Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = anthropogenic vibration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3225 KB  
Review
A Review on Comfort of Pedestrian Bridges Under Human-Induced Vibrations and Tuned Mass Damper Control Technologies
by Shoukun Zhang, Baijin Wu, Yong Tang, Han Zhang, Zheng Xu, Guoqiang Li and Shuang Lu
Materials 2025, 18(16), 3903; https://doi.org/10.3390/ma18163903 - 21 Aug 2025
Viewed by 507
Abstract
With the development of urban infrastructure construction, while pedestrian bridges meet traffic functions the issue of their comfort has become a core consideration in structural design. This is because the long-span lightweight structures, with their large flexibility and low fundamental frequencies, are also [...] Read more.
With the development of urban infrastructure construction, while pedestrian bridges meet traffic functions the issue of their comfort has become a core consideration in structural design. This is because the long-span lightweight structures, with their large flexibility and low fundamental frequencies, are also vulnerable to human-induced vibrations. Pedestrian load modellings include the deterministic time-domain model, which is widely adopted in codes due to its simplicity, the random model that takes into account individual variability, and the frequency-domain model. The deterministic time-domain model has abundant parameter determination results and has become relatively mature, while the latter two, although more rigorous, have relatively lagging development. Numerous studies have shown that acceleration limits are the main indicators for comfort assessment. Vertical vibrations are controlled by amplitude constraints, while for the lateral vibrations the “lateral lock-in” that can cause dynamic instability needs to be evaluated with particular emphasis. When comfort exceeds an acceptable degree, a prevalent countermeasure is to attach a Tuned Mass Damper (TMD) or Multiple Tuned Mass Damper (MTMD) system to the structure—the latter demonstrates stronger robustness when dealing with random pedestrian loads. Full article
Show Figures

Figure 1

13 pages, 935 KB  
Article
The Physiological Response of the Fiddler Crab Austruca lactea to Anthropogenic Low-Frequency Substrate-Borne Vibrations
by Soobin Joo, Jaemin Cho and Taewon Kim
Biology 2025, 14(8), 962; https://doi.org/10.3390/biology14080962 - 31 Jul 2025
Viewed by 301
Abstract
Anthropogenic vibrational disturbances in the marine environment can affect benthic organisms, but these effects on marine animals remain poorly understood. To examine whether anthropogenic substrate-borne vibrations induce physiological stress in the white-clawed fiddler crab (Austruca lactea), individuals were exposed to vibrations [...] Read more.
Anthropogenic vibrational disturbances in the marine environment can affect benthic organisms, but these effects on marine animals remain poorly understood. To examine whether anthropogenic substrate-borne vibrations induce physiological stress in the white-clawed fiddler crab (Austruca lactea), individuals were exposed to vibrations at 120 Hz and 250 Hz (~100 dB re 1 µm/s2), and physiological indicators were measured. Lactate and ATP concentrations in the leg muscle were measured, and heat shock protein 70 kDa (HSP70) gene expression in the hepatopancreas was analyzed using RT-PCR with newly designed primers. At 120 Hz, ATP and lactate levels in the leg muscle did not differ significantly between the exposure and control groups. However, at 250 Hz, ATP levels were lower and lactate levels were higher in the exposure group compared to the control. HSP70 gene expression in the hepatopancreas did not differ significantly between the exposure and control groups at either frequency, although one individual exposed to 250 Hz exhibited markedly elevated expression, inducing higher expression variability in the exposed group. These results suggest that anthropogenic vibrational pollution may induce physiological stress in A. lactea, and that such physiological indices could serve as biomarkers for assessing vibroacoustic pollution on marine animals. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

