Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (639)

Search Parameters:
Keywords = anthocyanin metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4501 KiB  
Article
The Effect of SO2 Fumigation, Acid Dipping, and SO2 Combined with Acid Dipping on Metabolite Profile of ‘Heiye’ Litchi (Litchi chinensis Sonn.) Pericarp
by Feilong Yin, Zhuoran Li, Tingting Lai, Libing Long, Yunfen Liu, Dongmei Han, Zhenxian Wu, Liang Shuai and Tao Luo
Horticulturae 2025, 11(8), 923; https://doi.org/10.3390/horticulturae11080923 (registering DOI) - 5 Aug 2025
Abstract
Sulfur fumigation (SF), acid dipping (HCl treatment, HAT), and their combination (SF+HAT) are common methods for long-term preservation and color protection of litchi. However, their effects on the metabolic profile of the litchi pericarp have not been investigated. SF resulted in a yellowish-green [...] Read more.
Sulfur fumigation (SF), acid dipping (HCl treatment, HAT), and their combination (SF+HAT) are common methods for long-term preservation and color protection of litchi. However, their effects on the metabolic profile of the litchi pericarp have not been investigated. SF resulted in a yellowish-green pericarp by up-regulating lightness (L*), b*, C*, and but down-regulating total anthocyanin content (TAC) and a*, while HAT resulted in a reddish coloration by up-regulating a*, b*, and C* but down-regulating L*, h°, and TAC. SF+HAT recovered reddish color with similar L*, C* to SF but a*, b*, h°, and TAC between SF and HAT. Differential accumulated metabolites (DAMs) detected in HAT (vs. control) were more than those in SF (vs. control), but similar to those in SF+HAT (vs. control). SF specifically down-regulated the content of cyanidin-3-O-rutinoside, sinapinaldehyde, salicylic acid, and tyrosol, but up-regulated 6 flavonoids (luteolin, kaempferol-3-O-(6″-malonyl)galactoside, hesperetin-7-O-glucoside, etc.). Five pathways (biosynthesis of phenylpropanoids, flavonoid biosynthesis, biosynthesis of secondary metabolites, glutathione metabolism, and cysteine and methionine metabolism) were commonly enriched among the three treatments, which significantly up-regulated sulfur-containing metabolites (mainly glutathione, methionine, and homocystine) and down-regulated substrates for browning (mainly procyanidin B2, C1, and coniferyl alcohol). These results provide metabolic evidence for the effect of three treatments on coloration and storability of litchi. Full article
Show Figures

Figure 1

24 pages, 1564 KiB  
Review
Anthocyanin-Rich Purple Plant Foods: Bioavailability, Antioxidant Mechanisms, and Functional Roles in Redox Regulation and Exercise Recovery
by Jarosław Nuszkiewicz, Joanna Wróblewska, Marcin Wróblewski and Alina Woźniak
Nutrients 2025, 17(15), 2453; https://doi.org/10.3390/nu17152453 - 28 Jul 2025
Viewed by 710
Abstract
Anthocyanin-rich purple fruits and vegetables—such as blackcurrants, blueberries, purple sweet potatoes, and red cabbage—are increasingly recognized for their health-promoting properties. These natural pigments exert antioxidant and anti-inflammatory effects, making them relevant to both chronic disease prevention and exercise recovery. This review critically examines [...] Read more.
Anthocyanin-rich purple fruits and vegetables—such as blackcurrants, blueberries, purple sweet potatoes, and red cabbage—are increasingly recognized for their health-promoting properties. These natural pigments exert antioxidant and anti-inflammatory effects, making them relevant to both chronic disease prevention and exercise recovery. This review critically examines current evidence on the redox-modulating mechanisms of anthocyanins, including their interactions with key signaling pathways such as Nrf2 and NF-κB, and their effects on oxidative stress, mitochondrial function, vascular homeostasis, and post-exercise adaptation. Particular attention is given to their bioavailability and the challenges associated with their chemical stability, metabolism, and food matrix interactions. In light of these factors, dietary strategies and technological innovations to improve anthocyanin absorption are also discussed. The synthesis of preclinical and clinical findings supports the potential of anthocyanin-rich foods as functional components in health optimization, athletic performance, and recovery strategies. Full article
Show Figures

