Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = anagen-inducing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 8014 KB  
Article
Chitosan Nanoparticles for Topical Drug Delivery in Chemotherapy-Induced Alopecia: A Comparative Study of Five Repurposed Pharmacological Agents
by Salma A. Fereig, John Youshia, Ghada M. El-Zaafarany, Mona G. Arafa and Mona M. A. Abdel-Mottaleb
Pharmaceuticals 2025, 18(7), 1071; https://doi.org/10.3390/ph18071071 - 21 Jul 2025
Viewed by 801
Abstract
Background/Objectives: Chemotherapy-induced alopecia is a common and distressing side effect of cancer treatment, significantly impacting patients’ psychological well-being. Nanocarriers offer a promising strategy for targeted drug delivery to hair follicles, while chitosan nanoparticles have demonstrated hair-growth-promoting properties. This study explores the potential [...] Read more.
Background/Objectives: Chemotherapy-induced alopecia is a common and distressing side effect of cancer treatment, significantly impacting patients’ psychological well-being. Nanocarriers offer a promising strategy for targeted drug delivery to hair follicles, while chitosan nanoparticles have demonstrated hair-growth-promoting properties. This study explores the potential of chitosan nanoparticles as a topical delivery system for five pharmacological agents—phenobarbital, pioglitazone, rifampicin, N-acetylcysteine, and tacrolimus—to prevent chemotherapy-induced alopecia. Methods: Drug-loaded chitosan nanoparticles were prepared using the ionic gelation technique and characterized by particle size, zeta potential, entrapment efficiency, FT-IR spectroscopy, and TEM imaging. Their efficacy was assessed in a cyclophosphamide-induced alopecia model in C57BL/6 mice through macroscopic observation, histopathological examination, and scanning electron microscopy of regrown hair. Results: The prepared particles were spherical, cationic, and between 205 and 536 nm in size. The entrapment efficiencies ranged from 8% to 63%. All five drugs mitigated follicular dystrophy, shifting the hair follicle response from dystrophic catagen to dystrophic anagen. Phenobarbital demonstrated the most significant hair regrowth and quality improvements, followed by N-acetyl cysteine and pioglitazone. Tacrolimus showed moderate efficacy, while rifampicin was the least effective. Conclusions: These findings suggest that phenobarbital-loaded chitosan nanoparticles represent a promising approach for the prevention and treatment of chemotherapy-induced alopecia, warranting further investigation for clinical applications. Full article
(This article belongs to the Special Issue Advances in Topical and Mucosal Drug Delivery Systems)
Show Figures

Figure 1

14 pages, 2682 KB  
Article
A Natural Inhibitor, 1′S-1′-Acetoxychavicol Acetate, Against Testosterone-Induced Alopecia via NADPH Oxidase Regulation
by Kkotnara Park, Isoo Youn, Jung Min Suh, Min Hye Choi, Da-Woon Bae, Soo-Bong Park, Mi Hee Kwack, Sun-Shin Cha, Dae Sik Jang, Young Kwan Sung, Yun Soo Bae and Eun Kyoung Seo
Molecules 2025, 30(10), 2246; https://doi.org/10.3390/molecules30102246 - 21 May 2025
Viewed by 886
Abstract
Androgenetic alopecia is associated with testosterone-mediated anagen-to-catagen transition and matrix keratinocyte apoptosis in hair follicle cells. Activation of Nox isozymes is involved in testosterone-mediated keratinocyte apoptosis, leading to androgenetic alopecia. This indicates that Nox isozymes can serve as therapeutic targets for androgenetic alopecia. [...] Read more.
Androgenetic alopecia is associated with testosterone-mediated anagen-to-catagen transition and matrix keratinocyte apoptosis in hair follicle cells. Activation of Nox isozymes is involved in testosterone-mediated keratinocyte apoptosis, leading to androgenetic alopecia. This indicates that Nox isozymes can serve as therapeutic targets for androgenetic alopecia. The isolated compounds from natural products were screened to evaluate their ROS-inhibition efficacy and it was found that 1′S-1′-acetoxychavicol acetate (ACA, 26), a natural compound isolated from Alpinia galanga (L.) Willd. (Zingiberaceae), exhibits inhibitory activity on Nox isozymes. Nox inhibition by ACA suppressed testosterone-dependent H2O2 generation and cell death in keratinocytes. Incubation with ACA in human hair follicle organ culture mitigated testosterone-dependent suppression of hair growth. We validated that ACA regulates androgenetic alopecia in a mouse model. Local application of ACA on the dorsal skin in an androgenetic alopecia model of C57BL/6 mice significantly suppressed testosterone-induced hair loss in a dose-dependent manner. Moreover, hair follicle length in ACA-treated mice was enhanced compared to that in control mice. These findings provide a molecular mechanism in which ACA inhibits Nox activity in hair follicle cells, indicating its potential as an effective treatment of AGA. Full article
Show Figures

