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Abstract: Large-aperture, lightweight, and high-resolution imaging are hallmarks of major optical
systems. To eliminate aberrations, traditional systems are often bulky and complex, whereas the
small volume and light weight of diffractive lenses position them as potential substitutes. However,
their inherent diffraction mechanism leads to severe dispersion, which limits their application in
wide spectral bands. Addressing the dispersion issue in diffractive lenses, we propose a chromatic
aberration correction algorithm based on compressed sensing. Utilizing the diffractive lens’s focusing
ability at the reference wavelength and its degradation performance at other wavelengths, we employ
compressed sensing to reconstruct images from incomplete image information. In this work, we
design a harmonic diffractive lens with a diffractive order of M = 150, an aperture of 40 mm, a focal
length f0 = 320 mm, a reference wavelength λ0 = 550 nm, a wavelength range of 500–800 nm, and
7 annular zones. Through algorithmic recovery, we achieve clear imaging in the visible spectrum,
with a peak signal-to-noise ratio (PSNR) of 22.85 dB, a correlation coefficient of 0.9596, and a root
mean square error (RMSE) of 0.02, verifying the algorithm’s effectiveness.

Keywords: compressive sensing; diffractive achromatic; computational imaging

1. Introduction

Traditional optical systems, designed to eliminate aberrations with multiple lenses, are
complex, bulky, and expensive, failing to meet weight requirements [1]. Diffractive lenses,
with their micrometer-scale thickness, offer advantages of ultra-thinness and light weight.
A single diffractive lens can intricately control the light field, holding the potential to replace
traditional refractive and reflective systems. However, their inherent diffraction mechanism
leads to significant chromatic dispersion, limiting high-precision wide-spectrum imaging
applications [2]. Traditional solutions involve adding a reverse power diffractive lens to cor-
rect chromatic aberrations or designing multi-layered diffractive lens structures to enhance
efficiency [3]. In addition to improvements to element structures, chromatic aberration
correction can be achieved through image processing algorithms, which is a central concept
in computational imaging [4]. In computational imaging systems, the optical system can be
incomplete, and high-quality images can be recovered from system-captured data through
image reconstruction algorithms. In recent decades, computational imaging technology has
been applied in various fields, such as single-pixel imaging [5–7], structured light 3D imag-
ing [8], lensless imaging [9–11], coded imaging [12,13], and hyperspectral imaging [14–17],
becoming a research hotspot in the field of optical imaging. Introducing computational
imaging technology into diffractive lens systems significantly enhances optical system de-
sign freedom and simplifies system structures. Nikonorov et al. proposed a three-channel
chromatic aberration correction algorithm, blurring and sharpening deblurred images in
other channels for color correction and reconstructing Fresnel lens imaging results, but the
recovered images still exhibited significant noise [18]. Peng et al. used a particle swarm
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algorithm to optimize the diffractive lens height map, reconstructing images based on
cross-channel image priors, but the low diffraction efficiency resulted in foggy images [16].
Sitzmann et al. first introduced the framework for joint design of optical algorithms,
obtaining the imaging data of optical systems through simulation [19]. This approach
combines deep learning with backend image restoration algorithms, colloquially known
as the end-to-end design framework. This framework has pioneered a new paradigm in
computational imaging design. Since this introduction, there has been an abundance of
related work, including multispectral imaging [20,21], depth estimation [22,23], and large
field imaging [24]. Although the end-to-end design framework has achieved breakthroughs
in optical device performance compared to traditional design methods, it still faces several
challenges. These include dependency on datasets, the need for high computational power,
and the inability to design large-aperture diffractive optical elements (to our knowledge,
there are no diffractive lenses with an aperture larger than 2 cm currently available). There-
fore, our work continues to employ the traditional approach of separating the design of
optical components from backend algorithms. At the same time, the end-to-end design
framework is limited to the high-cost photolithography process for fabricating diffractive
optical elements. In our work, we opt for a cost-effective and straightforward approach by
employing turning machining for the processing of optical components. Traditional image
restoration algorithms include point spread function-based deblurring algorithms like
Lucy–Richardson [25], cross-channel non-blind deconvolution [26], and cross-channel non-
blind convex optimization deconvolution based on estimated point spread functions [18].
Diffractive lenses have undergone substantial evolution, transitioning from simple diffrac-
tive optical elements to sophisticated harmonic diffractive lenses. Harmonic diffractive
lenses offer significant advantages over traditional diffractive lenses, including improved
chromatic aberration control, higher diffraction efficiency, broader bandwidth operation,
better system integration, increased manufacturing flexibility, and enhanced customization
capabilities. Harmonic optical elements have interesting and useful optical properties,
and they may be used for lightweight optical components in future space telescopes [27],
remote sensing [28], and other applications [29].

