Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = anagen elongation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2007 KiB  
Article
The Involvement of RIPK1 in Alopecia Areata
by Hyunju Kim, Mei Zheng, Seungchan An, In Guk Park, Leegu Song, Minsoo Noh and Jong-Hyuk Sung
Int. J. Mol. Sci. 2025, 26(4), 1565; https://doi.org/10.3390/ijms26041565 - 13 Feb 2025
Viewed by 1447
Abstract
We have previously demonstrated that receptor-interacting serine threonine kinase 1 (RIPK1) is expressed in hair follicles and regulates the hair cycle. In a mouse model, RIPK1 inhibitors also accelerated the telogen-to-anagen transition and elongated the anagen period. Here, we first investigated the involvement [...] Read more.
We have previously demonstrated that receptor-interacting serine threonine kinase 1 (RIPK1) is expressed in hair follicles and regulates the hair cycle. In a mouse model, RIPK1 inhibitors also accelerated the telogen-to-anagen transition and elongated the anagen period. Here, we first investigated the involvement of RIPK1 in alopecia areata (AA). The mRNA and protein expression of RIPK1 was increased in the skin of an AA mouse model. Single-cell RNA sequencing and immunohistochemistry showed that RIPK1 was highly increased in dendritic cells (DCs) and CD8+ T cells. RIPK1 inhibitors (i.e., Necrostatin-1s and GSK2982772) delayed the onset of AA in the mouse model and reduced the numbers of DCs and CD8+ T cells in AA skin. The RIPK1 inhibitors also increased the hair length in a mouse hair organ culture mimicking AA. Collectively, these results suggest that RIPK1 is involved in AA onset via modulating immune cells, and RIPK1 inhibitors could prevent AA onset. Full article
(This article belongs to the Special Issue Pathophysiology and New Therapies of Alopecia)
Show Figures

Graphical abstract

18 pages, 5405 KiB  
Article
Hair Thickness Growth Effect of Adenosine Complex in Male-/Female-Patterned Hair Loss via Inhibition of Androgen Receptor Signaling
by Jaeyoon Kim, Jae young Shin, Yun-Ho Choi, Jang Ho Joo, Mi Hee Kwack, Young Kwan Sung and Nae Gyu Kang
Int. J. Mol. Sci. 2024, 25(12), 6534; https://doi.org/10.3390/ijms25126534 - 13 Jun 2024
Cited by 3 | Viewed by 5942
Abstract
Aging (senescence) is an unavoidable biological process that results in visible manifestations in all cutaneous tissues, including scalp skin and hair follicles. Previously, we evaluated the molecular function of adenosine in promoting alopecia treatment in vitro. To elucidate the differences in the molecular [...] Read more.
Aging (senescence) is an unavoidable biological process that results in visible manifestations in all cutaneous tissues, including scalp skin and hair follicles. Previously, we evaluated the molecular function of adenosine in promoting alopecia treatment in vitro. To elucidate the differences in the molecular mechanisms between minoxidil (MNX) and adenosine, gene expression changes in dermal papilla cells were examined. The androgen receptor (AR) pathway was identified as a candidate target of adenosine for hair growth, and the anti-androgenic activity of adenosine was examined in vitro. In addition, ex vivo examination of human hair follicle organ cultures revealed that adenosine potently elongated the anagen stage. According to the severity of alopecia, the ratio of the two peaks (terminal hair area/vellus hair area) decreased continuously. We further investigated the adenosine hair growth promoting effect in vivo to examine the hair thickness growth effects of topical 5% MNX and the adenosine complex (0.75% adenosine, 1% penthenol, and 2% niacinamide; APN) in vivo. After 4 months of administration, both the MNX and APN group showed significant increases in hair density (MNX + 5.01% (p < 0.01), APN + 6.20% (p < 0.001)) and thickness (MNX + 5.14% (p < 0.001), APN + 10.32% (p < 0.001)). The inhibition of AR signaling via adenosine could have contributed to hair thickness growth. We suggest that the anti-androgenic effect of adenosine, along with the evaluation of hair thickness distribution, could help us to understand hair physiology and to investigate new approaches for drug development. Full article
Show Figures