Figure 1

20 pages, 4223 KB  
Article
Proteomics Reveals the Role of PLIN2 in Regulating the Secondary Hair Follicle Cycle in Cashmere Goats
by Cuiling Wu, Qingwei Lu, Shengchao Ma, Nuramina Mamat, Sen Tang, Wenna Liu, Yaqian Wang, Asma Anwar, Yingjie Lu, Qiangqiang Ma, Gulinigaer Aimaier and Xuefeng Fu
Int. J. Mol. Sci. 2025, 26(6), 2710; https://doi.org/10.3390/ijms26062710 - 18 Mar 2025
Viewed by 943
Abstract
Based on comprehensive proteomic analysis conducted across various stages of secondary hair follicles (SHFs), the growth and development regulatory mechanisms of SHFs in Jiangnan cashmere goats were studied. Proteomic analysis of skin tissue from the SHF anagen (An), catagen (Cn), and telogen (Tn) [...] Read more.
Based on comprehensive proteomic analysis conducted across various stages of secondary hair follicles (SHFs), the growth and development regulatory mechanisms of SHFs in Jiangnan cashmere goats were studied. Proteomic analysis of skin tissue from the SHF anagen (An), catagen (Cn), and telogen (Tn) revealed 145 differentially expressed proteins (DEPs) between the An and Tn, 53 DEPs between the Cn and An, and 168 DEPs between the Cn and Tn. Gene Ontology (GO) annotations indicated that the DEPs were predominantly involved in keratin filament formation (KRTAP3-1, KRT1, KRT8), intermediate filament formation (KRT26, KRT35, KRT19, etc.), and lipid metabolism (FA2H, CERS6, ECH1, TECR, etc.). Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis identified significant enrichment of DEPs in pathways related to hair follicle growth and development. Notably, these included the PPAR signaling pathway (PLIN2, PLIN4, ACSL5, etc.), the IL-17 signaling pathway (S100A7A, LOC108633164), and the estrogen signaling pathway (KRT26, KRT35, LOC102176457.). Western blotting (WB) experiments were then performed on five DEPs (KRT28, FA2H, PLIN2, FABP7, and VNN1) to validate the consistency of the WB results with the proteomic data. Overexpression and siRNA interference of PLIN2 in dermal papilla cells (DPCs) were followed by CCK8 and flow cytometry assays, revealing that PLIN2 knockdown significantly decreased DPC proliferation while inducing apoptosis, compared to controls. These findings suggest that the PLIN2 gene plays a crucial role in modulating SHF growth cycles in cashmere goats by influencing DPC proliferation. These results provide novel insights that could inform the development of breeding strategies aimed at enhancing the cashmere yield in such goats. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