12 pages, 1597 KB  
Article
Effects of Anthropogenic Vibratory Noise on Plant Development and Herbivory
by Estefania Velilla, Laura Bellato, Eleanor Collinson and Wouter Halfwerk
Acoustics 2025, 7(3), 45; https://doi.org/10.3390/acoustics7030045 - 25 Jul 2025
Viewed by 787
Abstract
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects [...] Read more.
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects plant development and, consequently, plant–insect interactions. Here, we examine the impact of windmill-like vibrational noise on the growth of Pisum sativum and its full-factorial interaction with the generalist herbivore Spodoptera exigua. Plants were exposed to either high or low vibrational noise from seed germination to the seed production stage. We recorded germination, flowering, fruiting time, and daily shoot length. Additionally, we measured herbivory intensity by Spodoptera exigua caterpillars placed on a subset of plants. Plants exposed to high vibrational noise grew significantly faster and taller than those in the low-noise treatment. Additionally, we found a marginally significant trend for earlier flowering in plants exposed to high noise. We did not find a significant effect of vibrational noise on herbivory. Our results suggest that underground vibrational noise can influence plant growth rates, which may potentially have ecological and agricultural implications. Faster growth may alter interspecific competition and shift trade-offs between growth and defense. Understanding these effects is important in assessing the broader ecological consequences of renewable energy infrastructure. Full article
Show Figures

Figure 1

33 pages, 5236 KB  
Review
A Review and Characterization of Energy-Harvesting Resources in Buildings with a Case Study of a Commercial Building in a Cold Climate—Toronto, Canada
by Jeremy Lytle, Zenon Radewych, Kristiina Valter Mai and Alan S. Fung
Energies 2025, 18(8), 1913; https://doi.org/10.3390/en18081913 - 9 Apr 2025
Viewed by 629
Abstract
The present work provides a framework for the comprehensive assessment of energy-harvesting resources in buildings, encompassing environmental, anthropogenic, and recyclable sources. A review of resources and state-of-the-art energy-harvesting technologies is presented, including an outlook on the future theoretical limitations of their performance. The [...] Read more.
The present work provides a framework for the comprehensive assessment of energy-harvesting resources in buildings, encompassing environmental, anthropogenic, and recyclable sources. A review of resources and state-of-the-art energy-harvesting technologies is presented, including an outlook on the future theoretical limitations of their performance. The assessment framework is applied to a case-study commercial building located in Toronto, Ontario, Canada. The available resources are categorized into three orders of magnitude with respect to achievable power generation, with solar and wind in the first tier, elevator potential and fitness centres in the second tier, and sources including vibrations, occupant traffic, and thermoelectric conversion in the third. Situated in a mid-rise context, the total annual resource magnitude is found to be eight times greater than the building demand. However, only an overall 10% of the available resource is converted with the harvesting applications and efficiencies considered, resulting in a net energy deficit. It is shown that with maximum theoretical efficiencies, the conversion rate can reach 30% resulting in 151% surplus electrical generation for the building in question. Full article
Show Figures

