Design and Development of Medium Energy Proton Detector Onboard FY-3E Satellite
Abstract
:1. Introduction
2. Technical Indexes
2.1. Scientific Indicators
2.2. Engineering Requirements
3. Detector Design
3.1. System Composition and Working Principle
3.2. Electronics Design
3.3. Sensor System Design
3.3.1. Sensor Selection and Working Mode
3.3.2. Collimator Design and Geometric Factor
3.3.3. Deflection Magnets
3.4. EMC Design
4. Calibration
4.1. Calibration Method
4.2. Calibration Results
4.2.1. Energy Linearity and Energy Resolution
4.2.2. Energy Channel Division
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, X.Y.; Cai, X.F.; Zhu, Y.P.; Zhang, L. China’s Fengyun polar orbit meteorological satellite and its application progress. Adv. Meteorol. Sci. Technol. 2021, 11, 34–39. [Google Scholar]
- Gao, H.; Tang, S.H.; Han, X.Z. China’s Fengyun (FY) meteorological satellites, development and applications. Sci. Technol. Rev. 2021, 39, 9–22. [Google Scholar]
- Gubby, R.; Evans, J. Space environment e’ects and satellite design. J. Atmos. Sol.-Terr. Phys. 2002, 64, 1723–1733. [Google Scholar] [CrossRef]
- Le, G.M.; Ye, Z.H. The study of space distribution configuration of the radbelt protons with high energy. Chin. J. Space Sci. 2003, 23, 278–285. [Google Scholar]
- Babu, E.M.; Tyssøy, H.N.; Smith-Johnsen, C.; Maliniemi, V.; Salice, J.A.; Millan, R.M.; Richardson, I.G. Determining Latitudinal Extent of Energetic Electron Precipitation Using MEPED On-Board NOAA/POES. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030489. [Google Scholar] [CrossRef]
- Asikainen, T.; Mursula, K.; Maliniemi, V. Correction of detector noise and recalibration of NOAA/MEPED energetic proton fluxes. J. Geophys. Res. 2012, 117, A09204. [Google Scholar] [CrossRef]
- Asikainen, T.; Mursula, K. Recalibration of the long-term NOAA/MEPED energetic proton measurements. J. Atmos. Sol. Terr. Phys. 2011, 73, 335–347. [Google Scholar] [CrossRef]
- Horne, R. Acceleration of killer electrons. Nat. Phys. 2007, 3, 590–591. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.F.; Ye, Z.H.; Zhu, G.W.; Shen, S.Z.; Liang, J.B.; Huang, H.J. Variation of proton in inner radiation belt during solar proton events. Chin. J. Geophys. 1993, 4, 428–433. [Google Scholar]
- Wang, C.Q.; Chang, Z.; Zhang, X.X.; Shen, G.H.; Zhang, S.Y.; Sun, Y.Q.; Li, J.W.; Jing, T.; Zhang, H.X.; Sun, Y.; et al. Proton belt variations traced back to Fengyun-1C satellite observations. Earth Planet. Phys. 2020, 4, 611–618. [Google Scholar] [CrossRef]
- Yando, K.; Millan, R.M.; Green, J.C.; Evans, D.S. A Monte Carlo simulation of the NOAA POES Medium Energy Proton and Electron Detector instrument. J. Geophys. Res. 2011, 116, A10231. [Google Scholar] [CrossRef]
- Hou, D.; Zhang, S.; Zhang, X.; Zong, W. Design Optimization of Novel Collimator for Detector of Space High Energy Electron: A Simulation Study. Chin. J. Vac. Sci. Technol. 2020, 40, 965–970. [Google Scholar] [CrossRef]
- Sandanger, M.I.; Glesnes Ødegaard, L.K.; Tyssøy, H.N.; Stadsnes, J.; Søraas, F.; Oksavik, K.; Aarsnes, K. In-flight calibration of NOAA POES proton detectors—Derivation of the MEPED correction factors. J. Geophys. Res. Space Phys. 2015, 120, 9578–9593. [Google Scholar] [CrossRef]