12 pages, 3820 KB  
Article
Effect of Free Long-Chain Fatty Acids on Anagen Induction: Metabolic or Inflammatory Aspect?
by Xiaowen Pan, Khava S. Vishnyakova, Elina S. Chermnykh, Maxim V. Jasko, Alexander D. Zhuravlev, Svetlana S. Verkhova, Yegor S. Chegodaev, Mikhail A. Popov, Nikita G. Nikiforov and Yegor E. Yegorov
Int. J. Mol. Sci. 2025, 26(6), 2567; https://doi.org/10.3390/ijms26062567 - 13 Mar 2025
Viewed by 994
Abstract
Hair growth is a highly complex process regulated at multiple levels, including molecular pathways, stem cell behavior, metabolic processes, and immune responses. The hair follicle exhibits metabolic compartmentalization, with some cells relying on glycolysis and others on oxidative phosphorylation. Interestingly, in mice, the [...] Read more.
Hair growth is a highly complex process regulated at multiple levels, including molecular pathways, stem cell behavior, metabolic processes, and immune responses. The hair follicle exhibits metabolic compartmentalization, with some cells relying on glycolysis and others on oxidative phosphorylation. Interestingly, in mice, the onset of the anagen phase can be stimulated by locally suppressing oxidative phosphorylation in the skin. This study showed that topical application of palmitate or oleate accelerated the onset of anagen in mice, while lactate, the end product of glycolysis, delayed it. We also investigated the effects of fatty acids on cytokine production in various human cell cultures. Fatty acids did not induce a cytokine response in fibroblasts or keratinocytes but significantly affected monocytes. Specifically, palmitic acid induced the production of TNF-α, IL-8, and CCL2. Oleic acid, however, elicited almost no response. By comparing the “metabolic” and “inflammatory” hypotheses of anagen stimulation, the results of our study suggest that metabolic regulation holds significant promise for influencing hair growth. Full article
(This article belongs to the Special Issue Molecular Insights into Hair Regeneration)
Show Figures

Figure 1

13 pages, 3878 KB  
Article
Bee Venom Stimulates Growth Factor Release from Adipose-Derived Stem Cells to Promote Hair Growth
by Jung Hyun Kim, Tae Yoon Kim, Bonhyuk Goo and Yeoncheol Park
Toxins 2024, 16(2), 84; https://doi.org/10.3390/toxins16020084 - 4 Feb 2024
Cited by 6 | Viewed by 5449
Abstract
Limited evidence suggests that stimulating adipose-derived stem cells (ASCs) indirectly promotes hair growth. We examined whether bee venom (BV) activated ASCs and whether BV-induced hair growth was facilitated by enhanced growth factor release by ASCs. The induction of the telogen-to-anagen phase was studied [...] Read more.
Limited evidence suggests that stimulating adipose-derived stem cells (ASCs) indirectly promotes hair growth. We examined whether bee venom (BV) activated ASCs and whether BV-induced hair growth was facilitated by enhanced growth factor release by ASCs. The induction of the telogen-to-anagen phase was studied in mice. The underlying mechanism was investigated using organ cultures of mouse vibrissa hair follicles. When BV-treated ASCs were injected subcutaneously into mice, the telogen-to-anagen transition was accelerated and, by day 14, the hair weight increased. Quantitative polymerase chain reaction (qPCR) revealed that BV influenced the expression of several molecules, including growth factors, chemokines, channels, transcription factors, and enzymes. Western blot analysis was employed to verify the protein expression levels of extracellular-signal-regulated kinase (ERK) and phospho-ERK. Both the Boyden chamber experiment and scratch assay confirmed the upregulation of cell migration by BV. Additionally, ASCs secreted higher levels of growth factors after exposure to BV. Following BV therapy, the gene expression levels of alkaline phosphatase (ALP), fibroblast growth factor (FGF)-1 and 6, endothelial cell growth factor, and platelet-derived growth factor (PDGF)-C were upregulated. The findings of this study suggest that bee venom can potentially be utilized as an ASC-preconditioning agent for hair regeneration. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

