Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = animal-free innovations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 2949 KiB  
Review
Nanocarriers Containing Curcumin and Derivatives for Arthritis Treatment: Mapping the Evidence in a Scoping Review
by Beatriz Yurie Sugisawa Sato, Susan Iida Chong, Nathalia Marçallo Peixoto Souza, Raul Edison Luna Lazo, Roberto Pontarolo, Fabiane Gomes de Moraes Rego, Luana Mota Ferreira and Marcel Henrique Marcondes Sari
Pharmaceutics 2025, 17(8), 1022; https://doi.org/10.3390/pharmaceutics17081022 - 6 Aug 2025
Abstract
Background/Objectives: Curcumin (CUR) is well known for its therapeutic properties, particularly attributed to its antioxidant and anti-inflammatory effects in managing chronic diseases such as arthritis. While CUR application for biomedical purposes is well known, the phytochemical has several restrictions given its poor water [...] Read more.
Background/Objectives: Curcumin (CUR) is well known for its therapeutic properties, particularly attributed to its antioxidant and anti-inflammatory effects in managing chronic diseases such as arthritis. While CUR application for biomedical purposes is well known, the phytochemical has several restrictions given its poor water solubility, physicochemical instability, and low bioavailability. These limitations have led to innovative formulations, with nanocarriers emerging as a promising alternative. For this reason, this study aimed to address the potential advantages of associating CUR with nanocarrier systems in managing arthritis through a scoping review. Methods: A systematic literature search of preclinical (in vivo) and clinical studies was performed in PubMed, Scopus, and Web of Science (December 2024). General inclusion criteria include using CUR or natural derivatives in nano-based formulations for arthritis treatment. These elements lead to the question: “What is the impact of the association of CUR or derivatives in nanocarriers in treating arthritis?”. Results: From an initial 536 articles, 34 were selected for further analysis (31 preclinical investigations and three randomized clinical trials). Most studies used pure CUR (25/34), associated with organic (30/34) nanocarrier systems. Remarkably, nanoparticles (16/34) and nanoemulsions (5/34) were emphasized. The formulations were primarily presented in liquid form (23/34) and were generally administered to animal models through intra-articular injection (11/31). Complete Freund’s Adjuvant (CFA) was the most frequently utilized among the various models to induce arthritis-like joint damage. The findings indicate that associating CUR or its derivatives with nanocarrier systems enhances its pharmacological efficacy through controlled release and enhanced solubility, bioavailability, and stability. Moreover, the encapsulation of CUR showed better results in most cases than in its free form. Nonetheless, most studies were restricted to the preclinical model, not providing direct evidence in humans. Additionally, inadequate information and clarity presented considerable challenges for preclinical evidence, which was confirmed by SYRCLE’s bias detection tools. Conclusions: Hence, this scoping review highlights the anti-arthritic effects of CUR nanocarriers as a promising alternative for improved treatment. Full article
(This article belongs to the Special Issue Advances in Polymer-Based Devices and Platforms for Pain Management)
17 pages, 1714 KiB  
Review
Tissue-Engineered Tracheal Reconstruction
by Se Hyun Yeou and Yoo Seob Shin
Biomimetics 2025, 10(7), 457; https://doi.org/10.3390/biomimetics10070457 - 11 Jul 2025
Viewed by 551
Abstract
Tracheal reconstruction remains a formidable clinical challenge, particularly for long-segment defects that are not amenable to standard surgical resection or primary anastomosis. Tissue engineering has emerged as a promising strategy for restoring the tracheal structure and function through the integration of biomaterials, stem [...] Read more.
Tracheal reconstruction remains a formidable clinical challenge, particularly for long-segment defects that are not amenable to standard surgical resection or primary anastomosis. Tissue engineering has emerged as a promising strategy for restoring the tracheal structure and function through the integration of biomaterials, stem cells, and bioactive molecules. This review provides a comprehensive overview of recent advances in tissue-engineered tracheal grafts, particularly in scaffold design, cellular sources, fabrication technologies, and early clinical experience. Innovations in biomaterial science, three-dimensional printing, and scaffold-free fabrication approaches have broadened the prospects for patient-specific airway reconstruction. However, persistent challenges, including incomplete epithelial regeneration and mechanical instability, have hindered its clinical translation. Future efforts should focus on the design of modular biomimetic scaffolds, the enhancement of immunomodulatory strategies, and preclinical validation using robust large animal models. Sustained interdisciplinary collaboration among surgical, engineering, and biological fields is crucial for advancing tissue-engineered tracheal grafts for routine clinical applications. Within this context, biomimetic approaches, including three-dimensional bioprinting, hybrid materials, and scaffold-free constructs, are gaining prominence as strategies to replicate the trachea’s native architecture and improve graft integration. Full article
(This article belongs to the Special Issue Biomimetic Application on Applied Bioengineering)
Show Figures