Figure 1

19 pages, 7882 KB  
Article
The Crystal Chemistry of Boussingaultite, (NH4)2Mg(SO4)2·6H2O, and Its Derivatives in a Wide Temperature Range
by Elena S. Zhitova, Rezeda M. Sheveleva, Andrey A. Zolotarev, Roman Yu. Shendrik, Elizaveta A. Pankrushina, Konstantin A. Turovsky, Margarita S. Avdontceva, Maria G. Krzhizhanovskaya, Natalia S. Vlasenko, Anatoly A. Zolotarev, Mikhail A. Rassomakhin and Sergey V. Krivovichev
Minerals 2024, 14(10), 1052; https://doi.org/10.3390/min14101052 - 20 Oct 2024
Cited by 2 | Viewed by 1754
Abstract
The crystal structure, thermal behavior, and vibrational spectra of the anthropogenic analogue of boussingaultite, (NH4)2Mg(SO4)2·6H2O, and its dehydrated counterpart efremovite, (NH4)2Mg2(SO4)3, were studied [...] Read more.
The crystal structure, thermal behavior, and vibrational spectra of the anthropogenic analogue of boussingaultite, (NH4)2Mg(SO4)2·6H2O, and its dehydrated counterpart efremovite, (NH4)2Mg2(SO4)3, were studied in detail. The sample from the Chelyabinsk burning coal dumps has the composition of (NH4)1.92(Mg1.02Mn0.01Fe0.01)∑1.04(SO4)2·6H2O and crystallizes in the space group P21/a, with a = 9.3183(4), b = 12.6070(4), c = 6.2054(3) Å, β = 107.115(5)°, V = 696.70(5) Å3 (at 20 °C), Z = 2. The thermal evolution steps are as follows: boussingaultite (NH4)2Mg(SO4)2·6H2O (25–90 °C) → X-ray amorphous phase (100–150 °C) → efremovite (NH4)2Mg2(SO4)3 (160–340 °C) → MgSO4 Cmcm + Pbnm (340–580 °C) → MgSO4 Pbnm (580–700 °C). Thermal expansion is anisotropic, with the coefficients (×106 °C−1) α11 = 52(2), α22 = 68(2), α33 = –89(3), and αv = 31(3) at T = –123 °C; and α11 = 53(2), α22 = 67(2), α33 = 15(1), and αv = 136(3) at T = 60 °C. The maximal thermal expansion is along the b-axis and is due to straightening of corrugated pseudolayers (within the ab plane) of Mg(H2O)6 octahedra and SO4 tetrahedra with NH4 groups in the interlayer space. Vibrational spectroscopy outlines the general trend of dehydration and deammonization as the difference in the temperature intervals of these transformation steps allows separation of O–H and N–H vibrations in the process of dehydration by infrared and Raman spectroscopy. The intermediate partially dehydrated modification of boussingaultite was detected by in situ Raman spectroscopy at 110 °C that may correspond to ammonium leonite. Full article
Show Figures

Graphical abstract

20 pages, 6177 KB  
Article
Geomechanical Characterization of Crushed Concrete–Rubber Waste Mixtures
by Katarzyna Gabryś
Sustainability 2023, 15(19), 14446; https://doi.org/10.3390/su151914446 - 3 Oct 2023
Cited by 1 | Viewed by 1317
Abstract
The present study investigates the dynamic and cyclic behavior of mixtures of waste materials, i.e., rigid anthropogenic mineral aggregates (RCA) mixed with recycled soft particles (RTW), based on a series of standard resonant column tests and cyclic torsional shear tests. The laboratory tests [...] Read more.
The present study investigates the dynamic and cyclic behavior of mixtures of waste materials, i.e., rigid anthropogenic mineral aggregates (RCA) mixed with recycled soft particles (RTW), based on a series of standard resonant column tests and cyclic torsional shear tests. The laboratory tests presented in this article are part of a larger research project that aims to provide useful insights to facilitate the application of RCA–RTW compositions as geotechnical materials. The impacts of various parameters including shear strain, mean effective stress, and, in particular, rubber content on the shear modulus (G), and damping ratio (D), are considered in detail. Rubber content is considered by the percentage of rubber in the mix weight. In general, the results show that as the RTW content increases, the shear modulus decreases while the damping ratio increases. The largest reduction in the G−modulus values occurs for the highest rubberized mix. The observed damping ratio for pure RCA is approx. three times lower versus rubber-reinforced specimens. The compliance of the behavior of the new RCA–RTW mixtures and pure recycled concrete waste tested under dynamic and cyclic loading is demonstrated. The effects of crushing of the RCA material itself during cyclic loading are visible, and dilution of this process due to the addition of rubber. Furthermore, the test data reveal that the values of the G−modulus and D−ratio at small and medium strain levels are considered independent of the time of vibration. Full article
(This article belongs to the Special Issue Resilience and Sustainability in Geotechnical Engineering)
Show Figures

