Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = annular aperture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9073 KB  
Article
A Novel Deep-Sea Nucleic Acid Preservation Structure Design Based on In-Plane Passive Fluidic Mixer
by Hangjie Han, Jie Mao, Weiyu Zhou and Chen Fang
J. Mar. Sci. Eng. 2025, 13(12), 2363; https://doi.org/10.3390/jmse13122363 - 12 Dec 2025
Viewed by 276
Abstract
In situ fixation of deep-sea nucleic acids remains challenging, as conventional sampling often causes degradation due to abrupt environmental changes. This study developed a novel deep-sea nucleic acid preservation structure based on the Tesla valve principle, comparing it with traditional straight-tube structure. Experimental [...] Read more.
In situ fixation of deep-sea nucleic acids remains challenging, as conventional sampling often causes degradation due to abrupt environmental changes. This study developed a novel deep-sea nucleic acid preservation structure based on the Tesla valve principle, comparing it with traditional straight-tube structure. Experimental and CFD simulation results showed that the Tesla-valve structure significantly reduced fixative consumption under the same inlet velocity. At an inlet velocity of 0.2 m/s with a chamber fixative mass fraction of 87.2%, the Tesla-valve structure reduced fixative use by 48.9%. The fixative consumption decreases to minimum at 0.4 m/s in Tesla-value structure. Moreover, we investigated the effects of annular baffle quantity, baffle inclination angle, and central aperture diameter on fixative consumption across varying flow regimes using a numerical simulation method. Results indicated that the number of baffles exerted a significant influence on fixative consumption, with reduced baffle numbers correlating with increased consumption across all flow velocities. Baffle inclination angle and central aperture diameter demonstrated negligible effects on consumption metrics. This work provides an efficient structural design for deep-sea nucleic acid preservation, providing technical support for maintaining nucleic acid integrity during abyssal biological investigations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 5120 KB  
Article
Harmonics-Assisted 50-Fold Optical Phase Amplification with a Self-Mixing Thin-Slice Nd:GdVO4 Laser with Wide-Aperture Laser-Diode Pumping
by Kenju Otsuka and Seiichi Sudo
Photonics 2025, 12(11), 1098; https://doi.org/10.3390/photonics12111098 - 7 Nov 2025
Viewed by 447
Abstract
Harmonic-assisted phase amplification was investigated in a 300-µm-thick Nd:GdVO4 laser with coated end mirrors in the self-mixing interference scheme. The key event is the self-induced hybrid skew cosh Gaussian (abbreviated as skew ch-G)-type transverse mode oscillation in a thin-slice solid-state laser with [...] Read more.
Harmonic-assisted phase amplification was investigated in a 300-µm-thick Nd:GdVO4 laser with coated end mirrors in the self-mixing interference scheme. The key event is the self-induced hybrid skew cosh Gaussian (abbreviated as skew ch-G)-type transverse mode oscillation in a thin-slice solid-state laser with wide-aperture laser-diode pumping. The present hybrid skew-chG mode was proved to be formed by the locking of nearly frequency-degenerate TEM00 and annular fields. The resultant modal-interference-induced gain modulation at the beat frequency between the two modal fields, which is far above the relaxation oscillation frequency, increased the experimental self-mixing modulation bandwidth accordingly. Fifty-fold phase amplification was achieved in a strong optical feedback regime. Full article
Show Figures

Figure 1

23 pages, 14657 KB  
Article
An Annular CMUT Array and Acquisition Strategy for Continuous Monitoring
by María José Almario Escorcia, Amir Gholampour, Rob van Schaijk, Willem-Jan de Wijs, Andre Immink, Vincent Henneken, Richard Lopata and Hans-Martin Schwab
Sensors 2025, 25(21), 6637; https://doi.org/10.3390/s25216637 - 29 Oct 2025
Viewed by 916
Abstract
In many monitoring scenarios, repeated and operator-independent assessments are needed. Wearable ultrasound technology has the potential to continuously provide the vital information traditionally obtained from conventional ultrasound scanners, such as in fetal monitoring for high-risk pregnancies. This work is an engineering study motivated [...] Read more.
In many monitoring scenarios, repeated and operator-independent assessments are needed. Wearable ultrasound technology has the potential to continuously provide the vital information traditionally obtained from conventional ultrasound scanners, such as in fetal monitoring for high-risk pregnancies. This work is an engineering study motivated by that setting. A 144-element annular capacitive micromachined ultrasonic transducer (CMUT) is hereby proposed for 3-D ultrasound imaging. The array is characterized by its compact size and cost-effectiveness, with a geometry and low-voltage operation that make it a candidate for future wearable integration. To enhance the imaging performance, we propose the utilization of a Fermat’s spiral virtual source (VS) pattern for diverging wave transmission and conduct a performance comparison with other VS patterns and standard techniques, such as focused and plane waves. To facilitate this analysis, a simplified and versatile simulation framework, enhanced by GPU acceleration, has been developed. The validation of the simulation framework aligned closely with expected values (0.002 ≤ MAE ≤ 0.089). VSs following a Fermat’s spiral led to a balanced outcome across metrics, outperforming focused wave transmissions for this specific aperture. The proposed transducer presents imaging limitations that could be improved in future developments, but it establishes a foundational framework for the design and fabrication of cost-effective, compact 2-D transducers suitable for 3-D ultrasound imaging, with potential for future integration into wearable devices. Full article
(This article belongs to the Special Issue Wearable Physiological Sensors for Smart Healthcare)
Show Figures