Figure 1

20 pages, 1844 KiB  
Review
Causes of and Solutions to Mitochondrial Disorders: A Literature Review
by Vera Belousova, Irina Ignatko, Irina Bogomazova, Elena Sosnova, Svetlana Pesegova, Anastasia Samusevich, Evdokiya Zarova, Madina Kardanova, Oxana Skorobogatova and Anna Maltseva
Int. J. Mol. Sci. 2025, 26(14), 6645; https://doi.org/10.3390/ijms26146645 - 11 Jul 2025
Viewed by 650
Abstract
Mitochondria are currently of great interest to scientists. The role of mitochondrial DNA (mtDNA) mutations has been proven in the genesis of more than 200 pathologies, which are called mitochondrial disorders. Therefore, the study of mitochondria and mitochondrial DNA is of great interest [...] Read more.
Mitochondria are currently of great interest to scientists. The role of mitochondrial DNA (mtDNA) mutations has been proven in the genesis of more than 200 pathologies, which are called mitochondrial disorders. Therefore, the study of mitochondria and mitochondrial DNA is of great interest not only for understanding cell biology but also for the treatment and prevention of many mitochondria-related pathologies. There are two main trends of mitochondrial therapy: mitochondrial replacement therapy (MRT) and mitochondrial transplantation therapy (MTT). Also, there are two main categories of MRT based on the source of mitochondria. The heterologous approach includes the following methods: pronuclear transfer technique (PNT), maternal spindle transfer (MST), Polar body genome transfer (PBT) and germinal vesicle transfer (GVT). An alternative approach is the autologous method. One promising autologous technique was the autologous germline mitochondrial energy transfer (AUGMENT), which involved isolating oogonial precursor cells from the patient, extracting their mitochondria, and then injecting them during ICSI. Transmission of defective mtDNA to the next generation can also be prevented by using these approaches. The development of a healthy child, free from genetic disorders, and the prevention of the occurrence of lethal mitochondrial disorders are the main tasks of this method. However, a number of moral, social, and cultural objections have restricted its exploration, since humanity first encountered the appearance of a three-parent baby. Therefore, this review summarizes the causes of mitochondrial diseases, the various methods involved in MRT and the results of their application. In addition, a new technology, mitochondrial transplantation therapy (MTT), is currently being actively studied. MTT is an innovative approach that involves the introduction of healthy mitochondria into damaged tissues, leading to the replacement of defective mitochondria and the restoration of their function. This technology is being actively studied in animals, but there are also reports of its use in humans. A bibliographic review in PubMed and Web of Science databases and a search for relevant clinical trials and news articles were performed. A total of 81 publications were selected for analysis. Methods of MRT procedures were reviewed, their risks described, and the results of their use presented. Results of animal studies of the MTT procedure and attempts to apply this therapy in humans were reviewed. MRT is an effective way to minimize the risk of transmission of mtDNA-related diseases, but it does not eliminate it completely. There is a need for global legal regulation of MRT. MTT is a new and promising method of treating damaged tissues by injecting the body’s own mitochondria. The considered methods are extremely good in theory, but their clinical application in humans and the success of such therapy remain a question for further study. Full article
(This article belongs to the Special Issue Mitochondrial Biology and Reactive Oxygen Species)
Show Figures

Figure 1

21 pages, 1061 KiB  
Review
Emerging Frontiers in Zebrafish Embryonic and Adult-Derived Cell Lines
by Álvaro J. Arana, Laura González-Llera, Antón Barreiro-Iglesias and Laura Sánchez
Int. J. Mol. Sci. 2025, 26(9), 4351; https://doi.org/10.3390/ijms26094351 - 3 May 2025
Viewed by 1057
Abstract
Zebrafish (Danio rerio) has become a pivotal vertebrate model in biomedical research, renowned for its genetic similarity to humans, optical transparency, rapid embryonic development, and amenability to experimental manipulation. In recent years, the derivation of cell lines from zebrafish embryos has [...] Read more.
Zebrafish (Danio rerio) has become a pivotal vertebrate model in biomedical research, renowned for its genetic similarity to humans, optical transparency, rapid embryonic development, and amenability to experimental manipulation. In recent years, the derivation of cell lines from zebrafish embryos has unlocked new possibilities for in vitro studies across developmental biology, toxicology, disease modeling, and genetic engineering. These embryo-derived cultures offer scalable, reproducible, and ethically favorable alternatives to in vivo approaches, enabling high-throughput screening and mechanistic exploration under defined conditions. This review provides a comprehensive overview of protocols for establishing and maintaining zebrafish embryonic cell lines, emphasizing culture conditions, pluripotency features, transfection strategies, and recent innovations such as genotype-defined mutant lines generated via CRISPR/Cas9 and feeder-free systems. We also highlight emerging applications in oncology, regenerative medicine, and functional genomics, positioning zebrafish cell lines as versatile platforms bridging animal models and next-generation in vitro systems. Its continued optimization holds promise for improved reproducibility, reduced animal use, and expanded translational impact in biomedical research. Full article
(This article belongs to the Special Issue The Zebrafish Model in Animal and Human Health Research, 2nd Edition)
Show Figures