18 pages, 3368 KB  
Article
CircERCC6 Positively Regulates the Induced Activation of SHF Stem Cells in Cashmere Goats via the miR-412-3p/BNC2 Axis in an m6A-Dependent Manner
by Qi Zhang, Yixing Fan, Man Bai, Yubo Zhu, Zeying Wang, Jincheng Shen, Ruqing Xu, Wenxin Zheng and Wenlin Bai
Animals 2024, 14(2), 187; https://doi.org/10.3390/ani14020187 - 5 Jan 2024
Cited by 3 | Viewed by 1929
Abstract
The cashmere, a kind of nature protein fiber, is one of the main use of cashmere goats. The induced activation of secondary hair follicle (SHF) stem cells by the dermal papilla cell-derived signals is a key biological process for the morphogenesis and growth [...] Read more.
The cashmere, a kind of nature protein fiber, is one of the main use of cashmere goats. The induced activation of secondary hair follicle (SHF) stem cells by the dermal papilla cell-derived signals is a key biological process for the morphogenesis and growth of cashmere fiber in cashmere goats. Previously, the circRNA-ERCC6 (circERCC6) was identified from cashmere goat SHFs; however, its biological significance is unclear in the SHF physiology process of cashmere goats. In this study, we found that circERCC6 exhibited significantly higher expression at anagen SHF bulge compared with the counterpart of telogen and harbored three m6A modified sites (named m6A-685, m6A-862, and m6A-995) through methylation immunoprecipitation using a real-time quantitative polymerase chain reaction (Me-RIP-qPCR) technique. The knockdown experiments of circERCC6 in SHF stem cells showed that circERCC6 positively regulates the induced activation of SHF stem cells in cashmere goats. Through a dual-luciferase reporter assay, we demonstrated that m6A-modified circERCC6 (m6A-circERCC6) sponged miR-412-3p to upregulate the expression of BNC2 mRNA in SHFstem cells. Through m6A-deficient mutant assay in circERCC6 knockdown SHF stem cells, we further showed that m6A modification within circERCC6 is required to mediate the miR-412-3p/BNC2 axis to finally promote the proper induced activation of SHF stem cells in cashmere goats. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

15 pages, 5930 KB  
Article
Astragalus membranaceus and Cinnamomum cassia Stimulate the Hair Follicle Differentiation-Related Growth Factor by the Wnt/β-Catenin Signaling Pathway
by Mi Hye Kim, Seong Chul Jin, Hee Kyung Baek and Woong Mo Yang
Curr. Issues Mol. Biol. 2023, 45(11), 8607-8621; https://doi.org/10.3390/cimb45110541 - 26 Oct 2023
Cited by 1 | Viewed by 3511
Abstract
Astragalus membranaceus and Cinnamomum cassia are used as spices and flavorful ingredients, or medicinal herbs with pharmacological effects. In this study, the hair-growth-promoting effects of the YH complex, a newly developed formula consisting of membranaceus and C. cassia, are investigated with [...] Read more.
Astragalus membranaceus and Cinnamomum cassia are used as spices and flavorful ingredients, or medicinal herbs with pharmacological effects. In this study, the hair-growth-promoting effects of the YH complex, a newly developed formula consisting of membranaceus and C. cassia, are investigated with the prediction of its molecular mechanism. The target gene of the YH complex was about 74.8% overlapped with the gene set of ‘Hair growth’ on the GO Biological Process database. The oral administration of the YH complex promoted hair regrowth and increased hair-shaft thickness in depilated hair loss mice. In addition, the anagen/telogen hair follicle ratio was significantly increased by the YH complex. The growth factors affecting the growth of hair follicles were dose-dependently increased by treatment with the YH complex. The Wnt/β-catenin signaling pathway expressions in skin tissues were apparently increased by the administration of the YH complex. In conclusion, the YH complex consisting of A. membranaceus and C. cassia induced hair follicle differentiation and preserved the growing-anagen phase by increasing growth factors and the Wnt/β-catenin signaling pathway, leading to the restoration of hair loss. The YH complex can be a remedy for hair loss diseases, such as alopecia areata, androgenetic alopecia, telogen effluvium, and chemotherapy-induced alopecia. Full article
(This article belongs to the Special Issue Natural Products and Their Biological Activities)
Show Figures