Figure 1

15 pages, 3639 KB  
Article
Research on the Generation of High-Purity Vortex Beams Aided by Genetic Algorithms
by Xinyu Ma, Wenjie Guo, Qing’an Sun, Xuesong Deng, Hang Yu and Lixia Yang
Nanomaterials 2025, 15(18), 1448; https://doi.org/10.3390/nano15181448 - 19 Sep 2025
Viewed by 602
Abstract
Vortex beams (VBs) generated by plasmonic metasurfaces hold great potential in the field of information transmission due to their unique helical phase wavefronts and infinite eigenstates. However, achieving perfect multiplexing and superposition of VBs with different orders remains a challenging issue in nanophotonics [...] Read more.
Vortex beams (VBs) generated by plasmonic metasurfaces hold great potential in the field of information transmission due to their unique helical phase wavefronts and infinite eigenstates. However, achieving perfect multiplexing and superposition of VBs with different orders remains a challenging issue in nanophotonics research. In this paper, based on a single-layer metallic porous metasurface structure applicable to the infrared spectrum, VBs with orders 2, 4, 6, and 8 are realized through the arrangement of annular elliptical apertures. Moreover, perfect VBs are achieved by optimizing key structural parameters using a genetic algorithm. The optimization of key structural parameters via genetic-based optimization algorithms to attain the desired effects can significantly reduce the workload of manual parameter adjustment. In addition, leveraging the orthogonality between VBs of different orders, concentric circular multi-channel VBs array (l = 2, 6) and (l = 4, 8) are realized. High-purity multiplexing architectures (>90%) are achieved via rational optimization of critical structural parameters using a genetic optimization algorithm, which further mitigates information crosstalk in optical communication transmission. The introduction of the genetic algorithm not only reduces the workload of manual arrangement of unit arrays but also enables the generation of more perfect VBs, providing a new research direction for optical communication transmission and optical communication encryption. Full article
(This article belongs to the Special Issue Photonics and Plasmonics of Low-Dimensional Materials)
Show Figures

Figure 1

23 pages, 9610 KB  
Article
Research on the Design and Application of a Novel Curved-Mesh Circumferential Drainage Blind Pipe for Tunnels in Water-Rich Areas
by Wenti Deng, Xiabing Liu, Shaohui He and Jianfei Ma
Infrastructures 2025, 10(8), 199; https://doi.org/10.3390/infrastructures10080199 - 28 Jul 2025
Viewed by 1050
Abstract
To address the issues of low permeability, clogging susceptibility, and insufficient circumferential bearing capacity of traditional drainage blind pipes behind tunnel linings in water-rich areas, this study proposes a novel curved-mesh circumferential drainage blind pipe specifically designed for such environments. First, through engineering [...] Read more.
To address the issues of low permeability, clogging susceptibility, and insufficient circumferential bearing capacity of traditional drainage blind pipes behind tunnel linings in water-rich areas, this study proposes a novel curved-mesh circumferential drainage blind pipe specifically designed for such environments. First, through engineering surveys and comparative analysis, the limitations and application demands of conventional circumferential annular drainage blind pipes in highway tunnels were identified. Based on this, the key parameters of the new blind pipe—including material, wall thickness, and aperture size—were determined. Laboratory tests were then conducted to evaluate the performance of the newly developed pipe. Subsequently, the pipe was applied in a real-world tunnel project, where a construction process and an in-service blockage inspection method for circumferential drainage pipes were proposed. Field application results indicate that, compared to commonly used FH50 soft permeable pipes and F100 semi-split spring pipes, the novel curved-mesh drainage blind pipe exhibits superior circumferential load-bearing capacity, anti-clogging performance, and deformation resistance. The proposed structure provides a total permeable area exceeding 17,500 mm2, three to four times larger than that of conventional drainage pipes, effectively meeting the drainage requirements behind tunnel linings in high-water-content zones. The use of four-way connectors enhanced integration with other drainage systems, and inspection of the internal conditions confirmed that the pipe remained free of clogging and deformation. Furthermore, the curved-mesh design offers better conformity with the primary support and demonstrates stronger adaptability to complex installation conditions. Full article
Show Figures