In this work, we consider chromatic aberration as a result of different focal points
across various spectral bands. For simplicity of discussion, we present a schematic diagram
showing light of three different wavelengths (RGB) converging at different focal points
after passing through the same diffractive lens as show in Figure 1. By performing full-
focus restoration on individual bands and then merging them, we obtain an image with
chromatic aberration correction and propose a novel image restoration method based on
compressed sensing for chromatic aberration correction. The overall workflow is shown
in Figure 2: First, we design a 150th-order harmonic diffractive lens based on gradient
descent [28], conduct fabrication experiments, capture images, perform reconstruction
based on three channels, focus the designed wavelength channel image, utilize compressed
sensing for reconstruction in other incomplete channels, and successfully correct chromatic
aberrations through simple iteration. We conducted both infield and outfield experiments;
infield experiments involved displaying true images on a monitor, capturing these with a
prototype system, and reconstructing the images to facilitate quantitative evaluation of the
restoration results, such as PSNR. Outfield experiments entailed direct capture of natural
landscapes for reconstruction, with the quality of restoration assessed solely through visual
inspection by human observers.
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Figure 1. Left shows a schematic of chromatic dispersion in diffractive lenses; right illustrates the
structure of a harmonic diffractive lens.
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Figure 2. Overall workflow diagram of the work. We designed a 150th-order harmonic diffractive lens
based on the gradient descent method. Given a randomly generated initial structure of a diffractive
lens, we obtained the PSF of the current diffractive lens structure. Our goal was to make the PSF
converge as closely as possible to a single point. We calculated the error between the current PSF and
the target PSF, adjusting the structure of the diffractive lens using the gradient descent algorithm.
The final optimized lens was then fabricated, a prototype system was assembled, and the image
was captured. Utilizing the proposed image recovery algorithm based on compressed sensing, we
achieved the effect of chromatic aberration correction.

2. Diffractive Lens Imaging Model

Diffractive lenses, as an integral component of modern optical engineering, exhibit
two distinctive characteristics that set them apart from their refractive counterparts, namely
multi-level diffraction and wavelength sensitivity, often referred to as dispersion, as illus-
trated in Figure 1 left. These features are not merely incidental but are fundamental to
the operational principles and applications of diffractive optics. Multi-level diffraction, a
hallmark of diffractive lenses, arises from their unique physical structure. Unlike traditional
lenses, which rely on the continuous curvature of their surfaces to bend light, diffractive
lenses achieve focus through the constructive and destructive interference of light waves.
This is facilitated by the lens’s surface, which is etched or molded into multiple discrete lev-
els or steps. Each level corresponds to a specific phase shift, orchestrating the light waves to
converge at the focal point. This multi-level approach allows diffractive lenses to precisely
control the phase of incoming light, enabling them to focus light efficiently and with a high
degree of flexibility in design. As such, diffractive lenses can be engineered to achieve
specific optical functions that would be challenging or impossible to accomplish with con-
ventional refractive lenses. Wavelength sensitivity, or dispersion, is another critical aspect
of diffractive lenses. This characteristic stems from the way diffractive lenses manipulate
light, which is inherently dependent on the wavelength of the incident light. The diffraction
efficiency of a lens—its ability to direct light towards the desired focal point—varies with
the wavelength, leading to a phenomenon where different wavelengths are focused at
slightly different positions. This dispersion effect can be a double-edged sword. On the
one hand, it allows for the design of lenses that can selectively focus or filter light based
on wavelength, which is advantageous for applications such as chromatic correction and
spectral imaging. On the other hand, it necessitates careful design to mitigate unwanted
chromatic aberrations in applications where uniform focus across a broad spectrum of
wavelengths is desired. The interplay between multi-level diffraction and wavelength
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sensitivity defines the operational envelope and design considerations for diffractive lenses.
These characteristics enable the lenses to be highly compact and lightweight, offer unique
dispersion properties, and achieve high focusing efficiencies. However, they also pose
challenges, particularly in terms of managing dispersion and designing for broadband
applications. Advances in computational design and fabrication technologies continue
to push the boundaries of what is possible with diffractive optics, enabling increasingly
sophisticated optical devices that leverage the unique advantages of multi-level diffraction
and wavelength sensitivity. In our work, we primarily address the dispersion issue with
a post-process algorithm. According to scalar diffraction theory [30], the point spread
function (PSF) can be expressed as:

