Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = analysis of the causes of avalanches

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 879 KB  
Article
Performance Bounds of Ranging Precision in SPAD-Based dToF LiDAR
by Hao Wu, Yingyu Wang, Shiyi Sun, Lijie Zhao, Limin Tong, Linjie Shen and Jiang Zhu
Sensors 2025, 25(19), 6184; https://doi.org/10.3390/s25196184 - 6 Oct 2025
Viewed by 1362
Abstract
LiDAR with direct time-of-flight (dToF) technology based on single-photon avalanche diode detectors (SPADs) has been widely adopted in various applications. However, a comprehensive theoretical understanding of its fundamental ranging performance bounds—particularly the degradation caused by pile-up effects due to system dead time and [...] Read more.
LiDAR with direct time-of-flight (dToF) technology based on single-photon avalanche diode detectors (SPADs) has been widely adopted in various applications. However, a comprehensive theoretical understanding of its fundamental ranging performance bounds—particularly the degradation caused by pile-up effects due to system dead time and the potential benefits of photon-number-resolving detectors—remains incomplete and has not been systematically established in prior work. In this work, we present the first theoretical derivation of the Cramér–Rao lower bound (CRLB) for dToF systems explicitly accounting for dead time effects, generalize the analysis to SPADs with photon-number-resolving capabilities, and further validate the results through Monte Carlo simulations and maximum likelihood estimation. Our analysis reveals that pile-up not only reduces the information contained within individual ToF but also introduces a previously overlooked statistical coupling between distance and photon flux rate, further degrading ranging precision. The derived CRLB enables the determination of the optimal optical photon flux, laser pulse width (with FWHM of 0.56τ), and ToF quantization resolution that yield the best achievable ranging precision, showing that an optimal precision of approximately 0.53τ/N remains theoretically achievable, where τ is TDC resolution and N is the number of laser pulses. The analysis further quantifies the limited performance improvement enabled by increased photon-number resolution, which exhibits rapidly diminishing returns. Overall, these findings establish a unified theoretical framework for understanding the fundamental limits of SPAD-based dToF LiDAR, filling a gap left by earlier studies and providing concrete design guidelines for the selection of optimal operating points. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

12 pages, 2558 KB  
Article
Degradation and Damage Effects in GaN HEMTs Induced by Low-Duty-Cycle High-Power Microwave Pulses
by Dong Xing, Hongxia Liu, Mengwei Su, Xingjun Liu and Chang Liu
Micromachines 2025, 16(10), 1137; https://doi.org/10.3390/mi16101137 - 1 Oct 2025
Cited by 1 | Viewed by 1012
Abstract
This study investigates the effects and mechanisms of high-power microwave on GaN HEMTs. By injecting high-power microwave from the gate into the device and employing techniques such as DC characteristics, gate-lag effect analysis, low-frequency noise measurement, and focused ion beam (FIB) cross-sectional inspection, [...] Read more.
This study investigates the effects and mechanisms of high-power microwave on GaN HEMTs. By injecting high-power microwave from the gate into the device and employing techniques such as DC characteristics, gate-lag effect analysis, low-frequency noise measurement, and focused ion beam (FIB) cross-sectional inspection, a systematic investigation was conducted on GaN HEMT degradation and failure behaviors under conditions of a low duty cycle and narrow pulse width. Experimental results indicate that under relatively low-power HPM stress, GaN HEMT exhibits only a slight threshold voltage shift and a modest increase in transconductance, attributed to the passivation of donor-like defects near the gate. However, when the injected power exceeds 43 dBm, the electric field beneath the gate triggers avalanche breakdown, forming a leakage path and causing localized heat accumulation, which ultimately leads to permanent device failure. This study reveals the physical failure mechanisms of GaN HEMTs under low-duty-cycle HPM stress and provides important guidance for the reliability design and hardening protection of RF devices. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