Figure 1

16 pages, 1667 KB  
Article
Effects of Bioactive Composition in Oryza sativa L. cv. KDML105 Bran Extract on Gene Expression Related to Hair Cycle in Human Hair Follicle Dermal Papilla Cells
by Chiranan Khantham, Warintorn Ruksiriwanich, Korawan Sringarm, Chanakan Prom-u-thai, Sansanee Jamjod, Chaiwat Arjin, Anurak Muangsanguan, Pornchai Rachtanapun, Kittisak Jantanasakulwong, Yuthana Phimolsiripol, Francisco J. Barba, Sarana Rose Sommano, Romchat Chutoprapat and Korawinwich Boonpisuttinant
Agronomy 2023, 13(2), 295; https://doi.org/10.3390/agronomy13020295 - 18 Jan 2023
Cited by 14 | Viewed by 4462
Abstract
The aim of this study is to identify the effects of KDML105 bran extract on gene expression involving the hair cycle in HFDPCs and investigate its bioactive constituents, antioxidant, and anti-inflammatory activities. The content of tocopherols, γ-oryzanol, phytic acid, and phenolic compounds was [...] Read more.
The aim of this study is to identify the effects of KDML105 bran extract on gene expression involving the hair cycle in HFDPCs and investigate its bioactive constituents, antioxidant, and anti-inflammatory activities. The content of tocopherols, γ-oryzanol, phytic acid, and phenolic compounds was quantified by liquid chromatography. Free fatty acids were determined using gas chromatography. Antioxidant capacities were estimated by DPPH, ABTS, and metal chelating assay. The nitric oxide (NO) production was determined by Griess reaction. Gene expression was measured by semi-quantitative RT-PCR. The major compounds in the extract were α- and γ-tocopherol, phytic acid, γ-oryzanol, chlorogenic acid, o-coumaric acid, palmitic acid, oleic acid, and linoleic acid, giving its antioxidant capacities. The nitrite level in lipopolysaccharide-induced macrophages (2.76 ± 0.13 μM) was significantly mitigated by the extract (0.81 ± 0.11 μM). Additionally, SRD5A2 and TGFB1 expressions in HFDPCs were downregulated, whereas CTNNB1 and VEGF genes were upregulated after treatment with the extract. KDML105 extract ameliorated oxidative stress and NO production. According to the gene expression study, KDML105 bran extract may be involved in the induction and maintenance of the anagen phase and angiogenesis in the hair growth pathway. Therefore, KDML105 bran extract might be a promising source of anti-hair loss substances. Full article
(This article belongs to the Special Issue Phytochemicals of Edible Plants—Volume II)
Show Figures

Figure 1

14 pages, 1696 KB  
Article
Limonin, a Component of Immature Citrus Fruits, Activates Anagen Signaling in Dermal Papilla Cells
by Jung-Il Kang, Youn Kyoung Choi, Sang-Chul Han, Hyeon Gyu Kim, Seok Won Hong, Jungeun Kim, Jae Hoon Kim, Jin Won Hyun, Eun-Sook Yoo and Hee-Kyoung Kang
Nutrients 2022, 14(24), 5358; https://doi.org/10.3390/nu14245358 - 16 Dec 2022
Cited by 12 | Viewed by 3705
Abstract
Hair loss remains a significant problem that is difficult to treat; therefore, there is a need to identify safe natural materials that can help patients with hair loss. We evaluated the hair anagen activation effects of limonin, which is abundant in immature citrus [...] Read more.
Hair loss remains a significant problem that is difficult to treat; therefore, there is a need to identify safe natural materials that can help patients with hair loss. We evaluated the hair anagen activation effects of limonin, which is abundant in immature citrus fruits. Limonin increased the proliferation of rat dermal papilla cells (rDPC) by changing the levels of cyclin D1 and p27, and increasing the number of BrdU-positive cells. Limonin increased autophagy by decreasing phosphorylated mammalian target of rapamycin levels and increasing the phospho-Raptor, ATG7 and LC3B. Limonin also activated the Wnt/β-catenin pathway by increasing phospho-β-catenin levels. XAV939, a Wnt/β-catenin inhibitor, inhibited these limonin-induced changes, including induced autophagy, BrdU-positive cells, and cell proliferation. Limonin increased the phosphorylated AKT levels in both two-dimensional cultured rDPC and three-dimensional spheroids. Treatment with the PI3K inhibitor wortmannin inhibited limonin-induced proliferation, and disrupted other limonin-mediated changes, including decreased p27, increased BrdU-positive cells, induced autophagy, and increased ATG7 and LC3B levels. Wortmannin also inhibited limonin-induced cyclin D1 and LC3 expression in spheroids. Collectively, these results indicate that limonin can enhance anagen signaling by activating autophagy via targeting the Wnt/β-catenin and/or PI3K/AKT pathways in rDPC, highlighting a candidate nutrient for hair loss treatment. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