Figure 1

31 pages, 3043 KiB  
Article
Physiological and Phytochemical Responses of Calendula officinalis L. to End-of-Day Red/Far-Red and Green Light
by Luisa F. Lozano-Castellanos, Giuseppina Pennisi, Luis Manuel Navas-Gracia, Francesco Orsini, Eva Sánchez-Hernández, Pablo Martín-Ramos and Adriana Correa-Guimaraes
Biology 2025, 14(8), 935; https://doi.org/10.3390/biology14080935 - 24 Jul 2025
Viewed by 317
Abstract
Calendula officinalis L. is a widely used medicinal plant whose secondary metabolism and morphology are influenced by light. This study evaluated the effects of 2 and 4 h end-of-day (EOD) red/far-red (R:FR) and green (G) light on the growth, physiology, and phytochemical profile [...] Read more.
Calendula officinalis L. is a widely used medicinal plant whose secondary metabolism and morphology are influenced by light. This study evaluated the effects of 2 and 4 h end-of-day (EOD) red/far-red (R:FR) and green (G) light on the growth, physiology, and phytochemical profile of hydroponically grown C. officinalis under a constant red/blue light background, compared with a red/blue control without EOD treatment. Morphological, physiological (gas exchange, chlorophyll fluorescence), biochemical (chlorophyll, anthocyanin), and chemical composition (attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and Gas Chromatography-Mass Spectrometry (GC-MS)) were evaluated. EOD G 2 h enhanced photosynthetic pigments, anthocyanins, and biomass, while control plants showed higher phenolic content. EOD R:FR induced stem elongation but reduced pigment and metabolite accumulation. GC-MS revealed organ-specific metabolic specialization, with flowers displaying greater chemical diversity than leaves. EOD G favored sesquiterpene diversity in flowers, while EOD R:FR increased nitrogen-containing compounds and unsaturated fatty acids. Vibrational data supported these shifts, with spectral signatures of esters, phenolics, and lipid-related structures. Bioactive compounds, including α-cadinol and carboxylic acids, were identified across treatments. These findings demonstrate that EOD light modulates physiological and metabolic traits in C. officinalis, highlighting EOD G as an enhancer of biomass and phytochemical richness for pharmaceutical applications under controlled conditions. Full article
Show Figures

Graphical abstract

16 pages, 1889 KiB  
Article
Untargeted Metabolomics Reveals Distinct Anthocyanin Profiles in Napier Grass (Pennisetum purpureum Schumach.) Cultivars
by Zhi-Yue Wang, Pei-Yin Lin, Chwan-Yang Hong, Kevin Chi-Chung Chou and Ting-Jang Lu
Foods 2025, 14(15), 2582; https://doi.org/10.3390/foods14152582 - 23 Jul 2025
Viewed by 275
Abstract
Plant secondary metabolites regulate plant growth and serve as valuable pharmaceutical resources. Napier grass (Pennisetum purpureum Schumach.), a Poaceae species, shows potential as a functional food. In this study, we employed high-resolution mass spectrometry combined with a data-independent acquisition (DIA) strategy for [...] Read more.
Plant secondary metabolites regulate plant growth and serve as valuable pharmaceutical resources. Napier grass (Pennisetum purpureum Schumach.), a Poaceae species, shows potential as a functional food. In this study, we employed high-resolution mass spectrometry combined with a data-independent acquisition (DIA) strategy for the untargeted detection of anthocyanins, a group of secondary metabolites, in napier grass. Clear MS2 fragmentation patterns were observed for anthocyanins, characterized by diagnostic aglycone signals and sequential losses of hexosyl (C6H10O5), deoxyhexosyl (C6H10O4), pentosyl (C5H8O4), and p-coumaroyl groups (C9H8O3). Based on matching with authentic standards and an in-house database, ten anthocyanins were identified, seven of which were newly reported in napier grass. In a single-laboratory validation analysis, both absolute and semi-quantitative results reliably reflected the specific distribution of metabolites across different cultivars and plant organs. The purple cultivar (TS5) exhibited the highest anthocyanin content, with the cyanidin 3-O-glucoside content reaching 5.0 ± 0.5 mg/g, whereas the green cultivar (TS2), despite its less pigmented appearance, contained substantial amounts of malvidin 3-O-arabinoside (0.7 ± <0.1 mg/g). Flavonoid profiling revealed that monoglycosylated anthocyanins were the dominant forms in floral tissues. These findings shed light on napier grass metabolism and support future Poaceae breeding and functional food development. Full article
(This article belongs to the Section Foodomics)
Show Figures