Figure 1

36 pages, 1898 KiB  
Review
Prospects for the Use of Amaranth Grain in the Production of Functional and Specialized Food Products
by Dana Toimbayeva, Saule Saduakhasova, Svetlana Kamanova, Amirsana Kiykbay, Sayagul Tazhina, Indira Temirova, Marat Muratkhan, Bakhyt Shaimenova, Linara Murat, Dina Khamitova and Gulnazym Ospankulova
Foods 2025, 14(9), 1603; https://doi.org/10.3390/foods14091603 - 1 May 2025
Viewed by 1842
Abstract
This review is dedicated to exploring recent advancements in the study of amaranth grain and presents research primarily on Amaranthus species such as Amaranthus cruentus, Amaranthus hypochondriacus, and Amaranthus caudatus, and to a lesser extent Amaranthus hybridus, Amaranthus mantegazzianus [...] Read more.
This review is dedicated to exploring recent advancements in the study of amaranth grain and presents research primarily on Amaranthus species such as Amaranthus cruentus, Amaranthus hypochondriacus, and Amaranthus caudatus, and to a lesser extent Amaranthus hybridus, Amaranthus mantegazzianus, Amaranthus muricatus, Amaranthus tuberculatus, Amaranthus viridis, Amaranthus spinosus, and Amaranthus tenuifoliu. Amaranth (Amaranthus spp.) is a promising, high-yield pseudocereal crop with significant commercial potential for developing functional food products. It contains a wide range of bioactive compounds, including squalene, tocopherols, phenolic compounds, phytates, and vitamins, which possess important physiological properties. Amaranth grain is characterized by high levels of starch, proteins, minerals, and dietary fiber. Moreover, amaranth proteins are distinguished by a balanced amino acid composition and exhibit greater resistance to external factors compared to animal-derived proteins. Grains of amaranth are free of gliadin, making it a valuable nutritional source for individuals with celiac disease, an immune-mediated disorder. Unlike traditional cereals, where prolamins and glutelins dominate the protein composition, the proteins of pseudocereals like amaranth primarily consist of albumins and globulins. The processing methods of amaranth grain influence their quantitative and qualitative composition, often significantly improving their physicochemical, antioxidant, functional, and rheological properties. This work provides a detailed analysis of amaranth’s chemical composition and bioactive components, along with its evaluation of therapeutic and preventive properties. Amaranth protein fractions (albumin, globulin, and glutelin) and squalene exhibit increased antioxidant activity, contributing to notable resistance to radiation and X-ray exposure. Bioactive compounds such as phytol, α-tocopherol, and a lunasin-like peptide (AhLun) with potential anticancer properties have also been identified in amaranth. Furthermore, six bioactive peptides were isolated and identified from amaranth, which, according to predictive models, demonstrate a high capacity to inhibit angiotensin-converting enzyme (ACE) activity, suggesting potential hypotensive effects. Certain amaranth peptides are considered promising functional food ingredients for the prevention and comprehensive treatment of conditions such as diabetes, inflammatory bowel diseases, hypercholesterolemia, cardiovascular diseases, and obesity. Amaranthus spp. and its processed products hold significant interest for the development of innovative food products, contributing to the expansion of their range and enhancement of nutritional value. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