21 pages, 4636 KB  
Article
Anti-Alopecia Activity of Alkaloids Group from Noni Fruit against Dihydrotestosterone-Induced Male Rabbits and Its Molecular Mechanism: In Vivo and In Silico Studies
by Laila Susanti, Resmi Mustarichie, Eli Halimah, Dikdik Kurnia, Andi Setiawan and Yustinus Maladan
Pharmaceuticals 2022, 15(12), 1557; https://doi.org/10.3390/ph15121557 - 14 Dec 2022
Cited by 5 | Viewed by 7700
Abstract
Androgenic alopecia (AA) is a condition that most commonly affects adult men and is caused by an increase in the hormone dihydrotestosterone (DHT) in the hair follicles. Anti-alopecia drugs should be discovered for hair follicles to enter the anagen growth phase. Therefore, this [...] Read more.
Androgenic alopecia (AA) is a condition that most commonly affects adult men and is caused by an increase in the hormone dihydrotestosterone (DHT) in the hair follicles. Anti-alopecia drugs should be discovered for hair follicles to enter the anagen growth phase. Therefore, this study evaluated the hair growth-promoting activity of Noni fruit’s water, ethyl acetate, n-hexane fractions, and sub-fractions from the active fraction in the alopecia male white rabbit model. The Matias method was modified by inducing rabbits using DHT for 17 days, followed by topical application of Noni fruit solution for 21 days. Meanwhile, hair growth was evaluated by histological observation of the follicular density and the anagen/telogen (A/T) ratio in skin tissue. In the first stage, five groups of male white rabbits were studied to obtain the active fraction; DHT+Minoxidil as standard, DHT+vehicle (NaCMC 1%), DHT+FW, DHT+FEA, and DHT+FH. The FEA as the active fraction was followed by open-column chromatography separation (DCM:Methanol) with a gradient of 10% to produce sub-fractions. In the second stage, the six main sub-fraction groups of male rabbits studied were DHT+FEA-1 to DHT+FEA-6. The follicular density of groups FEA-3 was 78.00 ± 1.52 compared with 31.55 ± 1.64 and 80.12 ± 1.02 in the Vehicle and Minoxidil groups. Additionally, group FEA-3 showed large numbers of anagen follicles with an A/T ratio of 1.64/1 compared to the vehicle group of 1/1.50 and 1.39/1 for Minoxidil control. Group FEA-3 was identified by LC-MS/MS-QTOF, followed by molecular docking to the androgen receptor (PDB: 4K7A), causing alopecia. The results showed that three alkaloid compounds with skeleton piperazine and piperidine, namely (compounds 2 (−4.99 Kcal/mol), 3 (−4.60 Kcal/mol), and 4 (−4.57 Kcal/mol)) had a binding affinity similar to Minoxidil, with also has alkaloid skeleton piperidine–pyrimidine (−4.83 Kcal/mol). The dynamic behavior showed the stability of all androgen receptor compounds with good RMSD, SMSF, and SASA values after being studied with 100 ns molecular dynamics (MD) simulations. This study produced a common thread in discovering a class of alkaloid compounds as inhibitors of androgen receptors that cause alopecia. Full article
(This article belongs to the Special Issue Drug Candidates for the Treatment of Skin Diseases)
Show Figures

Figure 1

14 pages, 4929 KB  
Article
Pyruvate Kinase M2 Promotes Hair Regeneration by Connecting Metabolic and Wnt/β-Catenin Signaling
by Yeong Chan Ryu, You-Rin Kim, Jiyeon Park, Sehee Choi, Won-Ji Ryu, Geon-Uk Kim, Eunhwan Kim, Yumi Hwang, Heejene Kim, Gyoonhee Han, Soung-Hoon Lee and Kang-Yell Choi
Pharmaceutics 2022, 14(12), 2774; https://doi.org/10.3390/pharmaceutics14122774 - 13 Dec 2022
Cited by 7 | Viewed by 3266
Abstract
Hair follicle stem cells (HFSCs) utilize glycolytic metabolism during their activation and anagen induction. However, the role of pyruvate kinase M2 (PKM2), which catalyzes the final step of glycolysis, in hair regeneration has not been elucidated. In this study, we investigated the expression [...] Read more.
Hair follicle stem cells (HFSCs) utilize glycolytic metabolism during their activation and anagen induction. However, the role of pyruvate kinase M2 (PKM2), which catalyzes the final step of glycolysis, in hair regeneration has not been elucidated. In this study, we investigated the expression pattern and activity of PKM2 during the depilation-induced anagen progression in mice. We found that TEPP-46, a selective activator of PKM2, enhanced hair re-growth and proliferation of HFSCs. PKM2 expression was increased via up-regulation of Wnt/β-catenin signaling, which is involved in hair regeneration. Moreover, a combined treatment with KY19382, a small molecule that activates Wnt/β-catenin signaling, and TEPP-46 significantly enhanced hair re-growth and wound-induced hair follicle neogenesis (WIHN). These results indicate that simultaneous activation of the PKM2 and Wnt/β-catenin signaling could be a potential strategy for treating alopecia patients. Full article
(This article belongs to the Section Biologics and Biosimilars)
Show Figures

