Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = annular permanent magnet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7456 KiB  
Article
An Innovative H-Type Flux Switching Permanent Magnet Linear Generator for Thrust Force Enhancement
by Ehsan Farmahini Farahani, Nick J. Baker and Farshid Mahmouditabar
Energies 2023, 16(16), 5976; https://doi.org/10.3390/en16165976 - 14 Aug 2023
Cited by 21 | Viewed by 2474
Abstract
In this paper, two H-type flux switching permanent magnet linear generators with outer-translator and inner-translator configurations are discussed and compared to a more conventional flux switching topology. The stators consist of H-Type modules housing circumferential coils and are surrounded by two annular permanent [...] Read more.
In this paper, two H-type flux switching permanent magnet linear generators with outer-translator and inner-translator configurations are discussed and compared to a more conventional flux switching topology. The stators consist of H-Type modules housing circumferential coils and are surrounded by two annular permanent magnets. In conventional flux switching machines, the windings are orientated perpendicular to the direction of motion and the conductors twist around the magnets. In H-type topologies, the orientation of the windings is in the same plain as the magnets and parallel to the direction of motion, resulting in an increase in flux linkage. The proposed topologies are designed for a low operating speed and a large magnetic gap, as found in wave energy converters. All topologies are optimized using the Taguchi optimization approach with the goals of reducing force ripple and increasing the average thrust force and efficiency. The 2D finite element method (FEM) is used in the optimization stage to calculate the optimized parameters of the presented generators, after which the optimized structures are simulated using 3D FEM, and the results are extracted. The results of the optimization show that the H-type topologies deliver a 20% higher shear stress whilst offering an easier to assemble structure. Full article
(This article belongs to the Topic Future Generation Electric Machines and Drives)
Show Figures

Figure 1

16 pages, 8686 KiB  
Article
Research on a Novel High-Torque-Density Axial–Radial-Flux Permanent-Magnet Motor with Annular Winding for an Elevator-Traction Machine
by Jiaxu Zhang, Junfeng Liu and Hongbing Wu
Electronics 2023, 12(13), 2867; https://doi.org/10.3390/electronics12132867 - 28 Jun 2023
Cited by 4 | Viewed by 4060
Abstract
The traditional radial flux PMSM and axial flux PMSM have an effective air gap on only one side, between the stator and rotor, and only the effective air gap generates electromagnetic torque. There are defects in the magnetic-field utilization, and it is difficult [...] Read more.
The traditional radial flux PMSM and axial flux PMSM have an effective air gap on only one side, between the stator and rotor, and only the effective air gap generates electromagnetic torque. There are defects in the magnetic-field utilization, and it is difficult to improve the torque density. Therefore, this paper proposes an axial–radial-flux permanent-magnet synchronous motor (ARF-PMSM), which combines radial flux with axial flux, to be used in an elevator-traction machine-drive motor. The characteristics of the ARF-PMSM are that the stator core is made of a soft magnetic composite material and the winding is annular. The motor has three effective air gaps, which can achieve high torque density without increasing the overall dimensions. In this paper, the mechanical structure and operation mechanism of the ARF-PMSM are introduced, and the characteristics of its magnetic circuit structure are analyzed by using the equivalent magnetic circuit method. The torque characteristics and other electromagnetic characteristics of the ARF-PMSM, the traditional surface-mounted PMSM, and the spoke-type PMSM are compared and analyzed using the finite element method. The research results show that the proposed motor has high torque density, which provides a new design idea in the form of a high-torque-density PMSM for use in elevator-traction machines. Full article
Show Figures

Figure 1

15 pages, 5158 KiB  
Article
Design and Development of Medium Energy Proton Detector Onboard FY-3E Satellite
by Huanxin Zhang, Xiaoxin Zhang, Jinhua Wang, Cong Huang, Jiawei Li, Weiguo Zong, Guohong Shen, Shenyi Zhang, Yong Yang and Pengfei Zhang
Aerospace 2023, 10(3), 321; https://doi.org/10.3390/aerospace10030321 - 22 Mar 2023
Cited by 5 | Viewed by 2197
Abstract
This article introduces the instrument design of the medium energy proton detector (energy range: 30 keV–5 MeV) mounted on the FY-3E satellite. Through the design and optimization of the sensor signal processing circuit, the anti-electromagnetic interference ability of the medium energy particle detector [...] Read more.
This article introduces the instrument design of the medium energy proton detector (energy range: 30 keV–5 MeV) mounted on the FY-3E satellite. Through the design and optimization of the sensor signal processing circuit, the anti-electromagnetic interference ability of the medium energy particle detector is greatly enhanced. The designed aluminum plating on sensors can effectively exclude the light pollution to the medium energy protons. The designed permanent annular magnet has a deflection efficiency of more than 95% for medium energy electrons below 1.0 MeV. Additionally, by designing the logical working mode of the sensor, the contamination by other high energy particles (high energy electrons > 1.5 MeV, high energy protons > 5 MeV, and heavy ions) is excluded. Combining the above methods, the detector achieves the detection lower limit of 30 keV for medium energy protons. Its energy resolution is better than 15%@100 keV and the mixing ratio of electrons is less than 2%. Full article
(This article belongs to the Special Issue Meteorological Satellites Data Analysis)
Show Figures