Figure 1

24 pages, 9569 KB  
Article
Numerical Simulation of Annular Flow Field and Acoustic Field of Oil Casing Leakage
by Yun-Peng Yang, Bing-Cai Sun, Ying-Hua Jing, Jin-You Wang, Jian-Chun Fan, Yi-Fan Gan, Shuang Liang, Yu-Shan Zheng and Mo-Song Li
Processes 2025, 13(6), 1799; https://doi.org/10.3390/pr13061799 - 5 Jun 2025
Viewed by 905
Abstract
The generation and propagation mechanisms of acoustic waves from leakage below the annular liquid level in gas wells have attracted widespread attention. To study the characteristics of acoustic sources beneath the liquid level, a physical model of leakage in the casing–tubing annulus was [...] Read more.
The generation and propagation mechanisms of acoustic waves from leakage below the annular liquid level in gas wells have attracted widespread attention. To study the characteristics of acoustic sources beneath the liquid level, a physical model of leakage in the casing–tubing annulus was established by simulating the distribution patterns of the flow field and acoustic field within the annulus under tubing leakage conditions. Distinct from the traditional acoustic analysis of wellbore leakage in gas wells, this study focuses on acoustic waves generated by leaks located below the annular protection fluid level. It analyzes the flow regime and acoustic source characteristics beneath the liquid level under various operating conditions (including leakage aperture, velocity, and position). The research summarizes the evolution patterns of flow regimes when gas leaks into the annular protection fluid under different conditions and elucidates the generation mechanism of sub-liquid leakage noise and its propagation mechanism across the liquid surface. This work lays the theoretical foundation for detecting sub-liquid leakage at the wellhead using acoustic methods. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 15689 KB  
Article
Experimental Study on Simulated Acoustic Characteristics of Downhole Tubing Leakage
by Yun-Peng Yang, Sheng-Li Chu, Ying-Hua Jing, Bing-Cai Sun, Jing-Wei Zhang, Jin-You Wang, Jian-Chun Fan, Mo-Song Li, Shuang Liang and Yu-Shan Zheng
Processes 2025, 13(5), 1586; https://doi.org/10.3390/pr13051586 - 20 May 2025
Viewed by 1011
Abstract
In response to the limitations of experimental methods for detecting oil and gas well tubing leaks, this study developed a full-scale indoor simulation system for oil tubing leakage. The system consists of three components: a wellbore simulation device, a dynamic leakage simulation module, [...] Read more.
In response to the limitations of experimental methods for detecting oil and gas well tubing leaks, this study developed a full-scale indoor simulation system for oil tubing leakage. The system consists of three components: a wellbore simulation device, a dynamic leakage simulation module, and a multi-parameter monitoring system. The wellbore simulator employs a jacketed structure to replicate real-world conditions, while the leakage module incorporates a precision flow control device to regulate leakage rates. The monitoring system integrates high-sensitivity acoustic sensors and pressure sensors. Through multi-condition experiments, the system simulated complex scenarios, including leakage apertures of 1–5 mm, different leakage positions relative to the annular liquid level, and multiple leakage point combinations. A comprehensive acoustic signal processing framework was established, incorporating time–domain features, frequency–domain characteristics, and time–frequency joint analysis. Experimental results indicate that when the leakage point is above the annular liquid level, the acoustic signals received at the wellhead exhibit high-frequency characteristics typical of gas turbulence. In contrast, leaks below the liquid level produce acoustic waves with distinct low-frequency fluid cavitation signatures, accompanied by noticeable medium-coupled attenuation during propagation. These differential features provide a foundation for accurately identifying leakage zones and confirm the feasibility of using acoustic detection technology to locate concealed leaks below the annular liquid level. The study offers experimental support for improving downhole leakage classification and early warning systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 6578 KB  
Article
Research on the Method of Depth-Sensing Optical System Based on Multi-Layer Interface Reflection
by Chen Yu, Ying Liu, Linhan Li, Guangpeng Zhou, Boshi Dang, Jie Du, Junlin Ma and Site Zhang
Sensors 2024, 24(22), 7228; https://doi.org/10.3390/s24227228 - 12 Nov 2024
Viewed by 1283
Abstract
In this paper, a depth-sensing method employing active irradiation of a semi-annular beam is proposed for observing the multi-layered reflective surfaces of transparent samples with higher resolutions and lower interference. To obtain the focusing resolution of the semi-annular aperture diaphragm system, a model [...] Read more.
In this paper, a depth-sensing method employing active irradiation of a semi-annular beam is proposed for observing the multi-layered reflective surfaces of transparent samples with higher resolutions and lower interference. To obtain the focusing resolution of the semi-annular aperture diaphragm system, a model for computing the diffracted optical energy distribution of an asymmetric aperture diaphragm is constructed, and mathematical formulas are deduced for determining the system resolution based on the position of the first dark ring of the amplitude distribution. Optical simulations were performed under specific conditions; the lateral resolution δr of the depth-sensing system was determined to be 0.68 μm, and the focusing accuracy δz was determined to be 0.60 μm. An experimental platform was established under the same conditions, and the results were in accord with those of the simulation results, which validated the correctness of the formula for calculating the amplitude distribution of the diffracted light from the asymmetric aperture diaphragm. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

