Degradation and Damage Effects in GaN HEMTs Induced by Low-Duty-Cycle High-Power Microwave Pulses
Abstract
1. Introduction
2. Structure and Measurement Systems of GaN HEMTs
3. Results and Discussion
3.1. Measurement of Device Burnout Peak Power
3.2. Effect of HPM Stress on DC Characteristics
3.3. Effect of HPM Stress on Gate-Lag Characteristics
3.4. Effect of HPM Stress on Low-Frequency Noise
3.5. Mechanism Analysis of Burnout Behavior of GAN HEMT
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brazzini, T.; Casbon, M.A.; Uren, M.J.; Tasker, P.J.; Jung, H.; Blanck, H.; Kuball, M. Hot-electron electroluminescence under RF operation in GaN-HEMTs: A comparison among operational classes. IEEE Trans. Electron Devices 2017, 64, 2155–2160. [Google Scholar] [CrossRef]
- Hamza, K.H.; Nirmal, D. A review of GaN HEMT broadband power amplifiers. AEU-Int. J. Electron. Commun. 2020, 116, 153040. [Google Scholar] [CrossRef]
- Micovic, M.; Brown, D.; Regan, D.; Wong, J.; Tang, Y.; Herrault, F.; Santos, D.; Burnham, S.; Tai, J.; Prophet, E. High frequency GaN HEMTs for RF MMIC applications. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 3.3.1–3.3.4. [Google Scholar]
- Li, X.; Du, Z.; Li, M. Efficient reciprocity-based hybrid approach for analyzing radiated susceptibility responses of multilayer PCBs. IEEE Trans. Electromagn. Compat. 2016, 59, 952–961. [Google Scholar] [CrossRef]
- Hoad, R.; Carter, N.J.; Herke, D.; Watkins, S.P. Trends in EM susceptibility of IT equipment. IEEE Trans. Electromagn. Compat. 2004, 46, 390–395. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, Q.; Chen, C.; Chen, Z.; Liu, Z.; Zhao, G. Interference effects in GaN high electron mobility transistor power amplifier induced by microwave pulses. Sci. Rep. 2022, 12, 16922. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Chai, C.-C.; Wu, H.; Zhang, Y.-H.; Shi, C.-L.; Yang, Y.-T. Mechanism of AlGaAs/InGaAs pHEMT nonlinear response under high-power microwave radiation. IEEE J. Electron Devices Soc. 2020, 8, 731–737. [Google Scholar] [CrossRef]
- Kim, K.; Iliadis, A.A. Impact of microwave interference on dynamic operation and power dissipation of CMOS inverters. IEEE Trans. Electromagn. Compat. 2007, 49, 329–338. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, S.; Zhu, H.; Zhang, J.; Deng, B. Two-dimensional transient simulations of the self-heating effects in GaN-based HEMTs. Microelectron. Reliab. 2013, 53, 694–700. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, L. Inverse Piezoelectric Effect in a GaN HEMT Under HPM Pulses. In Proceedings of the 2023 International Applied Computational Electromagnetics Society Symposium (ACES-China), Hangzhou, China, 15–18 August 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–3. [Google Scholar]
- Zhang, Y.; Zhou, L.; Mao, J.-F. Inverse piezoelectric and trap effects with temperature dependence in AlGaN/GaN HEMTs under narrowband microwave pulses. IEEE Trans. Electromagn. Compat. 2023, 65, 794–803. [Google Scholar] [CrossRef]
- Qin, Y.; Chai, C.; Li, F.; Liang, Q.; Wu, H.; Yang, Y. Study of self-heating and high-power microwave effects for enhancement-mode p-gate GaN HEMT. Micromachines 2022, 13, 106. [Google Scholar] [CrossRef]
- Li, X.; Yuan, J.; Wang, H.; Cai, Z.; Shao, W.; Chen, Y.; Zheng, X.; Zhang, J.; Hao, Y. Experimental study and characterization on the thermo-electro multiphysics coupling failure of GaN HEMTs under high-power microwave pulse. IEEE Trans. Electron Devices 2023, 70, 5619–5625. [Google Scholar] [CrossRef]
- Nitsch, D.; Camp, M.; Sabath, F.; ter Haseborg, J.L.; Garbe, H. Susceptibility of some electronic equipment to HPEM threats. IEEE Trans. Electromagn. Compat. 2004, 46, 380–389. [Google Scholar] [CrossRef]
- Wang, L.; Chai, C.; Zhao, T.-L.; Wei, F.; Liu, W.-S.; Wang, Y.; Li, Z.; Xu, L.; Li, F.; Yang, Y. Electromagnetic pulse induced failure analysis of GaN HEMT based power amplifier. IEEE Trans. Power Electron. 2023, 39, 1492–1500. [Google Scholar] [CrossRef]
- Yuk, K.S.; Branner, G.R.; McQuate, D.J. A wideband multiharmonic empirical large-signal model for high-power GaN HEMTs with self-heating and charge-trapping effects. IEEE Trans. Microw. Theory Tech. 2009, 57, 3322–3332. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, Y.; Liu, C.; Geng, K.; He, Y.; Gao, R.; Huang, Y.; Yang, X. Degradation behavior and trap analysis based on low-frequency noise of AlGaN/GaN HEMTs subjected to radio frequency overdrive stress. IEEE Trans. Electron Devices 2020, 68, 66–71. [Google Scholar] [CrossRef]