Graphical abstract

22 pages, 1670 KiB  
Review
Molecular Control of Flower Colour Change in Angiosperms
by Fernanda M. Rezende, Magdalena Rossi and Cláudia M. Furlan
Plants 2025, 14(14), 2185; https://doi.org/10.3390/plants14142185 - 15 Jul 2025
Viewed by 835
Abstract
Floral pigmentation contributes directly to reproductive strategies and fitness by shaping pollinator behaviour, and its regulation therefore represents a critical aspect of flower development. Additionally, it is a major determinant of aesthetic and economic value in the ornamental plant industry. This review explores [...] Read more.
Floral pigmentation contributes directly to reproductive strategies and fitness by shaping pollinator behaviour, and its regulation therefore represents a critical aspect of flower development. Additionally, it is a major determinant of aesthetic and economic value in the ornamental plant industry. This review explores the genetic, biochemical, and ecological bases of floral colour change, focusing on the biosynthesis and regulation of the three major classes of plant pigments: carotenoids, flavonoids (particularly anthocyanins), and betalains. These pigments, derived from primary metabolism through distinct biosynthetic pathways, define the spatial and temporal variability of floral colouration. We discuss the molecular mechanisms underlying flower colour change from opening to senescence, highlighting pigment biosynthesis and degradation, pH shifts, metal complexation, and co-pigmentation. Additionally, we address the regulatory networks, including transcription factors (MYB, bHLH, and WDR) and post-transcriptional control, that influence pigment production. Finally, we provide a comprehensive survey of angiosperm species exhibiting dynamic petal colour changes, emphasizing how these mechanisms are regulated. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Flower Development and Plant Reproduction)
Show Figures

Figure 1

18 pages, 2995 KiB  
Article
Improving the Surface Color and Delaying Softening of Peach by Minimizing the Harmful Effects of Ethylene in the Package
by Hongsheng Zhou, Siyu Ma, Jing Zhao, Ying Gao, Wen Huang, Yingtong Zhang, Jun Ling, Qian Zhou and Pengxia Li
Foods 2025, 14(14), 2472; https://doi.org/10.3390/foods14142472 - 15 Jul 2025
Viewed by 367
Abstract
Peach is a typical ethylene-sensitive fruit, and low levels of ethylene can accelerate softening during storage. In this study, we used an ethylene absorbent (EA) and 1-methylcyclopropene (1-MCP) to minimize the detrimental impact of ethylene on the quality of peaches in modified atmosphere [...] Read more.
Peach is a typical ethylene-sensitive fruit, and low levels of ethylene can accelerate softening during storage. In this study, we used an ethylene absorbent (EA) and 1-methylcyclopropene (1-MCP) to minimize the detrimental impact of ethylene on the quality of peaches in modified atmosphere packaging (MAP), and analyzed fruit firmness, color change, anthocyanin content, and the expression patterns of cell wall metabolism-related genes and anthocyanin synthesis-related genes during storage. The results showed that ethylene in the MAP package decreased the firmness and total anthocyanin content of the peaches, while MAP combined with EA (MAP+EA) treatment effectively maintained the firmness of the peaches and counteracted the inhibition of anthocyanin accumulation in the peach skin by ethylene. In addition, the peaches treated with MAP+EA exhibited higher a* values, lower weight loss, and lower activities of cell-wall-modifying enzymes. Meanwhile, MAP+EA treatment also significantly increased the expression of color-related genes such as flavonoid 3′-hydroxylase gene (F3′H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and UDP-flavonoid 3-O-glucosyltransferase (UFGT). Furthermore, a good synergistic effect was observed between 1-MCP and EA in delaying softening and promoting coloring of peach fruit in the MAP package. The combination of 1-MCP and EA treatment may have the potential to alleviate softening and improve the color and quality of post-harvest fruit during storage. Full article
Show Figures

