Pentaband Dual-Polarized Antenna for Multiservice Wireless Applications
Abstract
:1. Introduction
2. Proposed Antenna Configuration and Description
2.1. Single-Port Antenna Element
2.2. Quad-Port Antenna Design
3. Experimental Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, Y.C.; Sun, J.S. A New Printed Antenna for Multiband Wireless Applications. IEEE Antennas Wirel. Propag. Lett. 2008, 8, 402–405. [Google Scholar]
- Kumar, R.; Kamatham, Y.; Peddakrishna, S.; Gaddam, A. CPW-Fed Penta Band Monopole Antenna for Multiservice Wireless Applications. Adv. Technol. Innov. 2021, 1, 66–76. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Y.; Zhang, S.; Gong, S. Multiband Metamaterial-Loaded Monopole Antenna for WLAN/WiMAX Applications. IEEE Antennas Wirel. Propag. Lett. 2014, 14, 662–665. [Google Scholar] [CrossRef]
- Kollipara, V.; Peddakrishna, S.; Kumar, J. Planar EBG Loaded UWB Monopole Antenna with Triple Notch Characteristics. Int. J. Eng. Technol. Innov. 2021, 11, 294–304. [Google Scholar] [CrossRef]
- Yang, L.; Li, T.; Yan, S. Highly Compact MIMO Antenna System for LTE/ISM Applications. Int. J. Antennas. Propag. 2015, 2015, 1–10. [Google Scholar] [CrossRef]
- Papamichael, V.C.; Karadimas, P. Performance Evaluation of Actual Multielement Antenna Systems under Transmit Antenna Selection/Maximal Ratio Combining. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 690–692. [Google Scholar] [CrossRef]
- Sanayei, S.; Nosratinia, A. Antenna Selection in MIMO Systems. IEEE Commun. Mag. 2004, 42, 68–73. [Google Scholar] [CrossRef]
- Ehrenborg, C.; Gustafsson, M. Fundamental bounds on MIMO antennas. IEEE Antennas Wirel. Propag. Lett. 2017, 17, 21–24. [Google Scholar] [CrossRef]
- Pouyanfar, N.; Ghobadi, C.; Nourinia, J.; Pedram, K.; Majidzadeh, M. A compact multi-band MIMO antenna with high isolation for C and X bands using defected ground structure. Radio Eng. 2018, 27, 686–693. [Google Scholar] [CrossRef]
- Kollipara, V.; Peddakrishna, S. Quad-Port Circularly Polarized MIMO Antenna with Wide Axial Ratio. Sensors 2022, 22, 7972. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Pedersen, G.F. Mutual coupling suppression with decoupling ground for massive MIMO antenna arrays. IEEE Trans. Veh. Technol. 2019, 68, 7273–7282. [Google Scholar] [CrossRef]
- Nadeem, I.; Choi, D.Y. Study on mutual coupling reduction technique for MIMO antennas. IEEE Access 2018, 7, 563–586. [Google Scholar] [CrossRef]
- Chiu, C.Y.; Xu, F.; Shen, S.; Murch, R.D. Mutual coupling reduction of rotationally symmetric multiport antennas. IEEE Trans. Antennas Propag. 2018, 66, 5013–5021. [Google Scholar] [CrossRef]
- Zhang, S.; Pedersen, G.F. Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 166–169. [Google Scholar] [CrossRef]
- Kayabasi, A.; Toktas, A.; Yigit, E.; Sabanci, K. Triangular Quad-Port Multi-Polarized UWB MIMO Antenna with Enhanced Isolation Using Neutralization Ring. AEU Int. J. Electron. Commun. 2018, 85, 47–53. [Google Scholar] [CrossRef]
- Maddio, S.; Pelosi, G.; Righini, M.; Selleri, S.; Vecchi, I. Mutual Coupling Reduction in Multilayer Patch Antennas via Meander Line Parasites. Electron. Lett. 2018, 54, 922–924. [Google Scholar] [CrossRef]