Figure 1

22 pages, 6939 KiB  
Article
Dynamic Characteristics and Working Modes of Permanent Magnet Electrodynamic Suspension Vehicle System Based on Six Wheels of Annular Halbach Structure
by Peng Lin, Zigang Deng, Zhihao Ke, Wuyang Lei, Xuanbo Wang and Kehong Ren
Technologies 2023, 11(1), 16; https://doi.org/10.3390/technologies11010016 - 21 Jan 2023
Cited by 4 | Viewed by 3540
Abstract
A novel type of suspension system for maglev vehicles using six permanent magnet electrodynamic wheels (EDW) and conductor plate has been designed. It has the advantages of high speed, environmental protection, and a low turning radius. Differing from existing maglev vehicles, this paper [...] Read more.
A novel type of suspension system for maglev vehicles using six permanent magnet electrodynamic wheels (EDW) and conductor plate has been designed. It has the advantages of high speed, environmental protection, and a low turning radius. Differing from existing maglev vehicles, this paper proposes a new maglev vehicle utilizing six EDWs to respectively provide driving force and levitation force. This structure can keep the levitation force at a large constant value and obtain enough driving force at low rotational speeds by adjusting the motor speed. First, the structure of the electrodynamic wheel is given. The accuracy and validity of the FEM results are verified by the experiments. Moreover, based on the finite element method (FEM), the optimal structure of the EDWs is obtained with the objective of maximum levitation force. Then, the simplified electromagnetic force model is obtained by using MATLAB Toolbox. Third, using a co-simulation of Simulink and Adams to design and build a 1:50 maglev vehicle model, this article studies the dynamic response characteristics of the maglev vehicle model from the perspective of dynamics and proposes a feedback control strategy by adjusting the rotational speed to control the maglev vehicle. This paper also proposes a method to realize the car’s pivot steering to reduce the car’s turning radius and help the drivers pass narrow road sections. This article verifies the feasibility of the maglev vehicle with six EDWs and is expected to provide a certain reference for the development of permanent magnet electrodynamic suspension vehicles. Full article
(This article belongs to the Section Assistive Technologies)
Show Figures

Figure 1

19 pages, 3500 KiB  
Article
Design and Analysis of a Hybrid Annular Radial Magnetorheological Damper for Semi-Active In-Wheel Motor Suspension
by Olivier Munyaneza, Pacifique Turabimana, Jong-Seok Oh, Seung-Bok Choi and Jung Woo Sohn
Sensors 2022, 22(10), 3689; https://doi.org/10.3390/s22103689 - 12 May 2022
Cited by 9 | Viewed by 2664
Abstract
In this study, a novel hybrid annular radial magnetorheological damper (HARMRD) is proposed to improve the ride comfort of an electric vehicle (EV) powered by an in-wheel motor (IWM). The model primarily comprises annular-radial ducts in series with permanent magnets. Mathematical models representing [...] Read more.
In this study, a novel hybrid annular radial magnetorheological damper (HARMRD) is proposed to improve the ride comfort of an electric vehicle (EV) powered by an in-wheel motor (IWM). The model primarily comprises annular-radial ducts in series with permanent magnets. Mathematical models representing the governing motions are formulated, followed by finite element analysis of the HARMRD to investigate the distribution of the magnetic field density and intensity of the magnetorheological (MR) fluid in both the annular and radial ducts. The optimized model generates a damping force of 87.3–445.7 N at the off-state (zero input current) with the excitation velocity ranging between 0 and 0.25 m/s. By contrast, the generated damping force varies from 3386.4 N to 3753.9 N at an input current of 1.5 A with the same velocity range as the off state. The damping forces obtained using the proposed model are 31.4% and 19.2% higher for the off-field and on-field states, respectively, compared with those of the conventional annular radial MR damper. The efficiency of the proposed model is evaluated by adopting two different vehicles: a conventional vehicle powered by an engine and an EV powered by an IWM. The simulation results demonstrate that the proposed HARMRD along with the skyhook controller significantly improves both the ride comfort and road-holding capability for both types of vehicles. Full article
Show Figures