21 pages, 24540 KB  
Article
Analysis of Dynamic Response Characteristics and Failure Pattern of Rock Slopes Containing X-Joints and Underlying Weak Interlayers
by He Meng, Yanjun Shang, Liyun Zhou, Yangfan Li, Xuetao Yi and Qingsen Meng
Appl. Sci. 2025, 15(18), 10209; https://doi.org/10.3390/app151810209 - 19 Sep 2025
Viewed by 650
Abstract
Under the complex geological structural stress of the Western Himalayan syntaxis, the widespread distribution of hard and brittle rocks (such as sandstone and limestone) makes them prone to the formation of conjugate joints, also known as X-joints. These joints create weak structural planes [...] Read more.
Under the complex geological structural stress of the Western Himalayan syntaxis, the widespread distribution of hard and brittle rocks (such as sandstone and limestone) makes them prone to the formation of conjugate joints, also known as X-joints. These joints create weak structural planes in the slope rock mass, and when combined with weak interlayers within the slope, they result in a complex dynamic response and hazard situation in this region, which is further exacerbated by frequent seismic activity. This poses a serious threat to the planning, construction, and safe operation of the Belt and Road Initiative. To study the slope vibration response and instability mechanisms under these conditions, we conducted a shaking table test using the Iymek avalanche as a case study and performed Hilbert–Huang Transform (HHT) analysis. We also compared the results of the shaking table test on slope models without X-joints but containing weak interlayers. The findings show that the presence of X-joints leads to an earlier onset of plastic failure in the slope. During the failure development, X-joints cause stress concentration and the diversification of stress redistribution paths, delaying energy release. Ultimately, the avalanche failure mode in the X-joint slopes is more dispersed compared to the landslide failure mode in the model without X-joints. At the toe of the slope beneath the weak interlayer, low-frequency seismic waves can cause a significant amplification of acceleration, and the weak interlayer is often the shear outlets of the slope. These findings provide new insights into the seismic failure evolution of jointed slopes with weak interlayers and offer practical references for seismic hazard mitigation in mountainous infrastructure. Full article
Show Figures

Figure 1

26 pages, 23518 KB  
Article
Avalanche Hazard Dynamics and Causal Analysis Along China’s G219 Corridor: A Case Study of the Wenquan–Khorgas Section
by Xuekai Wang, Jie Liu, Qiang Guo, Bin Wang, Zhiwei Yang, Qiulian Cheng and Haiwei Xie
Atmosphere 2025, 16(7), 817; https://doi.org/10.3390/atmos16070817 - 4 Jul 2025
Cited by 1 | Viewed by 1067
Abstract
Investigating avalanche hazards is a fundamental preliminary task in avalanche research. This work is critically important for establishing avalanche warning systems and designing mitigation measures. Primary research data originated from field investigations and UAV aerial surveys, with avalanche counts and timing identified through [...] Read more.
Investigating avalanche hazards is a fundamental preliminary task in avalanche research. This work is critically important for establishing avalanche warning systems and designing mitigation measures. Primary research data originated from field investigations and UAV aerial surveys, with avalanche counts and timing identified through image interpretation. Snowpack properties were primarily acquired via in situ field testing within the study area. Methodologically, statistical modeling and RAMMS::AVALANCHE simulations revealed spatiotemporal and dynamic characteristics of avalanches. Subsequent application of the Certainty Factor (CF) model and sensitivity analysis determined dominant controlling factors and quantified zonal influence intensity for each parameter. This study, utilizing field reconnaissance and drone aerial photography, identified 86 avalanche points in the study area. We used field tests and weather data to run the RAMMS::AVALANCHE model. Then, we categorized and summarized regional avalanche characteristics using both field surveys and simulation results. Furthermore, the Certainty Factor Model (CFM) and the parameter Sensitivity Index (Sa) were applied to assess the influence of elevation, slope gradient, aspect, and maximum snow depth on the severity of avalanche disasters. The results indicate the following: (1) Avalanches exhibit pronounced spatiotemporal concentration: temporally, they cluster between February and March and during 13:00–18:00 daily; spatially, they concentrate within the 2100–3000 m elevation zone. Chute-confined avalanches dominate the region, comprising 73.26% of total events; most chute-confined avalanches feature multiple release areas; therefore the number of release areas exceeds avalanche points; in terms of scale, medium-to-large-scale avalanches dominate, accounting for 86.5% of total avalanches. (2) RAMMS::AVALANCHE simulations yielded the following maximum values for the region: flow height = 15.43 m, flow velocity = 47.6 m/s, flow pressure = 679.79 kPa, and deposition height = 10.3 m. Compared to chute-confined avalanches, unconfined slope avalanches exhibit higher flow velocities and pressures, posing greater hazard potential. (3) The Certainty Factor Model and Sensitivity Index identify elevation, slope gradient, and maximum snow depth as the key drivers of avalanches in the study area. Their relative impact ranks as follows: maximum snow depth > elevation > slope gradient > aspect. The sensitivity index values were 1.536, 1.476, 1.362, and 0.996, respectively. The findings of this study provide a scientific basis for further research on avalanche hazards, the development of avalanche warning systems, and the design of avalanche mitigation projects in the study area. Full article
(This article belongs to the Special Issue Climate Change in the Cryosphere and Its Impacts)
Show Figures