- Hassan, T.; Khan, M.U.; Attia, H.; Sharawi, M.S. An FSS Based Correlation Reduction Technique for MIMO Antennas. IEEE Trans. Antennas Propag. 2018, 66, 4900–4905. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, L.; Cai, Y.; Zheng, S.; Yin, Y. A Meta-Surface Antenna Array Decoupling (MAAD) Method for Mutual Coupling Reduction in a MIMO Antenna System. Sci. Rep. 2018, 8, 3152. [Google Scholar] [CrossRef]
- Wu, W.; Zhi, R.; Chen, Y.; Li, H.; Tan, Y.; Liu, G. A Compact Multiband MIMO Antenna for IEEE 802.11 a/b/g/n Applications. Prog. Electromagn. Res. Lett. 2019, 84, 59–65. [Google Scholar] [CrossRef]
- Chaudhari, A.A.; Gupta, R.K. A Simple Tri-Band MIMO Antenna Using a Single Ground Stub. Prog. Electromagn. Res. C 2018, 86, 191–201. [Google Scholar] [CrossRef]
- Rao, P.S.; Kamili, J.B.; Prasad, A.M. Compact Multi-Band MIMO Antenna with Improved Isolation. Prog. Electromagn. Res. M 2017, 62, 199–210. [Google Scholar]
- Fakharian, M.M.; Alibakhshikenari, M.; See, C.H.; Abd-Alhameed, R. A High Gain Multiband Offset MIMO Antenna Based on a Planar Log-Periodic Array for Ku/K-Band Applications. Sci. Rep. 2022, 12, 4044. [Google Scholar] [CrossRef]
- Nezhad, S.M.A.; Hassani, H. Penta-Band Printed Monopole Antenna for MIMO Applications. Prog. Electromagn. Res. C 2018, 84, 241–254. [Google Scholar] [CrossRef]
- Krishnamoorthy, R.; Desai, A.; Patel, R.; Grover, A. 4-Element Compact Triple Band MIMO Antenna for Sub-6 GHz 5G Wireless Applications. Wirel. Netw. 2021, 27, 3747–3759. [Google Scholar] [CrossRef]
- Ojaroudi, P.N.; Jahanbakhsh, B.H.; Al-Yasir, Y.I.; Ullah, A.; Abd-Alhameed, R.A.; Noras, J.M. Multi-Band MIMO Antenna Design with User-Impact Investigation for 4G and 5G Mobile Terminals. Sensors 2019, 19, 456. [Google Scholar] [CrossRef]
- Naidu, P.V.; Saiharanadh, A.; Maheshbabu, D.; Kumar, A.; Vummadisetty, N. Design and Performance Analysis of G-Shaped Compact ACS Fed 4-Port MIMO Antenna for Triple Frequency Band Applications. Prog. Electromagn. Res. C 2021, 112, 55–68. [Google Scholar] [CrossRef]
- Ikram, M.; Nguyen-Trong, N.; Abbosh, A. Multiband MIMO Microwave and Millimeter Antenna System Employing Dual-Function Tapered Slot Structure. IEEE Trans. Antennas Propag. 2019, 67, 5705–5710. [Google Scholar] [CrossRef]
- Nej, S.; Ghosh, A.; Ahmad, S.; Ghaffar, A.; Hussein, M. Compact Quad Band MIMO Antenna Design with Enhanced Gain for Wireless Communications. Sensors 2022, 22, 7143. [Google Scholar] [CrossRef]
- Sharma, D.; Kanaujia, B.K.; Kumar, S. Compact Multi-Standard Planar MIMO Antenna for IoT/WLAN/Sub-6 GHz/X-Band Applications. Wirel. Netw. 2021, 27, 2671–2689. [Google Scholar] [CrossRef]
- Wen, H.; Qi, Y.; Weng, Z.; Li, F.; Fan, J. A Multiband Dual-Polarized Omnidirectional Antenna for 2G/3G/LTE Applications. IEEE Antennas Wirel. Propag. Lett. 2017, 17, 180–183. [Google Scholar] [CrossRef]
- Kumar, S.; Lee, G.H.; Kim, D.H.; Choi, H.C.; Kim, K.W. Dual circularly polarized planar four-port MIMO antenna with wide axial-ratio bandwidth. Sensors 2020, 20, 5610. [Google Scholar] [CrossRef]
- Jamal, M.Y.; Li, M.; Yeung, K.L. Isolation enhancement of closely packed dual circularly polarized MIMO antenna using hybrid technique. IEEE Access 2020, 8, 11241–11247. [Google Scholar] [CrossRef]