Figure 1

26 pages, 8414 KiB  
Article
Thermal Performance Improvement by Rotating Thermosyphon Loop in Rotor of an Interior Permanent Magnet Synchronous Electric Motor
by Pey Shey Wu, Min-Fu Hsieh, Yong En Lu, Wei Ling Cai and Shyy Woei Chang
Inventions 2022, 7(2), 37; https://doi.org/10.3390/inventions7020037 - 5 May 2022
Cited by 2 | Viewed by 3287
Abstract
As an attempt to enable a further increase in the power-to-weight ratio of an electric motor by improving its cooling performance, rotating thermosyphon loops in a rotor of a permanent magnet synchronous electric motor are proposed. The effective thermal conductivity and airflow heat-transfer [...] Read more.
As an attempt to enable a further increase in the power-to-weight ratio of an electric motor by improving its cooling performance, rotating thermosyphon loops in a rotor of a permanent magnet synchronous electric motor are proposed. The effective thermal conductivity and airflow heat-transfer rate of the rotating thermosyphon loop and the convective heat-transfer coefficient over the annular interior surface of the air chamber are measured to permit the definition of the thermal boundary conditions for simulating the temperature fields of the electric motors. The axial heat-transfer pathway with extremely high effective thermal conductivity attributing to the phase-change activities in the rotating thermosyphon loop acts synergistically with the heat convection enhancement induced by the stirring effect of the spinning condenser bend in the air chamber to improve the heat transmission out of the rotor core. The spatially average temperature gradients in the rotor with the thermosyphon loops are considerably moderated from those without the thermosyphon loop. At rotor speeds and electrical currents in the ranges of 1200–1500 rev/min and 1000–1200 A, the maximum temperatures in the rotors with the single- and twin-end rotating thermosyphon loops are, respectively, reduced 8–14 °C and 10–22 °C from those without a rotor-cooling scheme, affirming the effectiveness of a phase-change cooling device in a rotor for thermal performance improvement of an electric motor. Full article
(This article belongs to the Collection Feature Innovation Papers)
Show Figures

Figure 1

13 pages, 6631 KiB  
Communication
A Miniature Permanent Magnet Assembly with Localized and Uniform Field with an Application to Optical Pumping of Helium
by Garnet Cameron, Jonathan Cuevas, Jeffrey Pound and David Shiner
Appl. Sci. 2021, 11(19), 8886; https://doi.org/10.3390/app11198886 - 24 Sep 2021
Viewed by 2093
Abstract
Atomic state preparation can benefit from a compact and uniform magnetic field source. Simulations and experimental measurements have been used to design, build, and test such a source and then apply it to the optical pumping of atomic helium. This source is a [...] Read more.
Atomic state preparation can benefit from a compact and uniform magnetic field source. Simulations and experimental measurements have been used to design, build, and test such a source and then apply it to the optical pumping of atomic helium. This source is a 9.5 mm (3/8″) OD × 6.7 mm (1/4″) ID × 9.5 mm (3/8″) long, NdFeB-N42 assembly of 1.6 mm (1/16″) thick customized annular magnets. It has octupole decay with a residual dipole far field from imperfect dipole cancelations. Fast B-field decay localizes the field, minimizing the need for shielding in applications. It has a greater than 50% clear aperture with a uniform and collimated magnetic field consistent with the prediction of several models. The device is applied to a high precision 3,4He laser spectroscopy experiment using σ+ or σ optical pumping currently resulting in a measured 99.3% preparation efficiency and in accordance with a rate equation model. Full article
(This article belongs to the Special Issue Atomic Spectroscopy: Theories, Methods and Applications)
Show Figures

Figure 1

23 pages, 5177 KiB  
Article
Variable Structure Control of a Small Ducted Wind Turbine in the Whole Wind Speed Range Using a Luenberger Observer
by Diego Calabrese, Gioacchino Tricarico, Elia Brescia, Giuseppe Leonardo Cascella, Vito Giuseppe Monopoli and Francesco Cupertino
Energies 2020, 13(18), 4647; https://doi.org/10.3390/en13184647 - 7 Sep 2020
Cited by 27 | Viewed by 4643
Abstract
This paper proposes a new variable structure control scheme for a variable-speed, fixed-pitch ducted wind turbine, equipped with an annular, brushless permanent-magnet synchronous generator, considering a back-to-back power converter topology. The purpose of this control scheme is to maximise the aerodynamic power over [...] Read more.
This paper proposes a new variable structure control scheme for a variable-speed, fixed-pitch ducted wind turbine, equipped with an annular, brushless permanent-magnet synchronous generator, considering a back-to-back power converter topology. The purpose of this control scheme is to maximise the aerodynamic power over the entire wind speed range, considering the mechanical safety limits of the ducted wind turbine. The ideal power characteristics are achieved with the design of control laws aimed at performing the maximum power point tracking control in the low wind speeds region, and the constant speed, power, and torque control in the high wind speed region. The designed control laws utilize a Luenberger observer for the estimation of the aerodynamic torque and a shallow neural network for wind speed estimation. The effectiveness of the proposed method was verified through tests in a laboratory setup. Moreover, a comparison with other solutions from the literature allowed us to better evaluate the performances achieved and to highlight the originality of the proposed control scheme. Full article
Show Figures