Figure 1

13 pages, 4866 KB  
Article
Photoionization Impact on the Lightning Impulse Streamer Discharge of Rapeseed Insulating Oil: An Experimental Study
by Yihua Qian and Qing Wang
Energies 2025, 18(1), 157; https://doi.org/10.3390/en18010157 - 3 Jan 2025
Cited by 1 | Viewed by 1208
Abstract
Photoionization is a significant factor influencing the morphology and propagation characteristics of streamers in insulating oil, yet research on the impact of photoionization on streamer branching is almost nonexistent. In this study, we employed an ultraviolet absorber to regulate the photoionization behavior of [...] Read more.
Photoionization is a significant factor influencing the morphology and propagation characteristics of streamers in insulating oil, yet research on the impact of photoionization on streamer branching is almost nonexistent. In this study, we employed an ultraviolet absorber to regulate the photoionization behavior of streamer discharges in rapeseed insulating oil. A quantitative assessment was conducted on the propagation morphology, length, and temperature distribution of positive and negative streamers. The results indicated that the streamer branches propagated in a dendritic manner. When photoionization was suppressed by the ultraviolet absorber, the streamer tended to generate more radially propagating branches, thereby shortening the axial stop length of the streamer branches by 1~3 mm. In addition, suppressing photoionization caused the maximum temperature to rise by approximately 74~220 K, generating more high-temperature hot spots within the streamer branches and promoting the formation of more radially propagating branches in the streamer. The analysis results demonstrated that suppressing photoionization weakened the axial electric field strength in the head region of the streamer branches, thereby inhibiting the electron avalanche behavior at the head of the streamer and thus reducing the rate of axial propagation of the streamer branches. Full article
Show Figures