30 pages, 6862 KiB  
Review
Advances in α-Lipoic Acid for Disease Prevention: Mechanisms and Therapeutic Insights
by Yonglian Wang, Shuxia Jiang, Yaoxuan He, Ping Pang and Hongli Shan
Molecules 2025, 30(9), 1972; https://doi.org/10.3390/molecules30091972 - 29 Apr 2025
Cited by 1 | Viewed by 1577
Abstract
α-Lipoic acid (ALA) is a naturally occurring compound with diverse biological functions, widely distributed in animal and plant tissues. It has attracted considerable attention due to its versatile therapeutic potential. However, despite these promising prospects, the clinical application of ALA remains limited by [...] Read more.
α-Lipoic acid (ALA) is a naturally occurring compound with diverse biological functions, widely distributed in animal and plant tissues. It has attracted considerable attention due to its versatile therapeutic potential. However, despite these promising prospects, the clinical application of ALA remains limited by its low bioavailability and chemical instability and an incomplete understanding of its multifaceted mechanisms across various diseases. This review provides a comprehensive overview of the biochemical properties of ALA, including its direct free-radical-scavenging activity, regeneration of endogenous antioxidants, chelation of metal ions, and modulation of inflammatory responses. We also highlight the current evidence regarding ALA’s therapeutic roles and efficacy in major diseases, such as neurodegenerative disorders, lung diseases, cardiovascular diseases, and diabetes. Furthermore, recent advancements and innovative strategies in ALA-based derivatives and drug-delivery systems are summarized, emphasizing their potential to address complex diseases and the necessity for further translational studies. This review aims to provide a theoretical foundation for the rational design of ALA-based therapies, thereby supporting future clinical applications and the optimization of therapeutic strategies. Full article
Show Figures

Figure 1

20 pages, 1979 KiB  
Article
Exploring College Students’ Acceptance of and Behavioral Intentions Toward Different Sorghum-Based Foods
by Oak-Hee Park, Andrea Sosa-Holwerda, Surya Raj Niraula, Krithika Maki, Leslie Thompson and Naima Moustaid-Moussa
Foods 2025, 14(6), 1065; https://doi.org/10.3390/foods14061065 - 20 Mar 2025
Viewed by 850
Abstract
Sorghum is a nutritious, healthy, gluten-free whole grain, with the United States (U.S.) leading its production globally. While sorghum is consumed worldwide, it is mainly used for animal feed and biofuel in the U.S. Organoleptic characteristics and consumers’ perceptions determine food acceptance and [...] Read more.
Sorghum is a nutritious, healthy, gluten-free whole grain, with the United States (U.S.) leading its production globally. While sorghum is consumed worldwide, it is mainly used for animal feed and biofuel in the U.S. Organoleptic characteristics and consumers’ perceptions determine food acceptance and eating behavior. Therefore, this study aimed to investigate the acceptance of and eating and purchase intentions toward sorghum-based foods among college students in a southern university in the U.S. Eighty-three students participated in a series of sensory evaluations using two sets of four sorghum samples each and a 15 min break. Seven sensory attributes were evaluated with a nine-point hedonic scale, and a five-point scale was used for eating and purchase intentions. To assess the panelists’ acceptance, the overall acceptance scale score (range: 1–9) was normalized (range: 0–100) and used for analyses. Spiced sorghum cookies (77.95 ± 14.23) had the highest acceptance, followed by sorghum shrimp grits (74.51 ± 19.42). Overall acceptance, eating intention, and purchase intention were strongly associated across all food items, although the strength differed by food type. Sorghum-based foods were accepted despite the participants’ lack of exposure to sorghum and its null consumption. These outcomes will help to develop innovative sorghum-based foods to facilitate sorghum consumption and benefit consumer health in the U.S. Full article
Show Figures

Figure 1

28 pages, 1047 KiB  
Review
Advances in Liposomal Interleukin and Liposomal Interleukin Gene Therapy for Cancer: A Comprehensive Review of Preclinical Studies
by Eman A. Kubbara, Ahmed Bolad and Husam Malibary
Pharmaceutics 2025, 17(3), 383; https://doi.org/10.3390/pharmaceutics17030383 - 18 Mar 2025
Viewed by 1403
Abstract
Background: Preclinical studies on liposomal interleukin (IL) therapy demonstrate considerable promise in cancer treatment. This review explores the achievements, challenges, and future potential of liposomal IL encapsulation, focusing on preclinical studies. Methods: A structured search was conducted using the PubMed and Web of [...] Read more.
Background: Preclinical studies on liposomal interleukin (IL) therapy demonstrate considerable promise in cancer treatment. This review explores the achievements, challenges, and future potential of liposomal IL encapsulation, focusing on preclinical studies. Methods: A structured search was conducted using the PubMed and Web of Science databases with the following search terms and Boolean operators: (“liposomal interleukin” OR “liposome-encapsulated interleukin”) AND (“gene therapy” OR “gene delivery”) AND (“cancer” OR “tumor” OR “oncology”) AND (“pre-clinical studies” OR “animal models” OR “in vitro studies”. Results: Liposomal IL-2 formulations are notable for enhancing delivery and retention at tumor sites. Recombinant human interleukin (rhIL-2) adsorbed onto small liposomes (35–50 nm) substantially reduces metastases in murine models. Hepatic metastasis models demonstrate superior efficacy of liposomal IL-2 over free IL-2 by enhancing immune responses, particularly in the liver. Localized delivery strategies, including nebulized liposomal IL-2 in canine pulmonary metastases and intrathoracic administration in murine sarcoma models, reduce systemic toxicity while promoting immune activation and tumor regression. Liposomal IL gene therapy, delivering cytokine genes directly to tumor sites, represents a notable advancement. Combining IL-2 gene therapy with other cytokines, including IL-6 or double-stranded RNA adjuvants, synergistically enhances macrophage and T-cell activation. Liposomal IL-4, IL-6, and IL-21 therapies show potential across various tumor types. Pairing liposomal IL-2 with chemotherapy or immune agents improves remission and survival. Innovative strategies, including PEGylation and ligand-targeted systems, optimize delivery, release, and therapeutic outcomes. Conclusions: Utilizing immune-stimulatory ILs through advanced liposomal delivery and gene therapy establishes a strong foundation for advancing cancer immunotherapy. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