12 pages, 13581 KB  
Article
A Dual-Passband Frequency Selective Surface with High Angular Stability and Polarization Insensitivity
by Yi Li, Yan Ma, Peng Ren, Minrui Wang and Zheng Xiang
Micromachines 2024, 15(6), 690; https://doi.org/10.3390/mi15060690 - 24 May 2024
Cited by 3 | Viewed by 2292
Abstract
In this paper, a dual-passband frequency selective surface (FSS) with high angular stability and polarization insensitivity is proposed. The unit structure consists of a circular aperture, two annular apertures and four cross apertures. The designed FSS can achieve a double-passband at the interested [...] Read more.
In this paper, a dual-passband frequency selective surface (FSS) with high angular stability and polarization insensitivity is proposed. The unit structure consists of a circular aperture, two annular apertures and four cross apertures. The designed FSS can achieve a double-passband at the interested frequencies of 8.45 GHz and 12.76 GHz with an insertion loss of less than 1 dB, and it can retain a stable transmission characteristic with the incident angle ranging from 0° to 86° for TE mode and from 0° to 83° for TM mode. Good agreement between the experimental results and the simulated response verifies the feasibility of the proposed FSS. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

15 pages, 3842 KB  
Article
Chromatic Aberration Correction in Harmonic Diffractive Lenses Based on Compressed Sensing Encoding Imaging
by Jianying Chan, Xijun Zhao, Shuo Zhong, Tao Zhang and Bin Fan
Sensors 2024, 24(8), 2471; https://doi.org/10.3390/s24082471 - 12 Apr 2024
Cited by 5 | Viewed by 3726
Abstract
Large-aperture, lightweight, and high-resolution imaging are hallmarks of major optical systems. To eliminate aberrations, traditional systems are often bulky and complex, whereas the small volume and light weight of diffractive lenses position them as potential substitutes. However, their inherent diffraction mechanism leads to [...] Read more.
Large-aperture, lightweight, and high-resolution imaging are hallmarks of major optical systems. To eliminate aberrations, traditional systems are often bulky and complex, whereas the small volume and light weight of diffractive lenses position them as potential substitutes. However, their inherent diffraction mechanism leads to severe dispersion, which limits their application in wide spectral bands. Addressing the dispersion issue in diffractive lenses, we propose a chromatic aberration correction algorithm based on compressed sensing. Utilizing the diffractive lens’s focusing ability at the reference wavelength and its degradation performance at other wavelengths, we employ compressed sensing to reconstruct images from incomplete image information. In this work, we design a harmonic diffractive lens with a diffractive order of M=150, an aperture of 40 mm, a focal length f0=320 mm, a reference wavelength λ0=550 nm, a wavelength range of 500–800 nm, and 7 annular zones. Through algorithmic recovery, we achieve clear imaging in the visible spectrum, with a peak signal-to-noise ratio (PSNR) of 22.85 dB, a correlation coefficient of 0.9596, and a root mean square error (RMSE) of 0.02, verifying the algorithm’s effectiveness. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