Figure 1

21 pages, 5459 KiB  
Article
NAC Gene Family in Lagerstroemia indica: Genome-Wide Identification, Characterization, Expression Analysis, and Key Regulators Involved in Anthocyanin Biosynthesis
by Zilong Gao, Zhuomei Chen, Jinfeng Wang and Weixin Liu
Curr. Issues Mol. Biol. 2025, 47(7), 542; https://doi.org/10.3390/cimb47070542 - 11 Jul 2025
Viewed by 341
Abstract
NAC (NAM, ATAF1/2, CUC1/2) is a plant-specific transcription factor (TF) family that plays important roles in various physiological and biochemical processes of plants. However, the NAC gene family in Lagerstroemia indica and its role in anthocyanin metabolism are still unexplored. In our study, [...] Read more.
NAC (NAM, ATAF1/2, CUC1/2) is a plant-specific transcription factor (TF) family that plays important roles in various physiological and biochemical processes of plants. However, the NAC gene family in Lagerstroemia indica and its role in anthocyanin metabolism are still unexplored. In our study, a total of 167 NACs were identified in the L. indica genome via genome-wide analysis and bioinformatics techniques. Amino acid sequence analysis showed that all 167 NAC proteins contained a conserved NAM domain. This domain primarily comprised random coils, extended strands, and alpha helices. Most NACs were found on the nucleus and dispersed over 23 of the 24 plant chromosomes. Based on phylogenetic analysis, the NACs can be categorized into ten subgroups. Furthermore, the promoter homeotropic elements predicted the cis-acting elements in the promoters of these genes related to hormones, development, environmental stress response, and other related responses, demonstrating the diverse regulatory mechanisms underlying gene functions. In addition, a co-expression network was established through RNA sequencing. This network helped identify seven key LiNACs, genes related to anthocyanin expression (CHS) and transcription factors (MYB and bHLH). To identify potential anthocyanin regulatory factors present in L. indica petals, protein interaction prediction was performed, which revealed that LiNACs might participate in anthocyanin regulation by interacting with other proteins, such as MYB, ABF, ABI, bZIP, MYC, etc. Our results provided novel insights and could help in the functional identification of LiNACs in L. indica and the regulation of anthocyanin synthesis. Full article
(This article belongs to the Special Issue Molecular Breeding and Genetics Research in Plants, 2nd Edition)
Show Figures

Figure 1

19 pages, 10222 KiB  
Article
Molecular Hydrogen Improves Blueberry Main Fruit Traits via Metabolic Reprogramming
by Longna Li, Jiaxin Gong, Ke Jiang, Liqin Huang, Lijun Gan, Yan Zeng, Xu Cheng, Didier Pathier and Wenbiao Shen
Plants 2025, 14(14), 2137; https://doi.org/10.3390/plants14142137 - 10 Jul 2025
Viewed by 362
Abstract
Fruit yield and quality improvement are challenges for researchers and farmers. This study reveals that the main fruit traits of blueberry (Vaccinium ashei ‘Bluegem’) were significantly improved after hydrogen (H2)-based irrigation, assessed by the increased single fruit weight (14.59 ± [...] Read more.
Fruit yield and quality improvement are challenges for researchers and farmers. This study reveals that the main fruit traits of blueberry (Vaccinium ashei ‘Bluegem’) were significantly improved after hydrogen (H2)-based irrigation, assessed by the increased single fruit weight (14.59 ± 6.66%) and fruit equatorial diameter (4.19 ± 2.39%), decreased titratable acidity, increased solid–acid and sugar–acid ratios. The enhancement of fruit quality was confirmed by the increased total volatiles, vitamin C contents, and antioxidant capacity. Using weighted protein co-expression network analysis (WPCNA), proteomic interrogation revealed that serine carboxypeptidase-like proteins I/II (SCPLI/II), ADP ribosylation factor 1/2 (ARF1/2), and UDP-glucosyltransferase 85A (UGT85A) might be functionally associated with the increased fruit weight and size driven by H2. Reduced organic acid accumulation was caused by the regulation of the specific enzymes involved in sucrose metabolism (e.g., α-amylase, endoglucanase, β-glucosidase, etc.). H2 regulation of fatty acid degradation (e.g., acyl CoA oxidase 1 (ACX1), acetyl CoA acyltransferase 1 (ACAA1), etc.) and phenylpropanoid metabolism were used to explain the improved fruit aroma and anthocyanin accumulation. Meanwhile, the upregulated heat shock protein 20/70 matched with the enhanced antioxidant activity. Together, this study provides a novel approach for yield and quality improvement in horticultural crops. Full article
Show Figures