Figure 1

13 pages, 6932 KB  
Article
Electromagnetic Design and Analysis of Inertial Mass Linear Actuator for Active Vibration Isolation System
by Do-Kwan Hong and Jang-Hyun Park
Actuators 2023, 12(7), 295; https://doi.org/10.3390/act12070295 - 20 Jul 2023
Cited by 3 | Viewed by 2841
Abstract
Underwater radiated noise from anthropogenic structures must be reduced to protect the marine environment. Active vibration isolation that can reduce noise generated from vibration sources by providing counteracting forces can solve this issue. This paper presents a 120 N class electromagnetic inertial mass [...] Read more.
Underwater radiated noise from anthropogenic structures must be reduced to protect the marine environment. Active vibration isolation that can reduce noise generated from vibration sources by providing counteracting forces can solve this issue. This paper presents a 120 N class electromagnetic inertial mass linear actuator for an active vibration control system in a large ship. The proposed actuator is operated based on the Lorentz force, also known as electromagnetic force. To achieve a high thrust force to weight ratio, a permanent magnet with outer radial magnetization is used. In order to design and analyze the proposed model, a simple magnetic equivalent circuit analysis was first conducted to achieve an appropriate force, and its value was compared and verified with the magnetostatic finite element method. The dynamic characteristics of the actuator were then evaluated, and the performance was analyzed at various operating frequency points. The bobbin housing supporting the coil causes an eddy current loss due to materials with electrical conductivity. As a result, the damping force is generated by the reduction in magnetic flux, and the control force tends to decrease. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

13 pages, 14587 KB  
Article
Quantifying Urban Activities Using Nodal Seismometers in a Heterogeneous Urban Space
by Yunyue Elita Li, Enhedelihai Alex Nilot, Yumin Zhao and Gang Fang
Sensors 2023, 23(3), 1322; https://doi.org/10.3390/s23031322 - 24 Jan 2023
Cited by 5 | Viewed by 2657
Abstract
Earth’s surface is constantly vibrating due to natural processes inside and human activities on the surface of the Earth. These vibrations form the ambient seismic fields that are measured by sensitive seismometers. Compared with natural processes, anthropogenic vibrations dominate the seismic measurements at [...] Read more.
Earth’s surface is constantly vibrating due to natural processes inside and human activities on the surface of the Earth. These vibrations form the ambient seismic fields that are measured by sensitive seismometers. Compared with natural processes, anthropogenic vibrations dominate the seismic measurements at higher frequency bands, demonstrate clear temporal and cyclic variability, and are more heterogeneous in space. Consequently, urban ambient seismic fields are a rich information source for human activity monitoring. Improving from the conventional energy-based seismic spectral analysis, we utilize advanced signal processing techniques to extract the occurrence of specific urban activities, including motor vehicle counts and runner activities, from the high-frequency ambient seismic noise. We compare the seismic energy in different frequency bands with the extracted activity intensity at different locations within a one-kilometer radius and highlight the high-resolution information in the seismic data. Our results demonstrate the intense heterogeneity in a highly developed urban space. Different sectors of urban society serve different functions and respond differently when urban life is severely disturbed by the impact of the COVID-19 pandemic in 2020. The anonymity of seismic data enabled an unprecedented spatial and temporal resolution, which potentially could be utilized by government regulators and policymakers for dynamic monitoring and urban management. Full article
(This article belongs to the Special Issue Automatic Detection of Seismic Signals)
Show Figures