15 pages, 3797 KB  
Article
Three-Dimensional Printed Annular Ring Aperture-Fed Antenna for Telecommunication and Biomedical Applications
by Khaled Alhassoon, Yaaqoub Malallah, Fahad N. Alsunaydih and Fahd Alsaleem
Sensors 2024, 24(3), 949; https://doi.org/10.3390/s24030949 - 1 Feb 2024
Cited by 6 | Viewed by 2485
Abstract
The design of the aperture-fed annular ring (AFAR) microstrip antenna is presented. This proposed design will ease the fabrication and usability of the 3D-printed and solderless 2D materials. This antenna consists of three layers: the patch, the slot within the ground plane as [...] Read more.
The design of the aperture-fed annular ring (AFAR) microstrip antenna is presented. This proposed design will ease the fabrication and usability of the 3D-printed and solderless 2D materials. This antenna consists of three layers: the patch, the slot within the ground plane as the power transfer medium, and the microstrip line as the feeding. The parameters of the proposed design are investigated using the finite element method FEM to achieve the 50 Ω impedance with the maximum front-to-back ratio of the radiation pattern. This study was performed based on four steps, each investigating one parameter at a time. These parameters were evaluated based on an initial design and prototype. The optimized design of 3D AFAR attained S11 around 17 dB with a front-to-back ratio of more than 30 dB and a gain of around 3.3 dBi. This design eases the process of using a manufacturing process that involves 3D-printed and 2D metallic materials for antenna applications. Full article
(This article belongs to the Special Issue Wearable Antennas and Sensors for Microwave Applications)
Show Figures

Figure 1

10 pages, 1824 KB  
Article
Dense Space-Division Multiplexing Exploiting Multi-Ring Perfect Vortex
by Xing Liu, Duo Deng, Zhenjun Yang and Yan Li
Sensors 2023, 23(23), 9533; https://doi.org/10.3390/s23239533 - 30 Nov 2023
Cited by 5 | Viewed by 1789
Abstract
Vortex beams carrying orbital angular momentum (OAM) have gained much interest in optical communications because they can be used to expand the number of multiplexing channels and greatly improve the transmission capacity. However, the number of states used for OAM-based communication is generally [...] Read more.
Vortex beams carrying orbital angular momentum (OAM) have gained much interest in optical communications because they can be used to expand the number of multiplexing channels and greatly improve the transmission capacity. However, the number of states used for OAM-based communication is generally limited by the imperfect OAM generation, transmission, and demultiplexing methods. In this work, we proposed a dense space-division multiplexing (DSDM) scheme to further increase the transmission capacity and transmission capacity density of free space optical communications with a small range of OAM modes exploiting a multi-ring perfect vortex (MRPV). The proposed MRPV is generated using a pixel checkerboard complex amplitude modulation method that simultaneously encodes amplitude and phase information in a phase-only hologram. The four rings of the MRPV are mutually independent channels that transmit OAM beams under the condition of occupying only one spatial position, and the OAM mode transmitted in these spatial channels can be efficiently demodulated using a multilayer annular aperture. The effect of atmospheric turbulence on the MRPV was also analyzed, and the results showed that the four channels of the MRPV can be effectively separated under weak turbulence conditions. Under the condition of limited available space and OAM states, the proposed DSDM strategy exploiting MRPV might inspire wide optical communication applications exploiting the space dimension of light beams. Full article
(This article belongs to the Special Issue Novel Technology in Optical Communications)
Show Figures