p(x, y; λ) =
A

λzi

∫∫
P(u, v; λ)e−j 2π

λzi
(ux+vy) du dv (1)

where A is the amplitude constant, zi is the distance from the lens to the imaging plane,
(u, v) are the coordinates on the lens plane, and P(u, v; λ) is the pupil function. The pupil
function for a diffractive lens is:

P(u, v; λ) = Circ(u, v)ejΦ(u,v) (2)

Circ(·) is the circular aperture function, and Φ(u, v) is the phase delay introduced at each
point after passing through the lens. In our work, we acquire the desired imaging effects
and PSF by optimizing the Φ(u, v) term. In Fourier optics, the incoherent imaging model is
viewed as the convolution process of the optical system input i(x, y; λ) with the PSF:

A(i(x, y; λ)) = i(x, y; λ)⊗ |p(x, y; λ)|2 (3)

Here, ⊗ denotes the two-dimensional convolution operation, and A(i(x, y; λ)) repre-
sents the chromatic aberration-affected image. For traditional diffractive lenses, the PSF
p(x, y; λ) heavily depends on the wavelength, leading to significant dispersion. This wave-
length dependence causes different focal lengths f for different wavelengths λ. For a
diffractive lens designed for wavelength λ0 and focal length f0, the focal length for other
wavelengths satisfies:

λ f = λ0 f0 (4)

Ideal imaging channels the camera capture through image sensors. Image sensors
vary in sensitivity to different wavelengths, requiring the convolution-derived image to
be multiplied by a spectral response function, which is an intrinsic characteristic of the
sensor. Generally, cameras capture RGB images (the central wavelengths of RGB are 640 nm,
550 nm, and 460 nm, respectively, with the total coverage range including the wavelength
band of our designed diffractive lens, which is 500–800 nm), and our post-process algorithm
is also based on RGB images. Therefore, in designing the diffractive lens, the wavelength
range covers each color channel in RGB. In this case, the continuous PSF can be discretized
into three channels. The entire forward imaging model can be written as:

bc = pc(x, y)⊗ pc(x, y), c ∈ {r, g, b} (5)

In our work, we designed a diffractive lens with a reference wavelength for the G
channel. For the R and B channels, severe image degradation occurs, resulting in green-
tinted captured images. The image captured on the reference focal plane is decomposed
into R, G, B channels. From a single-channel perspective, dispersion can be understood as
incomplete image information in the captured R and B channels, presenting a degraded
effect. Retrieving the original image is a process of recovering complete information from
limited data. Hence, we employ compressed sensing theory to recover individual channels
and then superimpose the recovered channels to achieve chromatic aberration correction.
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3. Harmonic Diffractive Lens Design

In the realm of scalar diffraction theory, diffractive lenses are traditionally modeled as
phase masks, an approach that simplifies the interaction of light with the lens’s microstruc-
tured surface. This conventional model is predicated on the manipulation of the phase of
light passing through the lens, employing a first-order diffractive surface to achieve the
desired optical effects. In contrast, harmonic diffractive lenses represent a sophisticated
advancement in this domain, characterized by their employment of a diffractive order M
that exceeds unity. This higher-order approach allows for the modulation of light with
greater finesse, resulting in a lens that can exhibit both diffractive and refractive properties.
The structural distinction between harmonic diffractive lenses and their traditional coun-
terparts is primarily attributed to the phase depth factor associated with the former. As
M increases, the microstructure of the lens surface becomes more pronounced, reducing
the number of annular zones required to achieve a specific optical effect. This relationship
is illustrated in Figure 1 right, where the varying M values manifest in distinct lens pro-
files. Notably, at higher values of M, the harmonic diffractive lens increasingly resembles
a traditional refractive lens in form, albeit with a complex microstructure that presents
significant manufacturing challenges. Despite these challenges, the harmonic diffractive
lens boasts a notable advantage in terms of diffraction efficiency. It is capable of achieving
theoretical 100% efficiency at the design wavelength and at multiple harmonic wavelengths,
surpassing the performance of traditional diffractive lenses, particularly in applications
requiring wideband imaging. This efficiency is achieved through the strategic manipulation
of the lens’s phase profile, as described by the phase compression formula:

