognition of venom toxins by the antivenoms and their inhibitory activities against specific venom functionalities. Our findings demonstrated that, despite some variations, the monovalent antivenom BothroFav and the polyvalent antivenoms Soro antibotrópico-crotálico and PoliVap-ICP exhibited extensive immunological recognition of the distinct toxins found in the different Bothrops venoms, with Soro antibotrópico-crotálico generally outperformed by the other two products. In vitro functional assays revealed outcomes largely consistent with the immunological binding data, with PoliVap-ICP and BothroFav exhibiting the greatest inhibitory potencies against procoagulant and fibrinogen-depleting venom activities, though Soro antibotrópico-crotálico exhibited potent inhibition of venom metalloproteinase activities. Overall, our findings demonstrate broad levels of antivenom paraspecificity, with in vitro immunological binding and functional inhibition often highly comparable between venoms used to manufacture the antivenoms and those from related species, even in the case of the monovalent antivenom BothroFav. Our findings suggest that the current clinical utility of these antivenoms could possibly be expanded to other parts of Latin America that currently suffer from a lack of specific snakebite therapies. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

19 pages, 14287 KiB  
Article
Examination of the Efficacy and Cross-Reactivity of a Novel Polyclonal Antibody Targeting the Disintegrin Domain in SVMPs to Neutralize Snake Venom
by Shelby S. Szteiter, Ilse N. Diego, Jonathan Ortegon, Eliana M. Salinas, Abcde Cirilo, Armando Reyes, Oscar Sanchez, Montamas Suntravat, Emelyn Salazar, Elda E. Sánchez and Jacob A. Galan
Toxins 2021, 13(4), 254; https://doi.org/10.3390/toxins13040254 - 31 Mar 2021
Cited by 8 | Viewed by 3264
Abstract
Snake envenomation can result in hemorrhage, local necrosis, swelling, and if not treated properly can lead to adverse systemic effects such as coagulopathy, nephrotoxicity, neurotoxicity, and cardiotoxicity, which can result in death. As such, snake venom metalloproteinases (SVMPs) and disintegrins are two toxic [...] Read more.
Snake envenomation can result in hemorrhage, local necrosis, swelling, and if not treated properly can lead to adverse systemic effects such as coagulopathy, nephrotoxicity, neurotoxicity, and cardiotoxicity, which can result in death. As such, snake venom metalloproteinases (SVMPs) and disintegrins are two toxic components that contribute to hemorrhage and interfere with the hemostatic system. Administration of a commercial antivenom is the common antidote to treat snake envenomation, but the high-cost, lack of efficacy, side effects, and limited availability, necessitates the development of new strategies and approaches for therapeutic treatments. Herein, we describe the neutralization ability of anti-disintegrin polyclonal antibody on the activities of isolated disintegrins, P-II/P-III SVMPs, and crude venoms. Our results show disintegrin activity on platelet aggregation in whole blood and the migration of the SK-Mel-28 cells that can be neutralized with anti-disintegrin polyclonal antibody. We characterized a SVMP and found that anti-disintegrin was also able to inhibit its activity in an in vitro proteolytic assay. Moreover, we found that anti-disintegrin could neutralize the proteolytic and hemorrhagic activities from crude Crotalus atrox venom. Our results suggest that anti-disintegrin polyclonal antibodies have the potential for a targeted approach to neutralize SVMPs in the treatment of snakebite envenomations. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

19 pages, 4784 KiB  
Article
Isolation of a Novel Metalloproteinase from Agkistrodon Venom and Its Antithrombotic Activity Analysis
by Jin Huang, Hui Fan, Xiaojian Yin and Fang Huang
Int. J. Mol. Sci. 2019, 20(17), 4088; https://doi.org/10.3390/ijms20174088 - 21 Aug 2019
Cited by 13 | Viewed by 3978
Abstract
Snake venom contains large amounts of active proteins and peptides. In this study, a novel snake protein, metalloproteinase SP, was successfully isolated from the venom of Agkistrodon acutus by multi-gel chromatography. The isolated protein exhibits anti-platelet aggregation activity. Animal experiments showed that it [...] Read more.
Snake venom contains large amounts of active proteins and peptides. In this study, a novel snake protein, metalloproteinase SP, was successfully isolated from the venom of Agkistrodon acutus by multi-gel chromatography. The isolated protein exhibits anti-platelet aggregation activity. Animal experiments showed that it exhibited defibration, anticoagulation, and antithrombotic effects and contributes to improved blood rheology and antiplatelet aggregation. In vivo experiments demonstrated that it prolonged clotting time, partial thromboplastin time, prothrombin time, thrombin time, fibrinogen time and reduced fibrinogen content of mice. Also, metalloproteinase SP inhibited carrageenan-induced tail thrombosis, ADP-induced acute pulmonary embolism, and ADP, Arachidonic acid (AA), or collagen-induced platelet aggregation. In vitro experiments showed that the protein cleaved the α, β, and γ chains of fibrinogen. Metabolomic analysis upon metalloproteinase SP treatment revealed that 14 metabolites, which are mainly involved in phenylalanine, tyrosine, and tryptophan biosynthesis, responded to metalloproteinase SP treatment. In summary, the isolated snake venom protein inhibits formation of acute pulmonary embolism probably through regulating and restoring perturbed energy, lipid, and amino acid metabolism. Full article
(This article belongs to the Special Issue Matrix Metalloproteinase)
Show Figures