Figure 1

14 pages, 2870 KB  
Article
Extended Depth of Focus Two-Photon Light-Sheet Microscopy for In Vivo Fluorescence Imaging of Large Multicellular Organisms at Cellular Resolution
by Takashi Saitou and Takeshi Imamura
Int. J. Mol. Sci. 2023, 24(12), 10186; https://doi.org/10.3390/ijms241210186 - 15 Jun 2023
Cited by 5 | Viewed by 3567
Abstract
Two-photon excitation in light-sheet microscopy advances applications to live imaging of multicellular organisms. In a previous study, we developed a two-photon Bessel beam light-sheet microscope with a nearly 1-mm field of view and less than 4-μm axial resolution, using a low magnification (10×), [...] Read more.
Two-photon excitation in light-sheet microscopy advances applications to live imaging of multicellular organisms. In a previous study, we developed a two-photon Bessel beam light-sheet microscope with a nearly 1-mm field of view and less than 4-μm axial resolution, using a low magnification (10×), middle numerical aperture (NA 0.5) detection objective. In this study, we aimed to construct a light-sheet microscope with higher resolution imaging while maintaining the large field of view, using low magnification (16×) with a high NA 0.8 objective. To address potential illumination and detection mismatch, we investigated the use of a depth of focus (DOF) extension method. Specifically, we used a stair-step device composed of five-layer annular zones that extended DOF two-fold, enough to cover the light-sheet thickness. Resolution measurements using fluorescent beads showed that the reduction in resolutions was small. We then applied this system to in vivo imaging of medaka fish and found that image quality degradation at the distal site of the beam injection could be compensated. This demonstrates that the extended DOF system combined with wide-field two-photon light-sheet microscopy offers a simple and easy setup for live imaging application of large multicellular organism specimens with sub-cellular resolution. Full article
(This article belongs to the Special Issue Applications of Fluorescence Microscopy in Molecular Biology)
Show Figures

Figure 1

15 pages, 49865 KB  
Article
Pentaband Dual-Polarized Antenna for Multiservice Wireless Applications
by A. Ushasree and Vipul Agarwal
Computation 2023, 11(4), 76; https://doi.org/10.3390/computation11040076 - 8 Apr 2023
Cited by 3 | Viewed by 2300
Abstract
This paper presents a novel design for and an experimental study of a dual-polarized quad-port MIMO antenna. The design achieves resonance at five distinct frequency bands with reduced mutual coupling. The design includes a single annular ring slot, four truncated rectangular corners, and [...] Read more.
This paper presents a novel design for and an experimental study of a dual-polarized quad-port MIMO antenna. The design achieves resonance at five distinct frequency bands with reduced mutual coupling. The design includes a single annular ring slot, four truncated rectangular corners, and a truncated aperture to improve resonance behavior. The design is then extended to a four-port MIMO antenna by including a ground-plane slit to enhance isolation between antenna elements at the center resonance band. The antenna achieves resonances at 5 distinct bands, ranging from 1.5 to 8.4 GHz, with significant mutual coupling reductions. The resonances of the quad-port pentaband MIMO antenna are achieved at 1.55 GHz (1.5–1.65 GHz), 2.5 GHz (2.4–2.7 GHz), 5.2 GHz (5–5.85), 7.3 GHz (7.1–7.4), and 8.15 GHz (7.9–8.4), with respective mutual coupling reductions of 27 dB, 37 dB, 21 dB, 29 dB, and 21 dB. Additionally, the 3 dB axial ratio bandwidth (ARBW) is observed at 6.5% (1.5–1.6 GHz) and 15% (2.4–2.7 GHz) in 2 distinct bands, and the envelope correlation coefficient and diversity gain are calculated within the specified band range. Experimental measurements of the prototype for the quad-port antenna are conducted, with excellent agreement found between the results and the simulations. Full article
Show Figures

Figure 1

16 pages, 7336 KB  
Article
Contributions of Support Point Number to Mirror Assembly Thermal Sensitivity Control
by Haixing Li, Hongwen Zhang, Yalin Ding, Jichao Zhang and Yuqi Cai
Sensors 2023, 23(4), 1951; https://doi.org/10.3390/s23041951 - 9 Feb 2023
Cited by 2 | Viewed by 2304
Abstract
Due to the extreme environmental temperature variations, solutions that enable ultra-low thermal sensitivity in a mirror assembly are crucial for high-performance aerial optical imaging sensors (AOIS). Strategies such as the elimination of the coefficient of thermal expansion (CTE) mismatch and the employment of [...] Read more.
Due to the extreme environmental temperature variations, solutions that enable ultra-low thermal sensitivity in a mirror assembly are crucial for high-performance aerial optical imaging sensors (AOIS). Strategies such as the elimination of the coefficient of thermal expansion (CTE) mismatch and the employment of a flexure connection at the interface cannot be simply duplicated for the application involved, demanding specific design constraints. The contributions of support point number to the surface thermal sensitivity reduction and support stiffness improvement have been studied. A synthetic six-point support system that integrates equally spaced multiple ultra-low radial stiffness mirror flexure units and assembly external interface flexure units has been demonstrated on a 260 mm apertured annular mirror that involves significant CTE mismatch and demanding support stiffness constraint. The surface deformation RMS, due to the 35 °C temperature variation, is 16.7 nm. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

Back to TopTop