ϕdoe = mod(ϕlens, 2Mπ) (6)

where ϕlens is the continuous phase of the refractive lens, and ϕdoe is the compressed phase,
with mod representing the modulo operation of ϕlens with 2Mπ. Based on the optical path
difference formula, the corresponding sag height of the harmonic diffractive lens is:

Hdoe =
λ0ϕlens

(nλ − 1)2π
=

Mλ0

nλ − 1
(7)

where λ0 is the design wavelength.
In the advanced domain of optical engineering, diffractive lenses stand out for their

ability to precisely manipulate light, offering innovative solutions for a wide range of
applications from imaging systems to laser focusing devices. The fabrication of these
lenses involves sophisticated techniques, predominantly photolithography and diamond
turning, each with its own set of advantages and constraints. Photolithography, while
precise, necessitates the discretization of the lens’s continuous height profile into multiple
steps, thereby inflating the production costs and complexity. Conversely, diamond turning,
a method we have employed in our work, leverages direct machining to achieve the
desired surface profile, requiring detailed parameterization of the lens design for accurate
fabrication. Our focus is on the development of a harmonic diffractive lens, distinguished
by its diffractive order M, and on optimizing the harmonic diffractive lens’s continuous
surface in order to enhance its optical performance. The key characteristics of this lens are
its ability to achieve near-perfect diffraction efficiency at the design wavelength and its
harmonics. The design process for such a lens necessitates a comprehensive understanding
of its geometric and optical properties, starting with the determination of the maximum
radius Rmax of the annular zones, which is essential for defining the lens’s aperture. The
formula for Rmax is given by:

Rmax =
√

N2(Mλ0)2 + 2N f0Mλ0 (8)

where N represents the number of annular zones, λ0 the design wavelength, f0 the focal
length, and M the diffractive order. This equation is pivotal for laying out the spatial ar-
rangement of the annular zones, which are integral to the lens’s functionality. Following the
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spatial definition, the structural height parameter Hdoe for each annular zone is calculated.
This parameter not only influences the focusing ability of the lens but also its efficiency in
light manipulation across different wavelengths. The structural height parameter Hdoe is
determined by the equation:

Hdoe =
ciR2

max

1 +
√

1 − (1 + k)c2
i R2

max

+ zo f fi
(9)

where ci, zo f fi
represent the curvature and axial offset of the ith annular zone, respectively,

and k is the conic coefficient.
In our design endeavor, we aimed to fabricate a harmonic diffractive lens with a

diffractive order of M = 150 featuring an aperture of 40 mm, focal length f0 = 320 mm,
and design wavelength λ0 = 550 nm and comprising N = 7 annular zones. This design
was meticulously optimized over 200 iterations using a gradient descent method, a process
that underscored the intricacies involved in balancing the physical constraints with optical
performance objectives. The outcome of this optimization was visually represented in the
contour shown in Figure 3a, which encapsulates the nuanced surface profile necessary for
achieving the lens’s design goals.

(a) (b)

(c)

Figure 3. (a) Height map of the harmonic diffractive lens obtained through the gradient descent
method, fabrication and prototype assembly of the device; (b) fabrication of the optimized height
map and assembly of the prototype; (c) experimental setup for outdoor scene photography.