Figure 1

16 pages, 3410 KB  
Article
Hair Growth Regulation by Fibroblast Growth Factor 12 (FGF12)
by Jiwon Woo, Wonhee Suh and Jong-Hyuk Sung
Int. J. Mol. Sci. 2022, 23(16), 9467; https://doi.org/10.3390/ijms23169467 - 22 Aug 2022
Cited by 14 | Viewed by 5299
Abstract
The fibroblast growth factor (FGF) family has various biological functions, including cell growth, tissue regeneration, embryonic development, metabolism, and angiogenesis. In the case of hair growth, several members of the FGF family, such as FGF1 and FGF2, are involved in hair growth, while [...] Read more.
The fibroblast growth factor (FGF) family has various biological functions, including cell growth, tissue regeneration, embryonic development, metabolism, and angiogenesis. In the case of hair growth, several members of the FGF family, such as FGF1 and FGF2, are involved in hair growth, while FGF5 has the opposite effect. In this study, the regulation of the hair growth cycle by FGF12 was investigated. To observe its effect, the expression of FGF12 was downregulated in mice and outer root sheath (ORS) by siRNA transfection, while FGF12 overexpression was carried out using FGF12 adenovirus. For the results, FGF12 was primarily expressed in ORS cells with a high expression during the anagen phase of hair follicles. Knockdown of FGF12 delayed telogen-to-anagen transition in mice and decreased the hair length in vibrissae hair follicles. It also inhibited the proliferation and migration of ORS cells. On the contrary, FGF12 overexpression increased the migration of ORS cells. FGF12-overexpressed ORS cells induced the telogen-to-anagen transition in the animal model. In addition, FGF12 overexpression regulated the expression of PDGF-CC, MDK, and HB-EGF, and treatment of these factors exhibited hair growth promotion. Altogether, FGF12 promoted hair growth by inducing the anagen phase of hair follicles, suggesting the potential for hair loss therapy. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

19 pages, 1354 KB  
Review
Hair Loss and Telogen Effluvium Related to COVID-19: The Potential Implication of Adipose-Derived Mesenchymal Stem Cells and Platelet-Rich Plasma as Regenerative Strategies
by Pietro Gentile
Int. J. Mol. Sci. 2022, 23(16), 9116; https://doi.org/10.3390/ijms23169116 - 14 Aug 2022
Cited by 27 | Viewed by 8762
Abstract
The diffusion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inducing coronavirus disease 2019 (COVID-19) has increased the incidence of several dermatological disorders, including hair loss (HL). This article aims to review the literature regarding the incidence of HL and telogen effluvium (TE) [...] Read more.
The diffusion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inducing coronavirus disease 2019 (COVID-19) has increased the incidence of several dermatological disorders, including hair loss (HL). This article aims to review the literature regarding the incidence of HL and telogen effluvium (TE) in COVID-19 patients and critically appraise the available evidence regarding the role of regenerative strategies like Platelet-Rich Plasma (PRP) and Human Follicle Stem Cells (HFSCs). A literature review regarding the correlation of HL and TE in COVID-19 patients analyzing the biomolecular pathway involved and the role of regenerative strategies was performed using PubMed, MEDLINE, Embase, PreMEDLINE, Scopus, and the Cochrane databases. Observational studies revealed an escalated incidence of pattern HL and TE in COVID-19 patients. Psychological stress, systemic inflammation, and oxidative stress are potential culprits. Proinflammatory cytokines and stress hormones negatively affect the normal metabolism of proteoglycans. Reduced anagenic expression of proteoglycans is a potential mediating mechanism that connects HL to COVID-19. Currently, only one study has been published on PRP against HL in COVID-19 patients. Further controlled trials are required to confirm PRP and HFSCs efficacy in COVID-19 patients. Full article
Show Figures