Figure 1

19 pages, 59559 KB  
Article
Characteristics of Rock Avalanche Deposit in Wangjiapo, Ludian Based on UAV Aerial Image Recognition
by Zhenhua Han, Luqing Zhang, Jian Zhou, Song Wang, Juanjuan Sun, Ruirui Li and Fuyou Huang
Remote Sens. 2024, 16(20), 3786; https://doi.org/10.3390/rs16203786 - 11 Oct 2024
Cited by 1 | Viewed by 1787
Abstract
Rock avalanche disasters in alpine and gorge regions are frequent and large in scale and cause severe damage. The movement of a rock avalanche is complex and has not been fully studied. The deposits of a rock avalanche can provide valuable insights into [...] Read more.
Rock avalanche disasters in alpine and gorge regions are frequent and large in scale and cause severe damage. The movement of a rock avalanche is complex and has not been fully studied. The deposits of a rock avalanche can provide valuable insights into its movement process, which is crucial in understanding the rock fragmentation mechanism and predicting disaster-affected areas. Taking the Wangjiapo rock avalanche in Yunnan Province of China as an example, the size, shape and distribution characteristics of the deposit were analyzed based on field surveys, unmanned aerial vehicle (UAV) photography and image recognition technology. Initially, 3062 deposited rock blocks were manually measured in the field. Subsequently, the Particles/Pores and Cracks Analysis System (PCAS) was employed to identify 11,357 rock blocks with an area greater than 0.1 m2 from UAV orthophotos. By comparing the characteristics of the rock blocks obtained through image recognition and manual measurement, the statistical analysis of UAV aerial imagery combined with PACS proved feasible in studying the Wangjiapo rock avalanche. The results showed that the rock block movement was accompanied by fragmentation and sorting processes; furthermore, the roundness increased with the migration distance. Small blocks were more prevalent at the foot of the slope, while irregularly shaped, large blocks dominated in source areas. The movement of huge blocks was characterized by significant potential energy-driven features and inertia advantages, allowing them to travel farther than smaller blocks, and they tended to be concentrated in the central area of the deposit. Additionally, affected by the cementation degree of breccia and the topography, the blocks in the eastern and western deposit areas exhibited different fragmentation and deposition characteristics. Full article
Show Figures

Figure 1

20 pages, 13244 KB  
Article
Numerical Analysis of the Dynamic Response of Concrete Bridge Piers under the Impact of Rock Debris Flow
by Mai-Li Cheng
Buildings 2024, 14(6), 1504; https://doi.org/10.3390/buildings14061504 - 23 May 2024
Cited by 4 | Viewed by 1746
Abstract
The impact and damage caused by debris flow on concrete bridges have become a typical disaster scenario. However, the impact disaster mechanism of debris flow on bridge structures remains unclear. This study focused on investigating the impact mechanism of debris avalanches on concrete [...] Read more.
The impact and damage caused by debris flow on concrete bridges have become a typical disaster scenario. However, the impact disaster mechanism of debris flow on bridge structures remains unclear. This study focused on investigating the impact mechanism of debris avalanches on concrete bridge piers. By employing the discrete element numerical simulation method to examine the effect of debris on concrete bridge piers, the analysis explored the influence of three significant factors: the pier’s section shape, the impact distance, and the slope angle of the sliding chute. The discussions included the accumulation pattern of rock debris, the impact force on the pier, and the shear force and bending moment at the pier’s bottom, as well as the displacement and velocity response laws at the pier’s top. The results demonstrate that rectangularly shaped piers have a high efficiency in obstructing debris, leading to higher impact forces and internal forces on piers. Arched-shaped piers exhibit a short-duration, high-peak instantaneous impact from debris. Increasing the impact distance of the piers can significantly reduce the impact force of debris. The accumulation height of debris, pier impact force, and the pier’s bottom internal forces decrease and then increase with the increase in slope angles, with a 45° slope angle being the critical point for the transition of debris impact on piers. The results can provide references for the disaster prevention design of concrete bridge structures in hazardous mountainous areas. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 13759 KB  
Review
Antarctic Snow Failure Mechanics: Analysis, Simulations, and Applications
by Enzhao Xiao, Shengquan Li, Ali Matin Nazar, Ronghua Zhu and Yihe Wang
Materials 2024, 17(7), 1490; https://doi.org/10.3390/ma17071490 - 25 Mar 2024
Cited by 4 | Viewed by 2641
Abstract
Snow failure is the process by which the stability of snow or snow-covered slopes is destroyed, resulting in the collapse or release of snow. Heavy snowfall, low temperatures, and volatile weather typically cause consequences in Antarctica, which can occur at different scales, from [...] Read more.
Snow failure is the process by which the stability of snow or snow-covered slopes is destroyed, resulting in the collapse or release of snow. Heavy snowfall, low temperatures, and volatile weather typically cause consequences in Antarctica, which can occur at different scales, from small, localized collapses to massive avalanches, and result in significant risk to human activities and infrastructures. Understanding snow damage is critical to assessing potential hazards associated with snow-covered terrain and implementing effective risk mitigation strategies. This review discusses the theoretical models and numerical simulation methods commonly used in Antarctic snow failure research. We focus on the various theoretical models proposed in the literature, including the fiber bundle model (FBM), discrete element model (DEM), cellular automata (CA) model, and continuous cavity-expansion penetration (CCEP) model. In addition, we overview some methods to acquire the three-dimensional solid models and the related advantages and disadvantages. Then, we discuss some critical numerical techniques used to simulate the snow failure process, such as the finite element method (FEM) and three-dimensional (3D) material point method (MPM), highlighting their features in capturing the complex behavior of snow failure. Eventually, different case studies and the experimental validation of these models and simulation methods in the context of Antarctic snow failure are presented, as well as the application of snow failure research to facility construction. This review provides a comprehensive analysis of snow properties, essential numerical simulation methods, and related applications to enhance our understanding of Antarctic snow failure, which offer valuable resources for designing and managing potential infrastructure in Antarctica. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