To assess the lens’s focusing capabilities across a spectrum of wavelengths, the Strehl
ratio (SR) was employed as a benchmark. The SR is a critical measure of optical performance,
with a value of 80% denoting the diffraction limit, and values exceeding 95% indicating an
almost aberration-free system. Our findings, depicted in Figure 4b, demonstrate that the
lens exhibits superior focusing performance between 550 nm and 600 nm, in alignment with
our design intentions. This performance peak, as illustrated in Figure 4a, correlates with
the minimal defocus amount f + ∆ f , where ∆ f is zero, indicating optimal focusing at the
design wavelength. As the wavelength diverges from this value, a shift in focal length is
observed, accompanied by a reduction in diffraction efficiency, underscoring the wavelength-
dependent behavior of diffractive lenses. The development of the harmonic diffractive lens,
with its high diffractive order and optimized annular zone structure, represents a significant
advance in optical engineering. The meticulous design and fabrication process, rooted in a
deep understanding of optical physics and material science, illustrates the potential of such
lenses in pushing the boundaries of what is achievable in light manipulation. This work not
only contributes to the field by providing a novel lens design but also sets a precedent for
future research in the pursuit of high-efficiency, wideband optical components. Through this
endeavor, we have showcased the synergy between theoretical modeling, computational
optimization, and precision manufacturing, highlighting the intricate balance required to
translate complex optical concepts into tangible, high-performance optical devices.
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Figure 4. SR of our designed harmonic diffractive lens. The lens demonstrates superior focusing
performance between 550 nm and 600 nm, exhibiting a performance peak as depicted in Figure (a),
which correlates with the minimal defocus amount, f + ∆ f where ∆ f is zero, signifying optimal
focusing at the design wavelength. As the wavelength deviates from this value, a shift in focal
length is observed, accompanied by a reduction in diffraction efficiency, emphasizing the wavelength-
dependent behavior of diffractive lenses. There is a good SR (greater than 0.8) in the range of
500–600 nm, as shown in (b).

4. Compressive Sensing

Compressed sensing (CS), a concept introduced by CANDÈS E and TAO T, leverages
the sparsity of signals to reconstruct them from significantly fewer samples than required
by the Nyquist sampling theorem. The core idea is that if a signal is sparse in a certain
basis (i.e., most coefficients are zero or near zero), sufficient information can be captured
through fewer non-adaptive linear measurements, allowing for accurate reconstruction
of the original signal. A critical condition in this methodology is the restricted isometry
property (RIP), expressed as:

(1 − δk)||x||22 ≤ ||Ax||22 ≤ (1 + δk)||x||22 (10)

where k represents the sparsity of the signal, A is the measurement matrix, || · ||2 denotes
the L2 norm, and δk is a positive number less than 1. Matrix A is said to satisfy the RIP
condition if it fulfills this inequality for all k-sparse vectors x. However, verifying the RIP
condition for a given measurement matrix in practical applications presents considerable
challenges. Engineers and researchers often focus more on the pragmatic aspects, such as
the volume of measurement data and the sparsity level of the signal under consideration.
In the context of image recovery, two pivotal factors—sparsity and the incoherence of the
measurement matrix—stand out as critical to the success of compressed sensing algorithms.
In the specialized domain of imaging systems, the work of Wu et al. [11] showcased an
innovative application of CS theory. They demonstrated that in a single diffractive lens
imaging system, the system’s point spread function (PSF) can be effectively utilized as the
measurement matrix. In a single diffractive lens system, the following imaging relationship
formula exists:

y =
1
2
F−1HTFx (11)

where y represents the system output image, x represents the source image, F and F−1

respectively represent the Fourier transform and the inverse Fourier transform, and HT
represents the transfer function. Further, we can express this as y = Kx, where K = F∗ΣF.
For details, see [11].
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This application underscores the versatility of CS theory in adapting to various prac-
tical scenarios where the measurement matrix may arise from the physical properties
of the imaging system itself. The PSF, characterizing how a system responds to a point
source or point object, inherently encodes information about the system’s resolution and
imaging characteristics. By leveraging the PSF as the measurement matrix, the diffractive
lens imaging system embodies the CS principles, enabling it to capture and reconstruct
high-quality images from a number of measurements that defy conventional expectations.
This approach not only highlights the adaptability of CS theory to diverse engineering
challenges but also opens new avenues for enhancing imaging system performance through
the strategic exploitation of signal sparsity and measurement incoherence. Our work builds
upon this foundational research, applying it to the correction of chromatic aberration in
single diffractive lens systems.