Figure 1

20 pages, 7475 KB  
Article
Analysis of the Underwater Radiated Noise Generated by Hull Vibrations of the Ships
by Rodrigo F. Javier, Ramis Jaime, Poveda Pedro, Carbajo Jesus and Segovia Enrique
Sensors 2023, 23(2), 1035; https://doi.org/10.3390/s23021035 - 16 Jan 2023
Cited by 8 | Viewed by 6406
Abstract
Shipping traffic is recognised as the main man-noise source of the anthropogenic noise generated in the marine environment. The underwater acoustic pollution is increased due to the increment of the human activity at seas supposing a threat for marine habitats. The ship as [...] Read more.
Shipping traffic is recognised as the main man-noise source of the anthropogenic noise generated in the marine environment. The underwater acoustic pollution is increased due to the increment of the human activity at seas supposing a threat for marine habitats. The ship as acoustic source must be understood and controlled to manage the maritime areas both in time and space to reduce the impact of noise in marine fauna. Shipping noise is mainly composed of flow noise, propeller noise and machinery noise. This research is focused on the analysis and estimation of the underwater radiated noise generated by the vibrations of the onboard machinery or structure-borne noise based on the calculation of the transfer function. This function relates the acceleration levels of the vibrations of the hull’s panels and the radiated noise by them using the radiation efficiency. Different analytical methods to estimate the radiation efficiency are presented and compared with data collected at sea. The measurements are performed acquiring simultaneously acceleration and acoustic levels by means on accelerometers installed on the hull’s panels at different positions and hydrophones deployed close to the bow, middle and stern of the ship. The analysis of the transmission of the vibrations along the ships is performed using the data from different locations of the hydrophones. The quality of the measurements is analysed using the coherence function through the spectral correlation between the measurement of vibrations and acoustic levels. On the other hand, signal-to-noise ratio is computed to verify the strength of the noise sources. The computed transfer function is used to predict the underwater radiated noise from vibrations showing differences less than 2 dB re to 1 μPa2. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

16 pages, 3980 KB  
Article
Acoustic Source Characterization of Marine Propulsors
by Jukka Tanttari and Antti Hynninen
J. Mar. Sci. Eng. 2022, 10(9), 1273; https://doi.org/10.3390/jmse10091273 - 9 Sep 2022
Cited by 6 | Viewed by 2512
Abstract
Marine propulsors represent one of the most important contributors among anthropogenic sounds radiated into water. Blade based propulsors, e.g., propellers, generate tones at the blade passing frequency and its harmonics, especially in cavitating conditions. In addition to hydrodynamic noise, pressure fluctuations cause vibrations [...] Read more.
Marine propulsors represent one of the most important contributors among anthropogenic sounds radiated into water. Blade based propulsors, e.g., propellers, generate tones at the blade passing frequency and its harmonics, especially in cavitating conditions. In addition to hydrodynamic noise, pressure fluctuations cause vibrations in ship hull leading to mechanical noise. For noise prediction purposes, it is highly beneficial to characterize the noise sources as simplified, complex valued arrays having information on source positions, source strengths and phases. In this paper, procedure to characterize marine propulsors as acoustic sources with inverse method is introduced. First, the numerical model with complete hydro-acoustic sources is investigated. Second, a source model composed of sensible number and distribution of elementary (“equivalent”) compact sources is specified. Then selected responses are used as input in source characterization with inverse method. Finally, the model with equivalent sources is solved and the results are validated by comparison against the results from the complete simulation model. The introduced acoustic source characterization procedure of marine propulsors is applicable also for the responses determined experimentally, e.g., in a cavitation tunnel when the pressure transducer array is determined appropriately. Full article
Show Figures

Figure 1

20 pages, 7023 KB  
Article
Comparative In Situ Study of Dynamic Load Generated by Gravel Piles Measured by a Fiber-Optic Interferometer
by Martin Stolárik, Stanislav Kepák, Miroslav Pinka, Jakub Čubík and Jan Nedoma
Sensors 2022, 22(15), 5579; https://doi.org/10.3390/s22155579 - 26 Jul 2022
Cited by 2 | Viewed by 1823
Abstract
Currently, all the technology used for seismic monitoring is based on sensors in the electrical domain. There are, however, other physical principles that may enable and fully replace existing devices in the future. This paper introduces one of these approaches, namely the field [...] Read more.
Currently, all the technology used for seismic monitoring is based on sensors in the electrical domain. There are, however, other physical principles that may enable and fully replace existing devices in the future. This paper introduces one of these approaches, namely the field of fiber optics, which has great potential to be fully applied in the field of vibration measurement. The proposed solution uses a Michelson fiber-optic interferometer designed without polarization fading and with an operationally passive demodulation technique using three mutually phase-shifted optical outputs. Standard instrumentation commonly used in the field of seismic monitoring in geotechnical engineering was used as a reference. Comparative measurements were carried out during the implementation of gravel piles, which represents a significant source of vibration. For the correlation of the data obtained, the linear dependence previously verified in laboratory measurements was used. The presented results show that the correlation is also highly favorable (correlation coefficient in excess of 0.9) from the values measured in situ, with an average deviation for the oscillation velocity amplitude of the optical sensor not exceeding 0.0052. Full article
(This article belongs to the Special Issue Fiber Optic Sensors and Applications Ⅱ)
Show Figures