14 pages, 2338 KB  
Article
Comparison of Proton and Gamma Irradiation on Single-Photon Avalanche Diodes
by Mingzhu Xun, Yudong Li and Mingyu Liu
Electronics 2024, 13(6), 1086; https://doi.org/10.3390/electronics13061086 - 15 Mar 2024
Viewed by 2062
Abstract
In this paper, the effects of proton and gamma irradiation on reach-through single-photon avalanche diodes (SPADs) are investigated. The I–V characteristics, gain and spectral response of SPAD devices under proton and gamma irradiation were measured at different proton energies and irradiation bias conditions. [...] Read more.
In this paper, the effects of proton and gamma irradiation on reach-through single-photon avalanche diodes (SPADs) are investigated. The I–V characteristics, gain and spectral response of SPAD devices under proton and gamma irradiation were measured at different proton energies and irradiation bias conditions. Comparison experiments of proton and gamma irradiation were performed in the radiation environment of geosynchronous transfer orbit (GTO) with two different radiation shielding designs at the same total ionizing dose (TID). The results show that after 30 MeV and 60 MeV proton irradiation, the leakage current and gain increase, while the spectral response decreases slightly. The leakage current degradation is more severe under the “ON”-bias condition compared to the “OFF”-bias condition, and it is more sensitive to the displacement radiation damage caused by protons compared to gamma rays under the same TID. Further analysis reveals that the non-elastic and elastic cross-section of protons in silicon is 1.05 × 105 times greater than that of gamma rays. This results in SPAD devices being more sensitive to displacement radiation damage than ionizing radiation damage. Under the designed shielding conditions, the leakage current, gain and spectral response parameters of SPADs do not show significant performance degradation in the orbit. Full article
Show Figures

Figure 1

19 pages, 5401 KB  
Article
Glacial Lake Outburst Flood Monitoring and Modeling through Integrating Multiple Remote Sensing Methods and HEC-RAS
by Liye Yang, Zhong Lu, Chaojun Ouyang, Chaoying Zhao, Xie Hu and Qin Zhang
Remote Sens. 2023, 15(22), 5327; https://doi.org/10.3390/rs15225327 - 12 Nov 2023
Cited by 22 | Viewed by 8687
Abstract
The Shishapangma region, situated in the middle of the Himalayas, is rich in glacial lakes and glaciers. Hence, glacial lake outburst floods (GLOFs) have become a top priority because of the severe threat posed by GLOFs to the downstream settlements. This study presents [...] Read more.
The Shishapangma region, situated in the middle of the Himalayas, is rich in glacial lakes and glaciers. Hence, glacial lake outburst floods (GLOFs) have become a top priority because of the severe threat posed by GLOFs to the downstream settlements. This study presents a comprehensive analysis of GLOF hazards using multi-source remote sensing datasets and designs a flood model considering the different breaching depths and release volumes for the Galong Co region. Based on high-resolution optical images, we derived the expanding lake area and volume of glacial lakes. We monitored deformation velocity and long-term deformation time series around the lake dam with Small BAseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR). The glacier thinning trend was obtained from the difference in the Digital Elevation Model (DEM). We identified potential avalanche sources by combining topographic slope and measurable deformation. We then carried out flood modeling under three different scenarios using the hydrodynamic model HEC-RAS for Galong Co, which is formed upstream of Nyalam. The results show that the Nyalam region is exposed to high-intensity GLOFs in all scenarios. The larger breaching depth and release volumes caused a greater flow depth and peak discharge. Overall, the multiple remote sensing approaches can be applied to other glacial lakes, and the modeling can be used as a basis for GLOF mitigation. Full article
Show Figures