Figure 1

11 pages, 1916 KiB  
Article
The Novel Transcription Factor BnaA01.KAN3 Is Involved in the Regulation of Anthocyanin Accumulation Under Phosphorus Starvation
by Li He, Shan Peng, Ruihua Lin, Jiahui Zhang, Peng Cui, Yi Gan and Hongbo Liu
Plants 2025, 14(13), 2036; https://doi.org/10.3390/plants14132036 - 3 Jul 2025
Viewed by 333
Abstract
The investigation of phosphorus metabolism and regulatory mechanisms is conducive to maintaining stable production of crops within a low-phosphorus environment. In phosphorus signal transduction, a few phosphorus starvation response (PHR) transcription factors were identified to bind to the characteristic cis-element, namely the [...] Read more.
The investigation of phosphorus metabolism and regulatory mechanisms is conducive to maintaining stable production of crops within a low-phosphorus environment. In phosphorus signal transduction, a few phosphorus starvation response (PHR) transcription factors were identified to bind to the characteristic cis-element, namely the PHR1 binding sequence (P1BS). While the molecular function of the PHR transcription factor has been intensively elucidated, here, we explore a novel transcription factor, BnaA01.KAN3, that undergoes specific binding to the P1BS by yeast one-hybrid and electrophoretic mobility shift assays, and its expression is induced with low-phosphorus stress. BnaA01.KAN3 possessed transcriptional activation and was located in the nucleus. The spatiotemporal expression pattern of BnaA01.KAN3 exhibited tissue specificity in developmental seed, and its expression level was especially high 25–30 days after pollination. Regarding the phenotype analysis, the independent heterologous overexpression lines of BnaA01.KAN3 in Arabidopsis thaliana exhibited not only significantly longer taproots but also an increased number of lateral roots compared to that of the wild type undergoing low-phosphorus treatment, while no differences were seen under normal phosphorus conditions. Furthermore, these lines showed higher anthocyanin and inorganic phosphorus contents with normal and low-phosphorus treatment, suggesting that BnaA01.KAN3 could enhance phosphorus uptake or remobilization to cope with low-phosphorus stress. In summary, this study characterized the transcription factor BnaA01.KAN3 that modulates low-phosphate adaptation and seed development, providing insights for improving phosphorus use efficiency and yield traits in Brassica napus. Full article
(This article belongs to the Special Issue Molecular Genetics and Breeding of Oilseed Crops—2nd Edition)
Show Figures