Graphical abstract

14 pages, 2803 KiB  
Article
Human Monoclonal scFvs that Neutralize Fribrinogenolytic Activity of Kaouthiagin, a Zinc-Metalloproteinase in Cobra (Naja kaouthia) Venom
by Jirawat Khanongnoi, Siratcha Phanthong, Onrapak Reamtong, Anchalee Tungtronchitr, Wanpen Chaicumpa and Nitat Sookrung
Toxins 2018, 10(12), 509; https://doi.org/10.3390/toxins10120509 - 3 Dec 2018
Cited by 2 | Viewed by 2939
Abstract
Snake venom-metalloproteinases (SVMPs) are the primary factors that disturb hemostasis and cause hemorrhage in the venomous snake bitten subjects. Kaouthiagin is a unique SVMP that binds and cleaves von Willebrand factor (vWF) at a specific peptide bond leading to inhibition of platelet aggregation, [...] Read more.
Snake venom-metalloproteinases (SVMPs) are the primary factors that disturb hemostasis and cause hemorrhage in the venomous snake bitten subjects. Kaouthiagin is a unique SVMP that binds and cleaves von Willebrand factor (vWF) at a specific peptide bond leading to inhibition of platelet aggregation, which enhances the hemorrhage. Kaouthiagin is a low abundant venom component of Thai cobra (Naja kaouthia); thus, most horse-derived antivenins used for cobra bite treatment do not contain adequate anti-kaouthiagin. This study aimed to produce human single-chain antibody variable fragments (HuscFvs) that bind to and interfere with kaouthiagin activity for further clinical use. Kaouthiagin was purified from N. kaouthia-holovenom by a single-step gel-filtration chromatography. The purified venom component was used in phage-biopanning to select the kaouthiagin-bound HuscFv-displayed-phage clones from a HuscFv-phage display library. The selected phages were used to infect Escherichia coli bacteria. Soluble HuscFvs expressed by three phage-transformed-E. coli clones interfered with cobra kaouthiagin binding to human vWF. Computerized simulation indicated that HuscFv of two phage-transformed E. coli clones formed contact interface with kaouthiagin residues at or near catalytic site and effectively inhibited fibrinogenolytic activity of the kaouthiagin. The HuscFvs have therapeutic potential as an adjunct of antivenins in treatment of bleeding caused by venomous snakebites. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

18 pages, 2880 KiB  
Article
Proteopeptidomic, Functional and Immunoreactivity Characterization of Bothrops moojeni Snake Venom: Influence of Snake Gender on Venom Composition
by Fernanda Gobbi Amorim, Tassia Rafaela Costa, Dominique Baiwir, Edwin De Pauw, Loic Quinton and Suely Vilela Sampaio
Toxins 2018, 10(5), 177; https://doi.org/10.3390/toxins10050177 - 26 Apr 2018
Cited by 56 | Viewed by 9460
Abstract
Venom composition varies across snakes from all taxonomic levels and is influenced by the snakes’ age, habitat, diet, and sexual dimorphism. The present study reports the first in-depth investigation of venom composition in male and female Bothrops moojeni (B. moojeni) snakes [...] Read more.
Venom composition varies across snakes from all taxonomic levels and is influenced by the snakes’ age, habitat, diet, and sexual dimorphism. The present study reports the first in-depth investigation of venom composition in male and female Bothrops moojeni (B. moojeni) snakes (BmooM and BmooF, respectively) through three proteomics approaches associated with functional, cytotoxic, and immunoreactivity characterization. Compared with BmooM venom, BmooF venom exhibited weaker hyaluronidase, metalloproteinase, and phospholipase activity; stronger recognition by anti-bothropic serum; 1.4-fold stronger cytotoxicity; and greater number of peptides. The increased L-amino acid oxidase expression probably accounted for the stronger immunoreactivity and cytotoxicity of BmooF venom. BmooF and BmooM venom shared only 19% peptides. Some venom components were gender-specific, such as phospholipases B, phospholipase inhibitor, and hyaluronidases in BmooM, and cysteine-rich secretory proteins in BmooF. In conclusion, we describe herein the first proteomics study of B. moojeni snake venom and an in-depth characterization of gender-specific differences in venom composition. Altogether, our findings not only stress the importance of considering the snake’s gender during antivenom production, but also help to identify new potential drugs and biotechnological tools. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Graphical abstract