25 pages, 363 KiB  
Review
Exploring the Potential of Non-Cellular Orthobiologic Products in Regenerative Therapies for Stifle Joint Diseases in Companion Animals
by Maria Guerra-Gomes, Carla Ferreira-Baptista, Joana Barros, Sofia Alves-Pimenta, Pedro Gomes and Bruno Colaço
Animals 2025, 15(4), 589; https://doi.org/10.3390/ani15040589 - 18 Feb 2025
Viewed by 1243
Abstract
Stifle joint diseases present a significant challenge in companion animals that often lead to hind limb lameness, with osteoarthritis being a prevalent degenerative condition causing pain and reduced mobility. Regenerative medicine offers a promising avenue for improving treatment outcomes, with a range of [...] Read more.
Stifle joint diseases present a significant challenge in companion animals that often lead to hind limb lameness, with osteoarthritis being a prevalent degenerative condition causing pain and reduced mobility. Regenerative medicine offers a promising avenue for improving treatment outcomes, with a range of emerging therapies showing potential to alleviate symptoms and promote joint health. Among these, hyaluronic acid and platelet-rich plasma have been widely used as intra-articular treatments to enhance joint lubrication, reduce inflammation, and provide symptomatic relief. Interleukin-1 receptor antagonist protein, autologous conditioned serum, and autologous protein solution represent the next generation of regenerative therapies, offering more disease-modifying effects by inhibiting key mediators of joint inflammation. More recently, the MSC-derived secretome has emerged as an innovative, cell-free approach that leverages the diverse bioactive factors secreted by MSCs to support tissue repair and modulate inflammation. This review highlights the evidence base behind these non-cellular orthobiologic treatments for stifle joint disease, aiming to inform veterinary practitioners and owners about available options and their efficacy in supporting conventional treatments. Full article
(This article belongs to the Section Companion Animals)
26 pages, 5386 KiB  
Article
Four Years of Promising Trap–Neuter–Return (TNR) in Córdoba, Spain: A Scalable Model for Urban Feline Management
by Octavio P. Luzardo, Mercedes Vara-Rascón, Agnès Dufau, Emma Infante and María del Mar Travieso-Aja
Animals 2025, 15(4), 482; https://doi.org/10.3390/ani15040482 - 8 Feb 2025
Cited by 2 | Viewed by 5568
Abstract
Urban free-roaming cat populations (or community cats, according to the Spanish legislation) present complex challenges, including public health risks, coexistence conflicts with residents, animal welfare, and threats to biodiversity conservation. In 2020, Córdoba, Spain, initiated one of the most extensive citywide trap–neuter–return (TNR) [...] Read more.
Urban free-roaming cat populations (or community cats, according to the Spanish legislation) present complex challenges, including public health risks, coexistence conflicts with residents, animal welfare, and threats to biodiversity conservation. In 2020, Córdoba, Spain, initiated one of the most extensive citywide trap–neuter–return (TNR) programs, incorporating 225 groups of cats (usually named colonies) into a meticulously structured management framework. Over four years, the program stabilized cat populations, achieving 95% sterilization coverage and effectively limiting population growth despite external challenges, including abandonment, influxes from unmanaged areas, and compensatory effects. Although the overall population showed a modest decline of 2.68%, this outcome reflects not only the recent inclusion of numerous colonies still undergoing stabilization but also the prevention of an estimated 70% population growth without intervention, as projected by our population viability analysis (PVA). Key results highlight the program’s cost-effectiveness, with an average annual cost of EUR 0.62 per person. The long-term projections from a population viability analysis (PVA) using demographic modeling suggest a potential 55% population reduction by 2028, contingent on sustained efforts. The program’s integration of citizen science, systematic data collection, and adaptive management demonstrates its scalability and replicability as a model for urban and peri-urban feline management globally. Its significance lies not only in its scope and scale but also in demonstrating the ethical and practical feasibility of large-scale TNR initiatives in urban contexts. Córdoba’s program, which predates Spain’s Animal Welfare Law 7/2023 mandating structured feline colony management plans, demonstrates a pioneering framework for compliance and innovation in urban animal management. These findings underscore the critical role of sustained interventions, community collaboration, and legal frameworks in ensuring long-term success and addressing global challenges in urban animal welfare and biodiversity conservation. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