Figure 1

19 pages, 2605 KiB  
Article
Transcriptome and Metabolome Analyses of Flavonoid Biosynthesis During Berry Development of Muscadine Grape (Vitis rotundifolia Michx)
by Qiaofeng Yang, Changlin Li, Yan Wang, Xian Pei, Aixin Wang, Li Jin and Linchuan Fang
Plants 2025, 14(13), 2025; https://doi.org/10.3390/plants14132025 - 2 Jul 2025
Viewed by 398
Abstract
Flavonoids play a crucial role in plant development, resistance, and the pigmentation of fruits and flowers. This study aimed to uncover the mechanism of flavonoid biosynthesis and fruit coloring in muscadine grapes. Two muscadine genotypes (Paulk and Supreme) were investigated via metabolomic and [...] Read more.
Flavonoids play a crucial role in plant development, resistance, and the pigmentation of fruits and flowers. This study aimed to uncover the mechanism of flavonoid biosynthesis and fruit coloring in muscadine grapes. Two muscadine genotypes (Paulk and Supreme) were investigated via metabolomic and transcriptomic analysis during three developmental stages (bunch closure, veraison stage, and ripening stage). A total of 314 flavonoids were identified, with flavones and flavonols being the primary constituents. The contents of many differentially accumulated metabolites (DAMs) were higher at the veraison stage. The total anthocyanin content was upregulated during berry development, with the dominant type of anthocyanidin-3,5-O-diglucoside. Proanthocyanins accumulated higher levels in the ripening stage of Paulk than Supreme. Transcriptomic analyses revealed that over 46% of the DEGs exhibited higher expression levels in the bunch closure stage. Moreover, phenylalanine ammonia-lyase (PAL), cinnamyl 4-hydroxylase (C4H), and coumaryl CoA ligase (4CL) genes were upregulated during berry development, suggesting they promote second metabolites biosynthesis. The upregulation of dihydroflavonol 4-reductase (DFR) and leucoanthocyanin reductase (LAR) may related to the higher levels of PA in Paulk. Anthocyanidin synthase (ANS) and UDP-glucose:flavonoid-3-O-glucosyltransferase (UFGT) showed higher expression levels in the ripening stage, which may relate to the accumulation of anthocyanidins. This study provides comprehensive insights into flavonoid metabolism and berry coloration in Vitis rotundifolia. Full article
Show Figures

Figure 1

32 pages, 4142 KiB  
Review
Phytotherapy and the Role of Bioactive Compounds in Modulating Mechanisms of Overweight and Obesity Comorbid with Depressive Symptoms—A Scoping Review of Mechanisms of Action
by Klaudia Sochacka and Sabina Lachowicz-Wiśniewska
Molecules 2025, 30(13), 2827; https://doi.org/10.3390/molecules30132827 - 30 Jun 2025
Viewed by 567
Abstract
Obesity and depression frequently coexist, sharing overlapping molecular pathways such as inflammation, oxidative stress, gut microbiota dysbiosis, and neuroendocrine dysfunction. Recent research highlights the therapeutic potential of plant-derived bioactive compounds in targeting these shared mechanisms. This scoping review followed Preferred Reporting Items for [...] Read more.
Obesity and depression frequently coexist, sharing overlapping molecular pathways such as inflammation, oxidative stress, gut microbiota dysbiosis, and neuroendocrine dysfunction. Recent research highlights the therapeutic potential of plant-derived bioactive compounds in targeting these shared mechanisms. This scoping review followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and included 261 peer-reviewed studies identified through PubMed, Scopus, and the Web of Science up to December 2024. Studies were screened based on predefined inclusion and exclusion criteria. This review synthesizes data from peer-reviewed studies, including both preclinical and clinical investigations, focusing on polyphenols, flavonoids, alkaloids, and other phytochemicals with anti-inflammatory, antioxidant, neuroprotective, and metabolic effects. Compounds such as quercetin, epigallocatechin gallate (EGCG), resveratrol, curcumin, anthocyanins, and luteolin demonstrate promise in modulating adenosine monophosphate-activated protein kinase (AMPK), brain-derived neurotrophic factor (BDNF), nuclear factor kappa B (NF-κB), and gut–brain axis pathways. Our scoping review, conducted in accordance with PRISMA guidelines, identifies promising combinations and mechanisms for integrative phytotherapy. These findings underscore the potential of botanical strategies in developing future interventions for metabolic and mood comorbidities. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods for Health Benefits)
Show Figures