5. Algorithm Recovery Model

Image recovery stands as a cornerstone in the domain of signal processing and com-
putational imaging, addressing the challenge of reconstructing a high-quality image from
degraded observations. This task is emblematic of linear inverse problems, a category char-
acterized by the need to invert a known linear process that has been applied to the signal
or image of interest. The quintessence of solving these problems lies in the formulation
of an optimization problem, where the objective is to minimize a convex function that
encapsulates both fidelity to the observed data and regularization terms to impose prior
knowledge or assumptions about the solution. The optimization problem can be succinctly
described by the following equation:

f (x) = arg min
(

1
2
||y − Kx||2 + λΦ(x)

)
(12)

where K represents the linear operation mapping target data x to observed data y, || · ||
denotes the norm, λ ∈ [0,+∞[ is the regularization parameter, and Φ(·) represents the
regularization method. The choice of regularization is pivotal, with common approaches
including L1, L2, and total variation (TV) regularization, each suited to different aspects of
image characteristics. L1 and L2 regularization focus on the magnitude of the image coef-
ficients, promoting sparsity and smoothness, respectively. In contrast, TV regularization,
especially pertinent to our work, excels in preserving edges while promoting smoothness
within homogeneous regions of the image. This method proves particularly effective in
the context of diffractive lens imaging, where chromatic dispersion introduces color bias
and blurring, manifesting as sparsity in the gradient domain. TV regularization can be
categorized into isotropic and anisotropic forms, mathematically represented as:

ΦiTV(x) = ∑
i

√
(∆h

i x)2 + (∆v
i x)2 (13)

ΦniTV(x) = ∑
i
|∆h

i x|+ |∆v
i x| (14)

where Formulas (13) and (14) represent isotropic and anisotropic regularization, respec-
tively, and ∆h

i and ∆v
i are the horizontal and vertical first-order differential operators. Con-

sidering that natural image gradients are typically anisotropic and non-uniform show in
Figure 5, we opt for Formula (14). The optimization objective function can be rewritten as:

f (x) = arg min
(

1
2
||y − Kx||2 + ΦniTV(x)

)
(15)

Combining Equations (11) and (15), our model can be expressed by the following formula:

f (x) = arg min
(

1
2
||y − F∗ΣFx||2 + ΦniTV(x)

)
(16)
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This formulation underscores our approach to mitigating the challenges posed by
diffractive lenses, leveraging anisotropic TV regularization to counteract the color bias and
blurring while preserving essential image features. By optimizing this function, we aim
to achieve a balance between fidelity to the observed data and the enforcement of a priori
knowledge about natural image characteristics. The result is a reconstructed image that
not only closely matches the observed data but also retains the natural appearance and
sharpness, despite the inherent limitations of the imaging system. This methodological
framework not only exemplifies the application of linear inverse problem-solving to im-
age recovery but also highlights the adaptability of regularization techniques to specific
imaging challenges, paving the way for advancements in computational imaging and
beyond. We use the TwIST algorithm [31] to optimize the objective function. Proposed by
José M. et al., this algorithm improves upon IST (iterative shrinkage/thresholding), enhanc-
ing convergence rates. The algorithm employs mean square error (MSE) as an evaluation
metric for recovered images, defined as:

MSE =
1

MN

M

∑
i=1

N

∑
j=1

[I(x, y)− Î(x, y)]2 (17)

Sensor
image

Original
image

Gradient domain

Non-sparse

Sparse

Gradient histogram

Figure 5. An analysis of chromatic and achromatic images in the gradient domain is conducted,
where the achromatic image exhibits sparsity in the gradient domain, while the chromatic image
shows non-sparsity. This meets the conditions of compressed sensing for image recovery.

Additionally, we introduce the correlation coefficient (CC) metric. For two images A
and B, the correlation coefficient is defined as:

CC =
∑N

i (Ai − Ā)(Bi − B̄)√
∑N

i (Ai − Ā)2 ∑N
i (Bi − B̄)2

(18)

where Ā and B̄ are the mean values of the images. For RGB images, we compute this metric
separately for each channel.