18 pages, 1183 KiB  
Review
The Global Challenge of Campylobacter: Antimicrobial Resistance and Emerging Intervention Strategies
by Zubeiru Bukari, Toyin Emmanuel, Jude Woodward, Richard Ferguson, Martha Ezughara, Nikhil Darga and Bruno Silvester Lopes
Trop. Med. Infect. Dis. 2025, 10(1), 25; https://doi.org/10.3390/tropicalmed10010025 - 16 Jan 2025
Cited by 4 | Viewed by 4106
Abstract
Antimicrobial resistance (AMR) in Campylobacter species, particularly C. jejuni and C. coli, poses a significant public health threat. These bacteria, which are commonly found in livestock, poultry, companion animals, and wildlife, are the leading causes of foodborne illnesses, often transmitted through contaminated [...] Read more.
Antimicrobial resistance (AMR) in Campylobacter species, particularly C. jejuni and C. coli, poses a significant public health threat. These bacteria, which are commonly found in livestock, poultry, companion animals, and wildlife, are the leading causes of foodborne illnesses, often transmitted through contaminated poultry. Extensive exposure to antibiotics in human and veterinary medicine creates selection pressure, driving resistance through mechanisms such as point mutations, horizontal gene transfer, and efflux pumps. Resistance to fluoroquinolones, macrolides, and tetracyclines complicates treatment and increases the risk of severe infections. Drug-resistant Campylobacter is transmitted to humans via contaminated food, water, and direct contact with animals, highlighting its zoonotic potential. Addressing this challenge requires effective interventions. Pre-harvest strategies like biosecurity and immune-based methods reduce bacterial loads on farms, while post-harvest measures, including carcass decontamination and freezing, limit contamination. Emerging approaches, such as bacteriocins and natural antimicrobials, offer chemical-free alternatives. Integrated, multidisciplinary interventions across the food chain are essential to mitigate AMR transmission and enhance food safety. Sustainable agricultural practices, antimicrobial stewardship, and innovative solutions are critical to curbing Campylobacter resistance and protecting global public health. Our review examines the dynamics of antimicrobial resistance in Campylobacter and presents current strategies to mitigate Campylobacter-related AMR, offering valuable insights for antimicrobial control in the poultry industry. Full article
Show Figures