- De, K.; Dutta, G. Investigation of trap induced gate lag phenomenon in AlGaN/GaN high electron mobility transistors. In Proceedings of the 2018 4th IEEE International Conference on Emerging Electronics (ICEE), Bengaluru, India, 17–19 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Faqir, M.; Verzellesi, G.; Meneghesso, G.; Zanoni, E.; Fantini, F. Investigation of high-electric-field degradation effects in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 2008, 55, 1592–1602. [Google Scholar] [CrossRef]
- Mitrofanov, O.; Manfra, M. Mechanisms of gate lag in GaN/AlGaN/GaN high electron mobility transistors. Superlattices Microstruct. 2003, 34, 33–53. [Google Scholar] [CrossRef]
- Zhu, Q.; Ma, X.; Hou, B.; Wu, M.; Zhu, J.; Yang, L.; Zhang, M.; Hao, Y. Investigation of inverse piezoelectric effect and trap effect in AlGaN/GaN HEMTs under reverse-bias step stress at cryogenic temperature. IEEE Access 2020, 8, 35520–35528. [Google Scholar] [CrossRef]
- Silvestri, M.; Uren, M.J.; Killat, N.; Marcon, D.; Kuball, M. Localization of off-stress-induced damage in AlGaN/GaN high electron mobility transistors by means of low frequency 1/f noise measurements. Appl. Phys. Lett. 2013, 103, 043506. [Google Scholar] [CrossRef]
- Vetury, R.; Zhang, N.Q.; Keller, S.; Mishra, U.K. The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans. Electron Devices 2002, 48, 560–566. [Google Scholar] [CrossRef]
- Meneghini, M.; Tajalli, A.; Moens, P.; Banerjee, A.; Zanoni, E.; Meneghesso, G. Trapping phenomena and degradation mechanisms in GaN-based power HEMTs. Mater. Sci. Semicond. Process. 2018, 78, 118–126. [Google Scholar] [CrossRef]
- Zhou, L.; San, Z.W.; Hua, Y.-J.; Lin, L.; Zhang, S.; Zhao, Z.G.; Zhou, H.J.; Yin, W.-Y. Investigation on failure mechanisms of GaN HEMT caused by high-power microwave (HPM) pulses. IEEE Trans. Electromagn. Compat. 2016, 59, 902–909. [Google Scholar] [CrossRef]
- Trew, R.J.; Mishra, U.K. Gate breakdown in MESFETs and HEMTs. IEEE Electron Device Lett. 2002, 12, 524–526. [Google Scholar] [CrossRef]
- Godfrey, D.; Nirmal, D.; Arivazhagan, L.; Roy, B.; Chen, Y.-L.; Yu, T.-H.; Yeh, W.-K.; Godwinraj, D. Investigation of AlGaN/GaN HEMT Breakdown analysis with Source field plate length for High power applications. In Proceedings of the 2020 5th International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 5–6 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 244–246. [Google Scholar]
- Zhao, J.; Zhao, G.; Chen, Q.; Chen, Z.; Cao, L.; Feng, X.; Liu, Z.; Chen, C. Damage effects in GaN high electron mobility transistor power amplifier induced by high power microwave pulses. Sci. Rep. 2025, 15, 5988. [Google Scholar] [CrossRef]
- Jena, D. Polarization Effects in Semiconductors: From AB Initio Theory to Device Applications; Springer Science & Business Media: New York, NY, USA, 2008. [Google Scholar]











| Parameter | Data |
|---|---|
| Gata length | 0.25 μm |
| Source length | 28 μm |
| Drain length | 28 μm |
| AlGaN thickness | 22 μm |
| GaN thickness | 1.7 μm |
| SiC thickness | 100 μm |
| Drain–gate length | 2.65 μm |
| Gate–source length | 0.8 μm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, D.; Liu, H.; Su, M.; Liu, X.; Liu, C. Degradation and Damage Effects in GaN HEMTs Induced by Low-Duty-Cycle High-Power Microwave Pulses. Micromachines 2025, 16, 1137. https://doi.org/10.3390/mi16101137
Xing D, Liu H, Su M, Liu X, Liu C. Degradation and Damage Effects in GaN HEMTs Induced by Low-Duty-Cycle High-Power Microwave Pulses. Micromachines. 2025; 16(10):1137. https://doi.org/10.3390/mi16101137
Chicago/Turabian StyleXing, Dong, Hongxia Liu, Mengwei Su, Xingjun Liu, and Chang Liu. 2025. "Degradation and Damage Effects in GaN HEMTs Induced by Low-Duty-Cycle High-Power Microwave Pulses" Micromachines 16, no. 10: 1137. https://doi.org/10.3390/mi16101137
APA StyleXing, D., Liu, H., Su, M., Liu, X., & Liu, C. (2025). Degradation and Damage Effects in GaN HEMTs Induced by Low-Duty-Cycle High-Power Microwave Pulses. Micromachines, 16(10), 1137. https://doi.org/10.3390/mi16101137