Figure 1

16 pages, 1806 KB  
Article
Connarus semidecandrus Jack Exerts Anti-Alopecia Effects by Targeting 5α-Reductase Activity and an Intrinsic Apoptotic Pathway
by Won Young Jang, Dong Seon Kim, Sang Hee Park, Ji Hye Yoon, Chae Yun Shin, Lei Huang, Ket Nang, Masphal Kry, Hye-Woo Byun, Byoung-Hee Lee, Sarah Lee, Jongsung Lee and Jae Youl Cho
Molecules 2022, 27(13), 4086; https://doi.org/10.3390/molecules27134086 - 24 Jun 2022
Cited by 7 | Viewed by 4786
Abstract
There is a growing demand for hair loss treatments with minimal side effects and recurrence potential. Connarus semidecandrus Jack has been used as a folk medicine for fever in tropical regions, but its anti-alopecia effects remain unclear. In this study, the anti-androgenic alopecia [...] Read more.
There is a growing demand for hair loss treatments with minimal side effects and recurrence potential. Connarus semidecandrus Jack has been used as a folk medicine for fever in tropical regions, but its anti-alopecia effects remain unclear. In this study, the anti-androgenic alopecia effect of an ethanol extract of Connarus semidecandrus Jack (Cs-EE) was demonstrated in a testosterone-induced androgenic alopecia (AGA) model, in terms of the hair–skin ratio, hair type frequency, and hair thickness. The area of restored hair growth and thickened hair population after Cs-EE treatment showed the hair-growth-promoting effect of Cs-EE. Histological data support the possibility that Cs-EE could reduce hair loss and upregulate hair proliferation in mouse skin by shifting hair follicles from the catagen phase to the anagen phase. Western blotting indicated that Cs-EE reduced the expression of the androgenic receptor. Cs-EE treatment also inhibited programmed cell death by upregulating Bcl-2 expression at the mRNA and protein levels. The anti-alopecia effect of Cs-EE was confirmed by in vitro experiments showing that Cs-EE had suppressive effects on 5-α reductase activity and lymph node carcinoma of the prostate proliferation, and a proliferative effect on human hair-follicle dermal papilla (HDP) cells. Apoptotic pathways in HDP cells were downregulated by Cs-EE treatment. Thus, Cs-EE could be a potential treatment for AGA. Full article
(This article belongs to the Special Issue Natural Products for Cosmetic Applications)
Show Figures

Figure 1

8 pages, 2225 KB  
Article
Sostdc1 Secreted from Cutaneous Lymphatic Vessels Acts as a Paracrine Factor for Hair Follicle Growth
by Sun-Young Yoon and Michael Detmar
Curr. Issues Mol. Biol. 2022, 44(5), 2167-2174; https://doi.org/10.3390/cimb44050146 - 12 May 2022
Cited by 9 | Viewed by 4149
Abstract
In our previous study, we found that lymphatic vessels stimulate hair follicle growth through paracrine effects on dermal papilla cells. However, the paracrine factors secreted from cutaneous lymphatic vessels that can activate dermal papilla cells are still unknown. In this study, we investigated [...] Read more.
In our previous study, we found that lymphatic vessels stimulate hair follicle growth through paracrine effects on dermal papilla cells. However, the paracrine factors secreted from cutaneous lymphatic vessels that can activate dermal papilla cells are still unknown. In this study, we investigated whether lymphatic endothelial cells might secrete paracrine factors that activate dermal papilla cells in vitro. We found that Sostdc1 was more expressed in lymphatic endothelial cells compared with blood vascular endothelial cells. In addition, Sostdc1 expression levels were significantly increased during the anagen phase in the back skin of C57BL/6J mice, as compared to the telogen phase. We also observed that incubation of dermal papilla cells with 200 ng/mL Sostdc1 for 72 h induced the expression levels of Lef-1, a downstream target of Wnt signaling. Taken together, our results reveal that Sostdc1, a BMP antagonist, secreted from cutaneous lymphatic vessels, may act as a paracrine factor for hair follicle growth. Full article
Show Figures

Figure 1

Back to TopTop