- Parbat, R.S.; Tambe, A.R.; Kadu, M.B.; Labade, R.P. Dual polarized triple band 4 × 4 MIMO antenna with novel mutual coupling reduction approach. In Proceedings of the 2015 IEEE Bombay Section Symposium (IBSS), Mumbai, India, 10–11 September 2015; pp. 1–6. [Google Scholar]
- Mohanty, A.; Behera, B.R. CMA assisted 4-port compact MIMO antenna with dual-polarization characteristics. AEU Int. J. Electron. Commun. 2021, 137, 153794. [Google Scholar] [CrossRef]
- Saxena, G.; Awasthi, Y.K.; Jain, P. Four-element pentaband MIMO antenna for multiple wireless applications including dual-band circular polarization characteristics. Int. J. Microw. Wirel. Technol. 2022, 14, 465–476. [Google Scholar] [CrossRef]
- Blanch, S.; Romeu, J.; Corbella, I. Exact representation of antenna system diversity performance from input parameter description. Electron. Lett. 2003, 39, 705–707. [Google Scholar] [CrossRef]
- Hallbjorner, P. The significance of radiation efficiencies when using S-parameters to calculate the received signal correlation from two antennas. IEEE Antennas Wirel. Propag. Lett. 2005, 4, 97–99. [Google Scholar] [CrossRef]
- Schwartz, M.; Bennett, W.R.; Stein, S. Communication Systems and Techniques; McGraw-Hill: New York, NY, USA, 1966. [Google Scholar]
Ref | Antenna Dimensions w × l × h (mm3) | Operating Bands (GHz) | No. of Ports | Polarization (LP/CP) | Isolation (dB) |
---|---|---|---|---|---|
[19] | 50 × 30 × 1.59 | Dual | 2 | LP | 24,27 |
[20] | 38 × 37 × 1.6 | Triple | 2 | LP | 20 |
[21] | 64 × 35 × 1.6 | Multi | 2 | LP | 32.79 |
[22] | 55 × 45 × 1.57 | Quad | 2 | LP | 23.5 |
[23] | 29.5 × 27 × 0.8 | Penta | 2 | LP | 16 |
[24] | -- × -- × 1.6 | Triple | 4 | LP | 16 |
[25] | 150 × 75 × 1.6 | Triple | 4 | LP | 17 |
[26] | 46 × 46 × 1.6 | Triple | 4 | LP | 18 |
[27] | 104 × 104 × 0.5 | Triple | 8 | LP | 16 |
[28] | 80 × 70 × 1.6 | Quad | 4 | LP | 22 |
[29] | 117 × 65 × 0.762 | Penta | 6 | LP | 14.5 |
[33] | 165 × 165 × 1.6 | Triple | 4 | CP | 41 |
[34] | 60 × 60 × 1.6 | Triple | 4 | Dual | 15 |
[35] | 50 × 70 × 0.762 | Penta | 4 | Dual | 17 |
Prop. work | 62 × 62 × 1.6 | Penta | 4 | Dual | 21 |
Parameter | Ws | Ls | Wp | Lp | Wp1 | Lp1 | a | b | g |
---|---|---|---|---|---|---|---|---|---|
Value (mm) | 30 | 30 | 12.5 | 11 | 12 | 8 | 4 | 6 | 0.5 |
Parameter | c | d | g1 | Ws | Ls | Ws1 | Ls1 | rin | rout |
Value (mm) | 8 | 7.5 | 1 | 1 | 2 | 3 | 3 | 2 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ushasree, A.; Agarwal, V. Pentaband Dual-Polarized Antenna for Multiservice Wireless Applications. Computation 2023, 11, 76. https://doi.org/10.3390/computation11040076
Ushasree A, Agarwal V. Pentaband Dual-Polarized Antenna for Multiservice Wireless Applications. Computation. 2023; 11(4):76. https://doi.org/10.3390/computation11040076
Chicago/Turabian StyleUshasree, A., and Vipul Agarwal. 2023. "Pentaband Dual-Polarized Antenna for Multiservice Wireless Applications" Computation 11, no. 4: 76. https://doi.org/10.3390/computation11040076
APA StyleUshasree, A., & Agarwal, V. (2023). Pentaband Dual-Polarized Antenna for Multiservice Wireless Applications. Computation, 11(4), 76. https://doi.org/10.3390/computation11040076