6. Result

In the experimental setup detailed in our study, as depicted in Figure 6a, we utilized
a high-resolution monitor as a means to display photographs for the purpose of image
acquisition. The images captured by our imaging system, however, did not fully occupy the
available frame due to the limitations inherent in aligning the digital display with the cam-
era’s field of view. The point spread function (PSF), a critical component for understanding
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the system’s imaging capabilities, was collected using an advanced MV-CH250-90UM/C
camera. This camera boasts a high resolution of 5120 × 5120 pixels, allowing for detailed
capture of the PSF through a parallel light tube, a method which ensures the accuracy
and consistency of the PSF data collected. Owing to the practical challenges faced in
perfectly aligning the screen with the camera, the resultant captured image dimensions
were constrained to 605 × 582 pixels. This limitation necessitated a strategic approach
to process and utilize the PSF information effectively while managing the computational
demands of the reconstruction process. To this end, we opted to crop the PSF image to a
resolution of 2048 × 2048 pixels. This resolution was judiciously chosen to be significantly
larger than that of the captured images, thus preserving the essential information of the
PSF while facilitating a manageable computational workload. To further refine our image
reconstruction process, we employed the technique of cyclic convolution. This involved
padding the captured images to match the size of the PSF, thereby enabling us to perform
cyclic convolution between the image and the PSF. The iterative reconstruction algorithm
employed in our study was the TwIST (two-step iterative shrinkage/thresholding) algo-
rithm. By iterating this algorithm 10 times, we aimed to strike a balance between achieving
a high-quality reconstruction and maintaining computational efficiency. The ultimate
recovery effect, as illustrated in Figure 7, showcases the efficacy of our methodological
choices. The use of cyclic convolution, in conjunction with the TwIST algorithm, facilitated
the recovery of images with remarkable clarity and detail, demonstrating the potential of
our approach in overcoming the challenges posed by chromatic aberration in diffractive
lenses through innovative experimental and computational strategies.

Furthermore, we conducted outdoor scene experiments, using the setup shown in
Figure 3c, and compared the results with other PSF-based recovery algorithms, as shown
in Figure 8. Our algorithm demonstrates several key advantages in the realm of image
reconstruction, particularly when compared with traditional methods such as backprop-
agation and Lucy–Richardson algorithms. First, the efficiency and accuracy in handling
diffraction-limited systems are notable. The algorithm can achieve higher resolution and
clarity in the reconstructed images, which is critical for applications requiring fine detail
and precision. Another advantage lies in the algorithm’s ability to manage noise effectively.
In many imaging scenarios, especially in low-light conditions or when dealing with highly
scattering media, noise can significantly degrade the quality of the reconstructed image.
Our algorithm incorporates advanced noise reduction techniques that maintain the fidelity
of the original signal while minimizing the impact of noise, thus ensuring cleaner, more
accurate reconstructions. Furthermore, the algorithm’s robustness against aberrations is a
significant benefit. Both the backpropagation and Lucy–Richardson algorithms exhibit a no-
ticeable fogging effect, while our algorithm does not. We also added additional experiments
to demonstrate this, as shown in Figure 9.

Calibration Target CollimatorLight source SensorHDOE
(c)

Source

Calibration Target Collimator

Prototype

Prototype
Screen

Figure 6. We conducted both indoor and outdoor experiments. (a) Illustration of our indoor experi-
mental system, where photos are displayed on a screen and captured using our assembled system.
(b) System diagram for acquiring the system’s point spread function (PSF) using a parallel light tube.
(c) Schematic diagram corresponding to (b).
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Captured image Result

MSE：0.02
CC：0.9596

TwIST

PSNR 22.84dB

Figure 7. Image reconstruction results. It is worth noting that due to the issue of pixel value matching
when photographing the screen, some information will be lost, leading to a decline in the indicators.

Figure 8. The captured images were processed using our proposed algorithm for chromatic aberration
correction and were compared with other algorithms. The results from other algorithms still exhibit a
fogging effect, while ours visibly demonstrate superior performance.
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Captured image Backpropagation Lucy-Richardson Our

Figure 9. Additional experimental renderings prove the robustness of our algorithm and its advan-
tages over the other two algorithms.