Graphical abstract

18 pages, 675 KiB  
Article
Effects of Hyperbaric Micro-Oxygenation on the Color, Volatile Composition, and Sensory Profile of Vitis vinifera L. cv. Monastrell Grape Must
by Antonio José Pérez-López, Luis Noguera-Artiaga, Patricia Navarro, Pablo Mompean, Alejandro Van Lieshout and José Ramón Acosta-Motos
Fermentation 2025, 11(7), 380; https://doi.org/10.3390/fermentation11070380 - 30 Jun 2025
Viewed by 518
Abstract
Color, aroma, and overall sensory quality in red wines are largely influenced by oxygen availability during fermentation. This study evaluated the effects of micro-oxygenation under hyperbaric conditions on the physicochemical, chromatic, volatile, and sensory properties of Vitis vinifera L. cv. Monastrell grape must. [...] Read more.
Color, aroma, and overall sensory quality in red wines are largely influenced by oxygen availability during fermentation. This study evaluated the effects of micro-oxygenation under hyperbaric conditions on the physicochemical, chromatic, volatile, and sensory properties of Vitis vinifera L. cv. Monastrell grape must. Grape clusters were manually harvested and fermented under controlled conditions, applying micro-oxygenation treatments at two fermentation stages (day 3 and day 13) within a hyperbaric chamber. Physicochemical analyses, CIELab color measurements, visible reflectance spectra, GC-FID volatile profiling, and descriptive sensory analysis were performed. Micro-oxygenated samples (M1_MOX and M2_MOX) showed significant increases in lightness (L*), redness (a*), chroma (C*), and reflectance in the 520–620 nm range, indicating enhanced extraction and stabilization of phenolic pigments. Volatile analysis revealed that these samples also contained higher concentrations of key esters and terpenes associated with fruity and floral notes. Sensory evaluation confirmed these findings, with MOX-treated wines displaying greater aromatic intensity, flavor persistence, and varietal character. Control samples (M1_CON and M2_CON) exhibited lower color saturation and volatile compound content, along with diminished sensory quality. These results suggest that hyperbaric micro-oxygenation is an effective strategy for improving color intensity and aromatic complexity during red wine fermentation under controlled, non-thermal conditions. Full article
Show Figures

Figure 1

37 pages, 4654 KiB  
Article
Age-Specific Physiological Adjustments of Spirodela polyrhiza to Sulfur Deficiency
by Vesna Peršić, Anja Melnjak, Lucija Domjan, Günther Zellnig and Jasenka Antunović Dunić
Plants 2025, 14(13), 1907; https://doi.org/10.3390/plants14131907 - 20 Jun 2025
Viewed by 562
Abstract
Spirodela polyrhiza is a suitable model organism for investigating plant developmental influences due to its intracolonial variations in response to various environmental fluctuations, like nutrient deficiency. In this study, transmission electron microscopy was used to examine age-dependent variation in chloroplast ultrastructure, while pigment [...] Read more.
Spirodela polyrhiza is a suitable model organism for investigating plant developmental influences due to its intracolonial variations in response to various environmental fluctuations, like nutrient deficiency. In this study, transmission electron microscopy was used to examine age-dependent variation in chloroplast ultrastructure, while pigment levels (chlorophyll and anthocyanins), starch accumulation, and metabolic activity (photosynthetic and respiratory rates) were measured to determine metabolic responses to sulfur deficiency. For a comprehensive insight into electron transport efficiency and the redox states of the photosynthetic apparatus, rapid light curves, chlorophyll fluorescence (JIP test parameters), and modulated reflection at 820 nm were analyzed. Under S deficit, mother fronds relied on stored reserves to maintain functional PSII but accumulated reduced PQ pools, slowing electron flow beyond PSII. The first-generation daughter fronds, despite having higher baseline photosynthetic capacity, exhibited the largest decline in photosynthetic indicators (e.g., rETR fell about 50%), limitations in the water-splitting complex, and reduced PSI end-acceptor capacity that resulted in donor- and acceptor-side bottlenecks of electron transport. The youngest granddaughter fronds avoided these bottlenecks by absorbing less light per PSII, channeling electrons through the alternative pathway to balance PQ pools and redox-stable PSI while diverting more carbon into starch and anthocyanin production up to 5-fold for both. These coordinated and age-specific adjustments that provide response flexibility may help maintain photosynthetic function of the colony and facilitate rapid recovery when sulfur becomes available again. Full article
(This article belongs to the Special Issue Duckweed: Research Meets Applications—2nd Edition)
Show Figures