Figure 1

14 pages, 5821 KB  
Technical Note
A Comparative Study of a Typical Glacial Lake in the Himalayas before and after Engineering Management
by Zhaoye Zhou, Xiaoqiang Cheng, Donghui Shangguan, Wangping Li, Da Li, Beibei He, Meixia Wang, Qing Ling, Xiuxia Zhang, Xiaoxian Wang, Lu Chen, Yadong Liu and Wei Chen
Remote Sens. 2023, 15(1), 214; https://doi.org/10.3390/rs15010214 - 30 Dec 2022
Cited by 7 | Viewed by 3796
Abstract
One of the main glacier-related natural hazards that are common to alpine locations is the occurrence of glacial lake outburst floods (GLOFs), which can seriously harm downstream towns and infrastructure. GLOFs have increased in frequency in the central Himalayas in recent years as [...] Read more.
One of the main glacier-related natural hazards that are common to alpine locations is the occurrence of glacial lake outburst floods (GLOFs), which can seriously harm downstream towns and infrastructure. GLOFs have increased in frequency in the central Himalayas in recent years as a result of global warming, and careful management of glacial lakes is a crucial step in catastrophe prevention. In this study, field surveys were conducted on 28 August 2020 and 1 August 2021 with the help of an unmanned aerial vehicle (UAV) and a boat bathymetric system on an unmanned surface vessel (USV), combined with 22 years of Landsat series imagery and Sentinel-2 MSI imagery data. Spatial analysis was then used to investigate changes in lake surface conditions, dam stability, and surrounding topography before and after an integrated project of the Jialong Co lake. The results show that: (1) from 2000 to 2020 (before engineering management), the area of the Jialong Co glacial lake increased from 0.2148 ± 0.0176 km2 to 0.5921 ± 0.0003 km2. The glacial lake expansion rate from 2000 to 2010 (0.0145 km2/a) was greater than the rate from 2011 to 2020 (6.92 × 10−6 km2/a). In 2021 (after engineering treatment), the glacial lake perimeter, area, and volume decreased by 0.6014 km, 0.1136 km2, and 1.90 × 107 m3, respectively. The amount of excavation during the project treatment was 8.13 million square meters, and the amount of filling was 1.24 million square meters. According to the results of the unmanned surface vessel (USV), the elevation of the lake surface dropped from 4331 m to 4281 m, and the water level dropped by 50 m (the designed safe water level line dropped by 30 m). (2) The results of the UAV topographic survey and geomorphological analysis showed that the engineered reinforcement of the outlet channel and surrounding dam effectively mitigated severe scouring of the foot of the final moraine at the outlet of the spillway, as well as the likelihood of glacial lake outbursts caused by ice avalanches and landslides. (3) The comprehensive engineering treatment of this typical glacial lake effectively lowered the water level and improved the stability of the moraine ridge and lake dam, providing a scientific foundation for other glacial lake outburst risk assessments and disaster mitigation and management measures. Thus, it is critical to evaluate the impact of comprehensive engineering management of key glacial lakes to support glacial lake management. Full article
Show Figures