Figure 1

25 pages, 456 KiB  
Article
Consortium of Lactobacillus crispatus 2029 and Ligilactobacillus salivarius 7247 Strains Shows In Vitro Bactericidal Effect on Campylobacter jejuni and, in Combination with Prebiotic, Protects Against Intestinal Barrier Dysfunction
by Vyacheslav M. Abramov, Igor V. Kosarev, Andrey V. Machulin, Evgenia I. Deryusheva, Tatiana V. Priputnevich, Alexander N. Panin, Irina O. Chikileva, Tatiana N. Abashina, Ashot M. Manoyan, Olga E. Ivanova, Tigran T. Papazyan, Ilia N. Nikonov, Nataliya E. Suzina, Vyacheslav G. Melnikov, Valentin S. Khlebnikov, Vadim K. Sakulin, Vladimir A. Samoilenko, Alexey B. Gordeev, Gennady T. Sukhikh, Vladimir N. Uversky and Andrey V. Karlyshevadd Show full author list remove Hide full author list
Antibiotics 2024, 13(12), 1143; https://doi.org/10.3390/antibiotics13121143 - 28 Nov 2024
Cited by 2 | Viewed by 2165
Abstract
Background/Objectives: Campylobacter jejuni (CJ) is the etiological agent of the world’s most common intestinal infectious food-borne disease, ranging from mild symptoms to fatal outcomes. The development of innovative synbiotics that inhibit the adhesion and reproduction of multidrug-resistant (MDR) CJ in animals and [...] Read more.
Background/Objectives: Campylobacter jejuni (CJ) is the etiological agent of the world’s most common intestinal infectious food-borne disease, ranging from mild symptoms to fatal outcomes. The development of innovative synbiotics that inhibit the adhesion and reproduction of multidrug-resistant (MDR) CJ in animals and humans, thereby preserving intestinal homeostasis, is relevant. We have created a synbiotic based on the consortium of Lactobacillus crispatus 2029 (LC2029), Ligilactobacillus salivarius 7247 (LS7247), and a mannan-rich prebiotic (Actigen®). The purpose of this work was to study the in vitro anti-adhesive and antagonistic activities of the created synbiotic against MDR CJ strains, along with its role in preventing intestinal barrier dysfunction, which disrupts intestinal homeostasis. Methods: A complex of microbiological, immunological, and molecular biological methods was used. The ability of the LC2029 and LS7247 consortium to promote intestinal homeostasis in vitro was assessed by the effectiveness of controlling CJ-induced TLR4 activation, secretion of pro-inflammatory cytokines, development of intestinal barrier dysfunction, and production of intestinal alkaline phosphatase (IAP). Results: All MDR CJ strains showed marked adhesion to human Caco-2, pig IPEC-J2, chicken CPCE, and bovine BPCE enterocytes. For the first time, we found that the prebiotic and cell-free culture supernatant (CFS) from the consortium of LC2029 and LS7247 strains exhibit an additive effect in inhibiting the adhesion of MDR strains of CJ to human and animal enterocytes. CFS from the LC2029 and LS7247 consortium increased the permeability of the outer and inner membranes of CJ cells, which led to extracellular leakage of ATP and provided access to the peptidoglycan of the pathogen for the peptidoglycan-degrading bacteriocins nisin and enterolysin A produced by LS7247. The LC2029 and LS7247 consortium showed a bactericidal effect on CJ strains. Co-cultivation of the consortium with CJ strains resulted in a decrease in the viability of the pathogen by 6 log. CFS from the LC2029 and LS7247 consortium prevented the growth of CJ-induced TLR4 mRNA expression in enterocytes. The LC2029 and LS7247 consortium inhibited a CJ-induced increase in IL-8 and TNF-α production in enterocytes, prevented CJ-induced intestinal barrier dysfunction, maintained the transepithelial electrical resistance of the enterocyte monolayers, and prevented an increase in intestinal paracellular permeability and zonulin secretion. CFS from the consortium stimulated IAP mRNA expression in enterocytes. The LC2029 and LS7247 consortium and the prebiotic Actigen represent a new synergistic synbiotic with anti-CJ properties that prevents intestinal barrier dysfunction and preserves intestinal homeostasis. Conclusions: These data highlight the potential of using a synergistic synbiotic as a preventive strategy for creating feed additives and functional nutrition products based on it to combat the prevalence of campylobacteriosis caused by MDR strains in animals and humans. Full article
26 pages, 72430 KiB  
Article
Interactive Mesh Sculpting with Arbitrary Topologies in Head-Mounted VR Environments
by Xiaoqiang Zhu and Yifei Yang
Mathematics 2024, 12(15), 2428; https://doi.org/10.3390/math12152428 - 5 Aug 2024
Cited by 2 | Viewed by 2240
Abstract
Shape modeling is a dynamic area in computer graphics with significant applications in computer-aided design, animation, architecture, and entertainment. Virtual sculpting, a key paradigm in free-form modeling, has traditionally been performed on desktop computers where users manipulate meshes with controllers and view the [...] Read more.
Shape modeling is a dynamic area in computer graphics with significant applications in computer-aided design, animation, architecture, and entertainment. Virtual sculpting, a key paradigm in free-form modeling, has traditionally been performed on desktop computers where users manipulate meshes with controllers and view the models on two-dimensional displays. However, the advent of Extended Reality (XR) technology has ushered in immersive interactive experiences, expanding the possibilities for virtual sculpting across various environments. A real-time virtual sculpting system implemented in a Virtual Reality (VR) setting is introduced in this paper, utilizing quasi-uniform meshes as the foundational structure. In our innovative sculpting system, we design an integrated framework encompassing a surface selection algorithm, mesh optimization technique, mesh deformation strategy, and topology fusion methodology, which are all tailored to meet the needs of the sculpting process. The universal, user-friendly sculpting tools designed to support free-form topology are offered in this system, ensuring that the meshes remain watertight, manifold, and free from self-intersections throughout the sculpting process. The models produced are versatile and suitable for use in diverse fields such as gaming, art, and education. Experimental results confirm the system’s real-time performance and universality, highlighting its user-centric design. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