12 pages, 394 KiB  
Article
Extracts of Renealmia alpinia (Rottb.) MAAS Protect against Lethality and Systemic Hemorrhage Induced by Bothrops asper Venom: Insights from a Model with Extract Administration before Venom Injection
by Arley Camilo Patiño, Juan Carlos Quintana, José María Gutiérrez, Alexandra Rucavado, Dora María Benjumea and Jaime Andrés Pereañez
Toxins 2015, 7(5), 1532-1543; https://doi.org/10.3390/toxins7051532 - 30 Apr 2015
Cited by 7 | Viewed by 6288
Abstract
Renealmia alpinia (Rottb.) MAAS, obtained by micropropagation (in vitro) and wild forms have previously been shown to inhibit some toxic activities of Bothrops asper snake venom if preincubated before injection. In this study, assays were performed in a murine model in [...] Read more.
Renealmia alpinia (Rottb.) MAAS, obtained by micropropagation (in vitro) and wild forms have previously been shown to inhibit some toxic activities of Bothrops asper snake venom if preincubated before injection. In this study, assays were performed in a murine model in which extracts were administered for three days before venom injection. R. alpinia extracts inhibited lethal activity of B. asper venom injected by intraperitoneal route. Median Effective Dose (ED50) values were 36.6 ± 3.2 mg/kg and 31.7 ± 5.4 mg/kg (p > 0.05) for R. alpinia wild and in vitro extracts, respectively. At a dose of 75 mg/kg, both extracts totally inhibited the lethal activity of the venom. Moreover, this dose prolonged survival time of mice receiving a lethal dose of venom by the intravenous route. At 75 mg/kg, both extracts of R. alpinia reduced the extent of venom-induced pulmonary hemorrhage by 48.0% (in vitro extract) and 34.7% (wild extract), in agreement with histological observations of lung tissue. R. alpinia extracts also inhibited hemorrhage in heart and kidneys, as evidenced by a decrease in mg of hemoglobin/g of organ. These results suggest the possibility of using R. alpinia as a prophylactic agent in snakebite, a hypothesis that needs to be further explored. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

16 pages, 1693 KiB  
Article
Molecular Docking Studies and Anti−Snake Venom Metalloproteinase Activity of Thai Mango Seed Kernel Extract
by Pimolpan Pithayanukul, Jiraporn Leanpolchareanchai and Patchreenart Saparpakorn
Molecules 2009, 14(9), 3198-3213; https://doi.org/10.3390/molecules14093198 - 27 Aug 2009
Cited by 45 | Viewed by 11414
Abstract
Snakebite envenomations cause severe local tissue necrosis and the venom metalloproteinases are thought to be the key toxins involved. In this study, the ethanolic extract from seed kernels of Thai mango (Mangifera indica L. cv. ‘Fahlun’) (Anacardiaceae) and its major phenolic principle [...] Read more.
Snakebite envenomations cause severe local tissue necrosis and the venom metalloproteinases are thought to be the key toxins involved. In this study, the ethanolic extract from seed kernels of Thai mango (Mangifera indica L. cv. ‘Fahlun’) (Anacardiaceae) and its major phenolic principle (pentagalloylglucopyranose) exhibited potent and dose−dependent inhibitory effects on the caseinolytic and fibrinogenolytic activities of Malayan pit viper and Thai cobra venoms in in vitro tests. molecular docking studies revealed that the binding orientations of the phenolic principles were in the binding pockets of snake venom metalloproteinases (SVMPs). The phenolic principles could form hydrogen bonds with the three histidine residues in the conserved zinc−binding motif and could chelate the Zn2+ atom of the SVMPs, which could potentially result in inhibition of the venom enzymatic activities and thereby inhibit tissue necrosis. Full article
Show Figures

Figure 1

Back to TopTop