Figure 1

14 pages, 4022 KB  
Article
Molecular Characterization of bHLH Transcription Factor Family in Rose (Rosa chinensis Jacq.) under Botrytis cinerea Infection
by Ikram Ullah, Wenbin Yuan, Muhammad Uzair, Sisi Li, Obaid Ur Rehman, Satyabrata Nanda and Hongzhi Wu
Horticulturae 2022, 8(11), 989; https://doi.org/10.3390/horticulturae8110989 - 25 Oct 2022
Cited by 8 | Viewed by 2760
Abstract
Rose (Rosa chinensis Jacq.) is an important economic ornamental crop and its yield is affected by different biotic and abiotic stresses. Among the biotic stresses, the gray mold disease caused by Botrytis cinerea is a serious threat to rose production. The basic [...] Read more.
Rose (Rosa chinensis Jacq.) is an important economic ornamental crop and its yield is affected by different biotic and abiotic stresses. Among the biotic stresses, the gray mold disease caused by Botrytis cinerea is a serious threat to rose production. The basic helix-loop-helix (bHLH) is a large transcription factor family involved in several vital plant physiological processes, including growth, development, and stress response. However, no substantial reports exist on bHLH genes in rose. Here, the genome-wide identification, characterization, and expression analysis of the rose bHLH (RcbHLH) genes was carried out. In total, 100 RcbHLHs were identified in the rose genome and mapped onto different rose chromosomes. The gene duplication analysis revealed both tandem and segmental duplications in RcbHLHs. The RcbHLHs among other plant bHLHs were divided into 21 sub-groups on the phylogenetic tree. Additionally, prediction of the different cis-regulatory elements and the gene ontology of the identified RcbHLHs indicated their possible functions in rose plants. The expression analysis of selected RcbHLHs genes in two contrasting rose varieties (A29 = Black Baccara and XS = Sweet Avalanche) under B. cinerea infection provided insights into the involvement of RcbHLHs in rose–B. cinerea interactions. Moreover, this study provided details on the bHLH family genes in rose and their potential roles in rose defense against B. cinerea infection. Full article
Show Figures