16 pages, 690 KiB  
Perspective
Artificial Intelligence as a Replacement for Animal Experiments in Neurology: Potential, Progress, and Challenges
by Thorsten Rudroff
Neurol. Int. 2024, 16(4), 805-820; https://doi.org/10.3390/neurolint16040060 - 29 Jul 2024
Cited by 10 | Viewed by 7859
Abstract
Animal experimentation has long been a cornerstone of neurology research, but it faces growing scientific, ethical, and economic challenges. Advances in artificial intelligence (AI) are providing new opportunities to replace animal testing with more human-relevant and efficient methods. This article explores the potential [...] Read more.
Animal experimentation has long been a cornerstone of neurology research, but it faces growing scientific, ethical, and economic challenges. Advances in artificial intelligence (AI) are providing new opportunities to replace animal testing with more human-relevant and efficient methods. This article explores the potential of AI technologies such as brain organoids, computational models, and machine learning to revolutionize neurology research and reduce reliance on animal models. These approaches can better recapitulate human brain physiology, predict drug responses, and uncover novel insights into neurological disorders. They also offer faster, cheaper, and more ethical alternatives to animal experiments. Case studies demonstrate AI’s ability to accelerate drug discovery for Alzheimer’s, predict neurotoxicity, personalize treatments for Parkinson’s, and restore movement in paralysis. While challenges remain in validating and integrating these technologies, the scientific, economic, practical, and moral advantages are driving a paradigm shift towards AI-based, animal-free research in neurology. With continued investment and collaboration across sectors, AI promises to accelerate the development of safer and more effective therapies for neurological conditions while significantly reducing animal use. The path forward requires the ongoing development and validation of these technologies, but a future in which they largely replace animal experiments in neurology appears increasingly likely. This transition heralds a new era of more humane, human-relevant, and innovative brain research. Full article
(This article belongs to the Collection Advances in Neurodegenerative Diseases)
Show Figures

Figure 1

30 pages, 6481 KiB  
Article
Enhanced Antibacterial Activity of Clindamycin Using Molecularly Imprinted Polymer Nanoparticles Loaded with Polyurethane Nanofibrous Scaffolds for the Treatment of Acne Vulgaris
by Sammar Fathy Elhabal, Rehab Abdelmonem, Rasha Mohamed El Nashar, Mohamed Fathi Mohamed Elrefai, Ahmed Mohsen Elsaid Hamdan, Nesreen A. Safwat, Mai S. Shoela, Fatma E. Hassan, Amira Rizk, Soad L. Kabil, Nagla Ahmed El-Nabarawy, Amal Anwar Taha and Mohamed El-Nabarawi
Pharmaceutics 2024, 16(7), 947; https://doi.org/10.3390/pharmaceutics16070947 - 17 Jul 2024
Cited by 17 | Viewed by 3276
Abstract
Acne vulgaris, a prevalent skin condition, arises from an imbalance in skin flora, fostering bacterial overgrowth. Addressing this issue, clindamycin molecularly imprinted polymeric nanoparticles (Clin-MIP) loaded onto polyurethane nanofiber scaffolds were developed for acne treatment. Clin-MIP was synthesized via precipitation polymerization using methacrylic [...] Read more.
Acne vulgaris, a prevalent skin condition, arises from an imbalance in skin flora, fostering bacterial overgrowth. Addressing this issue, clindamycin molecularly imprinted polymeric nanoparticles (Clin-MIP) loaded onto polyurethane nanofiber scaffolds were developed for acne treatment. Clin-MIP was synthesized via precipitation polymerization using methacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA), and azoisobutyronitrile (AIBN) as functional monomers, crosslinkers, and free-radical initiators, respectively. MIP characterization utilized Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) before being incorporated into polyurethane nanofibers through electrospinning. Further analysis involved FTIR, scanning electron microscopy (SEM), in vitro release studies, and an ex vivo study. Clin-MIP showed strong antibacterial activity against S. aureus, with inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 0.39 and 6.25 μg/mL, respectively. It significantly dropped the bacterial count from 1 × 108 to 39 × 101 CFU/mL in vivo and has bactericidal activity within 180 min of incubation in vitro. The pharmacodynamic and histopathology studies revealed a significant decrease in infected animal skin inflammation, epidermal hypertrophy, and congestion upon treatment with Clin-MIP polyurethane nanofiber and reduced pro-inflammatory cytokines (NLRP3, TNF-α, IL-1β, and IL-6) conducive to acne healing. Consequently, the recently created Clin-MIP polyurethane nanofibrous scaffold. This innovative approach offers insight into creating materials with several uses for treating infectious wounds caused by acne. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Drug Delivery)
Show Figures

Graphical abstract

Back to TopTop