Figure 1

22 pages, 18796 KiB  
Article
Genome-Wide Identification and Characterization of the Class III Peroxidase Gene Family in Radish (Raphanus sativus) with Insights into Their Roles in Anthocyanin Metabolism
by Zihao Wei, Weimin Fu, Xianxian Liu, Wenling Xu, Lichun Chang, Chen Liu and Shufen Wang
Int. J. Mol. Sci. 2025, 26(13), 5917; https://doi.org/10.3390/ijms26135917 - 20 Jun 2025
Viewed by 384
Abstract
Class III peroxidases (PODs) are plant-specific enzymes that play crucial roles in plant growth, development and responses to stress. However, the POD gene family in the radish (Raphanus sativus L.) has not been comprehensively investigated to date. In this study, a total [...] Read more.
Class III peroxidases (PODs) are plant-specific enzymes that play crucial roles in plant growth, development and responses to stress. However, the POD gene family in the radish (Raphanus sativus L.) has not been comprehensively investigated to date. In this study, a total of 95 RsPODs were identified in the radish genome, which were classified into six subgroups based on a phylogenetic analysis. The gene structures and conserved motifs of the RsPODs were highly conserved within each subgroup. An intraspecific collinearity analysis revealed 7 tandem and 40 segmental duplication events. An expression analysis across diverse tissues and developmental stages demonstrated that the RsPODs were functionally involved in radish development. Using a chimeric-colored radish mutant, this study revealed significantly higher POD activity in the green tissues compared to purple tissues. Through transcriptome sequencing, two RsPOD genes (RsPOD14 and RsPOD28) were identified as candidate genes related to the anthocyanin metabolism. Our study provides a genome-wide perspective on the RsPOD genes in the radish and highlights their potential roles in the anthocyanin metabolism. These findings establish a critical foundation for future research aimed at uncovering the functional roles of specific RsPOD genes, with a particular emphasis on elucidating the molecular mechanisms that regulate anthocyanin degradation in the radish. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 3476 KiB  
Article
Putative Upstream Regulators DoNF-YB3 and DoIDD12 Correlate with DoGSTF11 Expression and Anthocyanin Accumulation in Dendrobium officinale
by Yingying Liu, Jiadong Chen, Xiaojing Duan, Man Zhang, Zhengming Tao and Wu Jiang
Horticulturae 2025, 11(6), 711; https://doi.org/10.3390/horticulturae11060711 - 19 Jun 2025
Viewed by 301
Abstract
Dendrobium officinale is a traditional and valuable medicinal herb, with extensive research conducted on its polysaccharides, alkaloids, and other components, yet studies on anthocyanins remain limited. In this study, we analyzed the expression levels of GST family genes in green and purplish D. [...] Read more.
Dendrobium officinale is a traditional and valuable medicinal herb, with extensive research conducted on its polysaccharides, alkaloids, and other components, yet studies on anthocyanins remain limited. In this study, we analyzed the expression levels of GST family genes in green and purplish D. officinale and found that DoGSTF11 is highly expressed in the purplish variety. DoGSTF11 is localized to the nucleus and cell membrane but lacks transcriptional activation activity. Overexpression of DoGSTF11 in tomato enhances anthocyanin accumulation, suggesting a role in anthocyanin sequestration or transport. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays further revealed that DoGSTF11 interacts with DoGST31, while DoIDD12 and DoNF-YB3 are potential transcriptional regulators based on promoter-binding assays and expression correlation. In conclusion, our study demonstrates that DoGST11 positively regulates anthocyanin accumulation in D. officinale. These findings provide valuable insights into the metabolic engineering of flavonoids in D. officinale. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

Back to TopTop