Figure 1

15 pages, 3745 KB  
Article
The Direct Reduction of Iron Ore with Hydrogen
by Shuo Li, Huili Zhang, Jiapei Nie, Raf Dewil, Jan Baeyens and Yimin Deng
Sustainability 2021, 13(16), 8866; https://doi.org/10.3390/su13168866 - 8 Aug 2021
Cited by 73 | Viewed by 10912
Abstract
The steel industry represents about 7% of the world’s anthropogenic CO2 emissions due to the high use of fossil fuels. The CO2-lean direct reduction of iron ore with hydrogen is considered to offer a high potential to reduce CO2 [...] Read more.
The steel industry represents about 7% of the world’s anthropogenic CO2 emissions due to the high use of fossil fuels. The CO2-lean direct reduction of iron ore with hydrogen is considered to offer a high potential to reduce CO2 emissions, and this direct reduction of Fe2O3 powder is investigated in this research. The H2 reduction reaction kinetics and fluidization characteristics of fine and cohesive Fe2O3 particles were examined in a vibrated fluidized bed reactor. A smooth bubbling fluidization was achieved. An increase in external force due to vibration slightly increased the pressure drop. The minimum fluidization velocity was nearly independent of the operating temperature. The yield of the direct H2-driven reduction was examined and found to exceed 90%, with a maximum of 98% under the vibration of ~47 Hz with an amplitude of 0.6 mm, and operating temperatures close to 500 °C. Towards the future of direct steel ore reduction, cheap and “green” hydrogen sources need to be developed. H2 can be formed through various techniques with the catalytic decomposition of NH3 (and CH4), methanol and ethanol offering an important potential towards production cost, yield and environmental CO2 emission reductions. Full article
(This article belongs to the Special Issue Advances in Solar Thermal Energy)
Show Figures

Figure 1

18 pages, 4844 KB  
Article
New Methods to Seismic Monitoring: Laboratory Comparative Study of Michelson Fiber-Optic Interferometer and Pneumatic Measurement Systems
by Martin Stolarik, Jan Nedoma, Radek Martinek, Stanislav Kepak, Eva Hrubesova, Miroslav Pinka and Jakub Kolarik
Photonics 2021, 8(5), 147; https://doi.org/10.3390/photonics8050147 - 28 Apr 2021
Cited by 6 | Viewed by 2948
Abstract
New possibilities of vibration monitoring can be found in completely different physical approaches, where all measuring technology is currently based on sensors in the electrical domain. This paper presents two different promising alternative approaches to vibration measurement, specifically in the field of fiber-optics [...] Read more.
New possibilities of vibration monitoring can be found in completely different physical approaches, where all measuring technology is currently based on sensors in the electrical domain. This paper presents two different promising alternative approaches to vibration measurement, specifically in the field of fiber-optics and pneumatic sensors. The proposed solution uses a Michelson fiber-optic interferometer designed without polarization fading and with operationally passive demodulation technique using three mutually phase-shifted optical outputs. Experimentally developed sensor systems for the registration of anthropogenic seismic phenomena were complemented by standard instrumentation for measuring seismicity used as a standard. The measurement was performed under simplified conditions using a calibrated stroke as a source of dynamic loading. In addition to alternative systems, the paper also presents the results of recalculation of the measured values in a time domain and basic relationships for the conversion to basic units derived from the SI (International System of Units) system and used internationally in the field of seismic engineering. The results presented demonstrate that even systems operating on a different physical principle have great potential to replace the existing seismic devices. The correlation coefficients for both sensory devices were high (above 0.9) and the average deviations from the measured values of the amplitude of the oscillation velocity did not exceed the value of 0.02, neither with the fiber-optic or pneumatic sensor. Full article
Show Figures