7. Discussion

In this pioneering study, we embarked on the ambitious project of designing and
developing a harmonic diffractive lens. This lens was meticulously engineered to operate
efficiently across a broad spectrum of wavelengths, specifically from 500 to 800 nm. The
foundation of our endeavor was the strategic application of the gradient descent method.
This systematic approach was instrumental in optimizing the diffractive structures of the
lens to ensure peak performance within the targeted wavelength range. At the core of our
investigation was an in-depth analysis of the lens’s focusing capabilities, particularly its
ability to handle chromatic aberration—a prevalent obstacle in the realm of diffractive lens
systems. Chromatic aberration, a phenomenon characterized by the differential focusing
of light wavelengths leading to blurred or distorted images, was a critical focus of our
work. When focusing on the target wavelength in the image plane (corresponding to
the green channel in this work), other wavelengths (red and blue channels) exhibit a
defocusing effect. However, since photon information can still be received, we consider this
a unique form of “encoding”. We approached this challenge by conceptualizing chromatic
aberration as a unique form of defocusing, occurring independently across individual color
channels. In response, we developed a groundbreaking image processing algorithm based
on compressed sensing theory. This algorithm was meticulously crafted to reconstruct
images free from chromatic aberrations by efficiently merging all-focus images, which
were reconstructed from the sparse and incomplete information characteristic of separate
channels. This innovation effectively surmounted the inherent limitations imposed by
chromatic dispersion in diffractive lenses. A cornerstone of our methodological framework
was the strategic employment of the system’s PSF as the measurement matrix within
the compressed sensing paradigm. By leveraging the PSF’s intrinsic incoherence, we
achieved a comprehensive recovery of information from channels affected by chromatic
aberration, thereby not only correcting chromatic aberration but also significantly enhancing
imaging quality. The empirical validation of our algorithm through a series of meticulous
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fabrication experiments underscored the practical viability of our approach, illustrating
its superiority over previous computational imaging designs. Our research is further
distinguished by the employment of a larger aperture (40 mm) diffractive lens, surpassing
the limitations of contemporary end-to-end design frameworks constrained by extensive
datasets and considerable computational demands. Hence, our approach broadens the
scope of diffractive lens design by sidestepping these constraints.

While our contributions signify a substantial leap forward in correcting chromatic
aberration and advancing diffractive lens design, we recognize the ongoing need for refine-
ment. Enhancing image clarity remains a pivotal aim for our future research endeavors. By
persistently refining our algorithm and design strategy, we aim to unveil further potential
for high-fidelity, chromatic aberration-free imaging, thereby catalyzing new applications
and technological advancements in the optical domain. This integration of lens design opti-
mization, advanced image processing algorithms, and innovative fabrication techniques
embodies a comprehensive strategy towards achieving high-fidelity, chromatic aberration-
free imaging. Such collaborative efforts, as echoed in the work of [32,33], not only reinforce
our findings but also pave the way for future innovations in optical imaging technologies.
As underscored by [34], the continued exploration of diffractive optics and computational
algorithms holds great promise for the field, heralding a new era of optical solutions that
enrich both the scientific community and technological applications. Our future work will
not be limited to imaging at three wavelengths but will expand to multi-wavelength, that
is, multispectral imaging, to capture information across a broader range of frequencies.
Through this approach, we aim to achieve a more comprehensive and detailed analysis
of target scenes. Multispectral imaging technology can provide richer information than
traditional single-wavelength or three-wavelength imaging, including but not limited to
the chemical composition of materials, surface textures, and the ability to differentiate
between different objects. The development of this technology will significantly enhance
our depth and breadth of understanding of complex scenes, thereby playing a crucial role in
various fields such as environmental monitoring, medical diagnosis, and the authentication
of artworks. Furthermore, we plan to develop more advanced image processing algorithms
to handle the multispectral data, addressing the additional complexity introduced by the
increase in the number of wavelengths. Our goal is to optimize image quality and accuracy
through these algorithms while maintaining efficient computational efficiency to ensure
real-time processing and analysis of this data. In summary, we believe that by extending to
multispectral imaging and combining it with advanced image processing techniques, we
can break through current limitations and begin a new chapter in our understanding of the
material world.
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