Figure 1

1 pages, 183 KB  
Abstract
Theoretical Study of the Effect of Stresses on Effective Masses in the InAs/InAsSb Type-II Superlattice
by Tetiana Manyk, Jaroslaw Rutkowski, Małgorzata Kopytko and Piotr Martyniuk
Eng. Proc. 2022, 21(1), 16; https://doi.org/10.3390/engproc2022021016 - 24 Aug 2022
Cited by 1 | Viewed by 1264
Abstract
A3B5 materials used in the construction of a superlattice have properties that enable the design of devices (to include avalanche photodiodes) optimized for use in infrared detection. These devices are used in the military and medicine industries, and in other [...] Read more.
A3B5 materials used in the construction of a superlattice have properties that enable the design of devices (to include avalanche photodiodes) optimized for use in infrared detection. These devices are used in the military and medicine industries, and in other areas of science and technology. This paper presents a theoretical assessment and analysis of the impact of stresses on an InAs/InAsSb type-II superlattice (T2SL) grown on a GaSb buffer layer, considering band gap energy and effective masses at a temperature of 150 K. The theoretical research was carried out with the use of the commercial platform “SimuApsys” (Crosslight). The method kp 8·8 (k = 0.06) was adopted in T2SL modeling. Luttinger coefficients 1, γ2 and γ3) were assessed assuming the Kane coefficient F = 0. The band gap energy of InAsSb ternary materials was determined assuming that the bowing parameter for the above-mentioned temperature was bg = 0.75 eV. The cut-off wavelength values were estimated on the basis of theoretically determined absorption coefficients (α). The energy gap was calculated according to the following formula: Eg = 1.24/λcut-off. From the analysis of theoretical results, it can be concluded that the stresses in T2SL cause the Eg shift, which also has an impact on the influence on the change of the effective masses me and mh, which play an important role in the optical and electrical parameters of the detection structure. The simulated theoretical parameters T2SL at 150 K are comparable to those measured experimentally. Full article
(This article belongs to the Proceedings of The 9th International Symposium on Sensor Science)
23 pages, 3906 KB  
Article
Specific Features of Operation of Distributed Generation Facilities Based on Gas Reciprocating Units in Internal Power Systems of Industrial Entities
by Pavel Ilyushin, Sergey Filippov, Aleksandr Kulikov, Konstantin Suslov and Dmitriy Karamov
Machines 2022, 10(8), 693; https://doi.org/10.3390/machines10080693 - 15 Aug 2022
Cited by 29 | Viewed by 2381
Abstract
The creation of a decentralized low-carbon energy infrastructure is the main trend in the development of the electric power industry in many countries. Distributed generation facilities (DGs) based on gas reciprocating units (GRUs) are often built by industrial entities for the efficient utilization [...] Read more.
The creation of a decentralized low-carbon energy infrastructure is the main trend in the development of the electric power industry in many countries. Distributed generation facilities (DGs) based on gas reciprocating units (GRUs) are often built by industrial entities for the efficient utilization of secondary energy resources in order to minimize the environmental impact. Modern GRUs have some advantages, but they have design features that should be factored in when connecting them to the internal power systems of industrial entities. Incorrect consideration of possible operating conditions of GRU in their design can lead to their damage, excessive shutdowns, and disruptions in power supply to essential power consumers with significant damage and losses from undersupply of their products. Excessive shutdowns of GRUs are often caused by a non-selective choice of settings for relay protection devices or by load surges that exceed the allowable ones. With high availability factors, GRUs are disconnected five to eight times more often compared to large gas turbine and steam turbine power units. The large total power consumed by electric motors, as part of the load of an industrial entity, determines the nature and parameters of electromechanical transient processes during emergency disturbances. The presented analysis of issues facing real DG facilities relies on the acts of investigation into the causes of accidents. Calculations have shown that the action of the “Load Agreement Module” in the GRU excitation controller can provoke the occurrence of a voltage avalanche in the internal power system with a complete shutdown of the load. The paper presents recommendations on the choice of control algorithms and voltage settings for the GRU excitation controller. Technical solutions are given to prevent damage and excessive shutdowns of GRU in various operating conditions of the system, and to help ensure a reliable power supply to power consumers. The change in approaches to the design of DG facilities is substantiated in the light of their significant differences from other electric power facilities. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

21 pages, 2776 KB  
Article
GIS-Based Spatial Modeling of Snow Avalanches Using Analytic Hierarchy Process. A Case Study of the Šar Mountains, Serbia
by Uroš Durlević, Aleksandar Valjarević, Ivan Novković, Nina B. Ćurčić, Mirjana Smiljić, Cezar Morar, Alina Stoica, Danijel Barišić and Tin Lukić
Atmosphere 2022, 13(8), 1229; https://doi.org/10.3390/atmos13081229 - 3 Aug 2022
Cited by 36 | Viewed by 5875
Abstract
Snow avalanches are one of the most devastating natural hazards in the highlands that often cause human casualties and economic losses. The complex process of modeling terrain susceptibility requires the application of modern methods and software. The prediction of avalanches in this study [...] Read more.
Snow avalanches are one of the most devastating natural hazards in the highlands that often cause human casualties and economic losses. The complex process of modeling terrain susceptibility requires the application of modern methods and software. The prediction of avalanches in this study is based on the use of geographic information systems (GIS), remote sensing, and multicriteria analysis—analytic hierarchy process (AHP) on the territory of the Šar Mountains (Serbia). Five indicators (lithological, geomorphological, hydrological, vegetation, and climatic) were processed, where 14 criteria were analyzed. The results showed that approximately 20% of the investigated area is highly susceptible to avalanches and that 24% of the area has a medium susceptibility. Based on the results, settlements where avalanche protection measures should be applied have been singled out. The obtained data can will help local self-governments, emergency management services, and mountaineering services to mitigate human and material losses from the snow avalanches. This is the first research in the Republic of Serbia that deals with GIS-AHP spatial modeling of snow avalanches, and methodology and criteria used in this study can be tested in other high mountainous regions. Full article
Show Figures

Figure 1

Back to TopTop