Figure 1

12 pages, 22598 KB  
Article
Variability of Seismic Loading over the Surface of a Concrete Slab in Interaction with the Subsoil
by Martin Stolarik, Miroslav Pinka, Jan Nedoma and Michael Fridrich
Sustainability 2020, 12(22), 9530; https://doi.org/10.3390/su12229530 - 16 Nov 2020
Viewed by 1763
Abstract
This article is aimed at the analysis of the behavior of a fiber-reinforced concrete slab in contact with subsoil during dynamic loading in close proximity. The properties of such slabs are important for evaluating their dynamic response, though the properties of the subsoil [...] Read more.
This article is aimed at the analysis of the behavior of a fiber-reinforced concrete slab in contact with subsoil during dynamic loading in close proximity. The properties of such slabs are important for evaluating their dynamic response, though the properties of the subsoil environment through which the vibrations propagate must also be taken into account. The analysis itself was performed on the basis of the results obtained from experimental measurements during seismic excitation with a calibrated impact. There were three concrete slabs tested, with varying amounts of fiber. The standard Vistec seismic instrumentation was used for measuring the dynamic response. The results of the experiment were processed in both the amplitude and frequency domains, and a graphic comparison in the waveform and frequency fields was made. The results acquired from this experimental research may support a more objective approach during the evaluation of dynamic impacts ranging from anthropogenic impacts to building structures. Full article
(This article belongs to the Special Issue Sustainable Construction and Building Materials for Environment)
Show Figures

Figure 1

21 pages, 5519 KB  
Article
Observation of CO2 Regional Distribution Using an Airborne Infrared Remote Sensing Spectrometer (Air-IRSS) in the North China Plain
by Ruwen Wang, Pinhua Xie, Jin Xu, Ang Li and Youwen Sun
Remote Sens. 2019, 11(2), 123; https://doi.org/10.3390/rs11020123 - 10 Jan 2019
Cited by 4 | Viewed by 4657
Abstract
Carbon dioxide (CO2) is one of the most important anthropogenic greenhouse gases (GHG) and significantly affects the energy balance of atmospheric systems. Larger coverage and higher spatial resolution of CO2 measurements can complement the existing in situ network and satellite [...] Read more.
Carbon dioxide (CO2) is one of the most important anthropogenic greenhouse gases (GHG) and significantly affects the energy balance of atmospheric systems. Larger coverage and higher spatial resolution of CO2 measurements can complement the existing in situ network and satellite measurements and thus improve our understanding of the global carbon cycle. In this study, we present a self-made airborne infrared remote sensing spectrometer (Air-IRSS) designed to determine the regional distribution of CO2. The Air-IRSS measured CO2 in the spectral range between 1590 and 1620 nm at a spectral resolution of 0.45 nm and an exposure time of 1 s. It was operated onboard an aircraft at a height of 3 km with a velocity of 180 km/h, and a spatial resolution of 50.00 m × 62.80 m. Weighting function modified differential optical absorption spectroscopy (WFM-DOAS) was used to analyze the measured spectra. The results show that the total uncertainty estimated for the retrieval of the CO2 column was 1.26% for airborne measurements over a large region, and 0.30% for a fixed point, such as power points or factories. Under vibration-free static conditions, the on-ground Air-IRSS observations can adequately reproduce the variations observed by Greenhouse Gases Observing Satellite (GOSAT) with a correlation coefficient (r) of 0.72. Finally, we conducted an airborne field campaign to determine the regional distribution of CO2 over the North China Plain. The regional distribution of CO2 columns over four cities of Xing-tai, Hengshui, Shijiazhuang, and Baoding were obtained with the GPS information, which ranged from 2.00 × 1021 molec cm−2 to 3.00 × 1021 molec cm−2. The CO2 vertical distributions were almost uniform below a height of 3 km in the area without CO2 emission sources, and the highest values were found over Baoding City. Full article
Show Figures

Graphical abstract

Back to TopTop