- Rodger, C.J.; Clilverd, M.A.; Green, J.C.; Lam, M.M. Use of POES SEM-2 observations to examine radiation belt dynamics and energetic electron precipitation into the atmosphere. J. Geophys. Res. Space Phys. 2010, 115, A04202. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhang, X.; Wang, C.; Shen, G.; Jin, T.; Zhang, B.; Sun, Y.; Zhu, G.; Liang, J.; Zhang, X.; et al. The geometric factor of high energy protons detector on FY-3 satellite. Sci. China (Earth Sci.) 2014, 57, 2558–2566. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Wang, S.J. Design of the sweeping magnet in the space particle detector. Chin. J. Geophys. 2007, 50, 684–690. [Google Scholar] [CrossRef]
No. | Parameter | MEPD on FY-3E | MEPED on NOAA/POES |
---|---|---|---|
1 | Energy range | 30 keV–5 MeV 12 channels: Low energy section: 30–48 keV; 48–80 keV; 80–120 keV; 120–170 keV; 170–240 keV; 240–350 keV. High energy section: 240–350 keV; 350–500 keV; 500–800 keV; 800–1500 keV; 1500–3000 keV; 3000–5000 keV. | 30 keV–6.9 MeV 6 channels: 30–80 keV; 80–250 keV; 250–800 keV; 800–2500 keV; 2500–6900 keV; >6900 keV. |
2 | Detection direction | 18 | 2 |
No. | Item | Index Requirements |
---|---|---|
1 | Size | Detector A: 160 mm × 170 mm × 162 mm (±1 mm) Detector B: 160 mm × 170 mm × 232 mm (±1 mm) |
2 | Weight | Detector A: 2.4 ± 0.02 kg Detector B: 3.6 ± 0.04 kg |
3 | Power consumption | Detector A: <4.8 W Detector B: <9.8 W |
4 | Working temperature | −15–+35 °C |
5 | Lifetime | 8 years |
Energy Range | Flux (cm−2s−1sr−1) | Maximum Counts (/s) |
---|---|---|
30–80 keV | 6 × 106 (polar region) | 3 × 104 |
2 × 106 (SAA region) | 1 × 104 | |
80–250 keV | 2 × 106 (polar region) | 1 × 104 |
1 × 106 (SAA region) | 5 × 103 |
Parameters | Inner Diameter | Outer Diameter | Height | Field Strength |
---|---|---|---|---|
Values | 14 mm | 24 mm | 10 mm | 3500 Gs |
Deposited Energy/keV | Gaussian Peak Position | Energy Resolution |
---|---|---|
14 | 27.06 | 100.31% |
22 | 31.61 | 78.80% |
30 | 50.63 | 53.60% |
45 | 84.90 | 33.73% |
61 | 124.40 | 21.44% |
80 | 169.37 | 18.12% |
102 | 233.20 | 11.40% |
128 | 284.89 | 12.04% |
155 | 357.20 | 8.74% |
190 | 438.27 | 8.36% |
280 | 657.60 | 6.36% |
310 | 724.72 | 6.36% |
Energy Channel | Designed Boundary (keV) | Actual Boundary (keV) | Error Range (%) |
---|---|---|---|
E1 | 30–48 | 29.5–48.28 | 1.67–0.58% |
E2 | 48–80 | 48.28–81.81 | 0.58–1.01% |
E3 | 80–120 | 81.81–119.7 | 1.01–0.25% |
E4 | 120–170 | 119.7–170 | 0.25–0 |
E5 | 170–240 | 170–242.5 | 0–1.04% |
E6 | 240–350 | 242.5–315.3 | 1.04–9.91% |
E7 | 240–350 | 235.1–315.9 | 2.04–9.91% |
E8 | 350–500 | 315.9–499 | 9.91–0.20% |
E9 | 500–800 | 499–800.5 | 0.20–0.06% |
E10 | 800–1500 | 800.5–1506 | 0.06–0.40% |
E11 | 1500–3000 | 1506–3005 | 0.40–0.17% |
E12 | 3000–5000 | 3005–4997 | 0.17–0.06% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, X.; Wang, J.; Huang, C.; Li, J.; Zong, W.; Shen, G.; Zhang, S.; Yang, Y.; Zhang, P. Design and Development of Medium Energy Proton Detector Onboard FY-3E Satellite. Aerospace 2023, 10, 321. https://doi.org/10.3390/aerospace10030321
Zhang H, Zhang X, Wang J, Huang C, Li J, Zong W, Shen G, Zhang S, Yang Y, Zhang P. Design and Development of Medium Energy Proton Detector Onboard FY-3E Satellite. Aerospace. 2023; 10(3):321. https://doi.org/10.3390/aerospace10030321
Chicago/Turabian StyleZhang, Huanxin, Xiaoxin Zhang, Jinhua Wang, Cong Huang, Jiawei Li, Weiguo Zong, Guohong Shen, Shenyi Zhang, Yong Yang, and Pengfei Zhang. 2023. "Design and Development of Medium Energy Proton Detector Onboard FY-3E Satellite" Aerospace 10, no. 3: 321. https://doi.org/10.3390/aerospace10030321
APA StyleZhang, H., Zhang, X., Wang, J., Huang, C., Li, J., Zong, W., Shen, G., Zhang, S., Yang, Y., & Zhang, P. (2023). Design and Development of Medium Energy Proton Detector Onboard FY-3E Satellite. Aerospace, 10(3), 321. https://doi.org/10.3390/aerospace10030321