Figure 1

21 pages, 4009 KiB  
Article
Wind Micro-Turbine Networks for Urban Areas: Optimal Design and Power Scalability of Permanent Magnet Generators
by Marco Palmieri, Salvatore Bozzella, Giuseppe Leonardo Cascella, Marco Bronzini, Marco Torresi and Francesco Cupertino
Energies 2018, 11(10), 2759; https://doi.org/10.3390/en11102759 - 15 Oct 2018
Cited by 15 | Viewed by 6221
Abstract
This work is focused on the design optimization of electrical machines that are used in small-scale direct-drive aerogenerators. A ducted wind turbine, equipped with a diffuser, is considered due to its enhanced power capability with respect to bare turbines. An annular type Permanent [...] Read more.
This work is focused on the design optimization of electrical machines that are used in small-scale direct-drive aerogenerators. A ducted wind turbine, equipped with a diffuser, is considered due to its enhanced power capability with respect to bare turbines. An annular type Permanent Magnet brushless generator is integrated in the turbine structure: the stator coils are placed in the internal part of the diffuser, whereas the permanent magnets are on an external ring connected to the turbine blade tips. Moreover, as regards the stator windings, the Printed Circuit Board (PCB) technology is investigated in order to exploit its advantages with respect to conventional wire coils, such as the increased current density capacity, the reduction of costs, and the enhanced precision and repeatability of the PCBs. An original design procedure is presented together with some scalability rules. An automated tool has been developed in order to aid the electrical machine designer in the first design stages: the tool performs multi-objective optimizations (using the Matlab Genetic Algorithm Toolbox), coupled to fast Finite Element analysis (through the open-source software FEMM) for the evaluation of the electromagnetic torque and field distribution. The proposed procedure is applied to the design of an annular PM generator directly coupled to a small-scale turbine for an urban application. Full article
Show Figures

Figure 1

17 pages, 1468 KiB  
Article
Development of Correlations for Windage Power Losses Modeling in an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Features of the Magnets
by Alireza Rasekh, Peter Sergeant and Jan Vierendeels
Energies 2016, 9(12), 1009; https://doi.org/10.3390/en9121009 - 30 Nov 2016
Cited by 7 | Viewed by 5533
Abstract
In this paper, a set of correlations for the windage power losses in a 4 kW axial flux permanent magnet synchronous machine (AFPMSM) is presented. In order to have an efficient machine, it is necessary to optimize the total electromagnetic and mechanical losses. [...] Read more.
In this paper, a set of correlations for the windage power losses in a 4 kW axial flux permanent magnet synchronous machine (AFPMSM) is presented. In order to have an efficient machine, it is necessary to optimize the total electromagnetic and mechanical losses. Therefore, fast equations are needed to estimate the windage power losses of the machine. The geometry consists of an open rotor–stator with sixteen magnets at the periphery of the rotor with an annular opening in the entire disk. Air can flow in a channel being formed between the magnets and in a small gap region between the magnets and the stator surface. To construct the correlations, computational fluid dynamics (CFD) simulations through the frozen rotor (FR) method are performed at the practical ranges of the geometrical parameters, namely the gap size distance, the rotational speed of the rotor, the magnet thickness and the magnet angle. Thereafter, two categories of formulations are defined to make the windage losses dimensionless based on whether the losses are mainly due to the viscous forces or the pressure forces. At the end, the correlations can be achieved via curve fittings from the numerical data. The results reveal that the pressure forces are responsible for the windage losses for the side surfaces in the air-channel, whereas for the surfaces facing the stator surface in the gap, the viscous forces mainly contribute to the windage losses. Additionally, the results of the parametric study demonstrate that the overall windage losses in the machine escalate with an increase in either the rotational Reynolds number or the magnet thickness ratio. By contrast, the windage losses decrease once the magnet angle ratio enlarges. Moreover, it can be concluded that the proposed correlations are very useful tools in the design and optimizations of this type of electrical machine. Full article
Show Figures

Figure 1

Back to TopTop