Figure 1

14 pages, 4651 KiB  
Article
Effects of the Complex of Panicum miliaceum Extract and Triticum aestivum Extract on Hair Condition
by Nahyun Choi, Ki Cheon Kim, Pan-Young Jeong and Bumsik Kim
Nutrients 2023, 15(20), 4411; https://doi.org/10.3390/nu15204411 - 18 Oct 2023
Viewed by 4357
Abstract
Proso millet (Panicum miliaceum L.) and common wheat (Triticum aestivum L.) have been used as major crops in multiple regions since ancient times, and they contain various nutrients that can affect human hair health. This study investigated the various biological effects [...] Read more.
Proso millet (Panicum miliaceum L.) and common wheat (Triticum aestivum L.) have been used as major crops in multiple regions since ancient times, and they contain various nutrients that can affect human hair health. This study investigated the various biological effects of a complex of millet extract and wheat extract (MWC) on hair health. Human immortalized dermal papilla cells (iDPCs) for an in vitro study and an anagen-synchronized mouse model for an in vivo study were employed. These findings revealed that the application of the MWC in vitro led to an increase in the mRNA levels of antioxidant enzymes (catalase and SOD1), growth factors (IGF-1, VEGF, and FGF7), and factors related to hair growth (wnt10b, β-catenin) while decreasing inflammatory cytokine mRNA levels (IL-6 and TNFα). The mRNA levels of hair follicles (HFs) in the dorsal skin of the mouse model in the early and late telogen phases were also measured. The mRNA levels in the in vivo study showed a similar alteration tendency as in the in vitro study in the early and late telogen phases. In this model, MWC treatment elongated the anagen phase of the hair cycle. These findings indicate that the MWC can suppress oxidative stress and inflammation and may elongate the anagen phase by enhancing the growth factors involved in the wnt10b/β-catenin signaling pathway. This study suggests that the MWC might have significant potential as a functional food for maintaining hair health. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

13 pages, 3996 KiB  
Article
Dexpanthenol Promotes Cell Growth by Preventing Cell Senescence and Apoptosis in Cultured Human Hair Follicle Cells
by Jae Young Shin, Jaeyoon Kim, Yun-Ho Choi, Nae-Gyu Kang and Sanghwa Lee
Curr. Issues Mol. Biol. 2021, 43(3), 1361-1373; https://doi.org/10.3390/cimb43030097 - 28 Sep 2021
Cited by 27 | Viewed by 17743
Abstract
Dexpanthenol (D-panthenol) is a precursor of vitamin B5 (pantothenic acid) and is widely used for dietary supplements and topical applications. D-panthenol has long been used in hair care products for the purpose of anti-hair loss, its effects and the underlying mechanisms, however, were [...] Read more.
Dexpanthenol (D-panthenol) is a precursor of vitamin B5 (pantothenic acid) and is widely used for dietary supplements and topical applications. D-panthenol has long been used in hair care products for the purpose of anti-hair loss, its effects and the underlying mechanisms, however, were barely reported. In this study, the effects of D-panthenol on human hair follicle cells, including dermal papilla cells (hDPCs) and outer root sheath cells (hORSCs), were investigated. D-panthenol enhanced the cell viability, increasing the cellular proliferation marker Ki67 in cultured hDPCs. The markers for apoptosis (Caspase3/9) and cell senescence (p21/p16), reported to be expressed in aged or resting phase follicles, were significantly reduced by D-panthenol. Anagen-inducing factors (ALP; β-catenin; versican), which trigger or elongate the anagen phase, were stimulated by D-panthenol. On the other hand, D-panthenol reduced TGF-β1 expressions in both mRNA and protein levels. The expression of VEGF, which is important for peripheral blood vessel activation; was up-regulated by D-panthenol treatment. In cultured hORSCs, cell proliferation and viability were enhanced, while the mRNA expression of cell senescence markers (p21/p16) was significantly down-regulated. The expressions of both VEGF and its receptor (VEGFR) were up-regulated by D-panthenol. In conclusion, our data suggest that the hair growth stimulating activity of D-panthenol was exerted by increasing the cell viability, suppressing the apoptotic markers, and elongating the anagen phase in hair follicles. Full article
Show Figures

Figure 1

9 pages, 4389 KiB  
Article
A Treatment Combination of IGF and EGF Promotes Hair Growth in the Angora Rabbit
by Bohao Zhao, Jiali Li, Qiuran Chen, Naisu Yang, Zhiyuan Bao, Shuaishuai Hu, Yang Chen and Xinsheng Wu
Genes 2021, 12(1), 24; https://doi.org/10.3390/genes12010024 - 26 Dec 2020
Cited by 26 | Viewed by 4325
Abstract
The hair follicle (HF) growth cycle is a complex, multistep biological process, for which dysfunction affects hair-related diseases in humans and wool production in animals. In this study, a treatment combination of 10 ng/mL insulin-like growth factor-1 (IGF-1) and 20 ng/mL epidermal growth [...] Read more.
The hair follicle (HF) growth cycle is a complex, multistep biological process, for which dysfunction affects hair-related diseases in humans and wool production in animals. In this study, a treatment combination of 10 ng/mL insulin-like growth factor-1 (IGF-1) and 20 ng/mL epidermal growth factor (EGF) significantly increased the elongation length of hair shafts for cultured HFs. The combined treatment of IGF-1 and EGF enhanced the proliferation of HFs and promoted HF growth and development in vitro. In vivo, the combined treatment of IGF-1 and EGF was subcutaneously injected into the dorsal skin in HF synchronized rabbits. The IGF-1 and EGF combination promoted the transition of the hair cycle from telogen to anagen and stimulated the growth of hair shafts. This IGF-1 and EGF combination maintained the structure of the HF and enhanced the cell proliferation of outer root sheaths and the dermal papilla within rabbit skin. The combined treatment of IGF-1 and EGF regulated HF-related genes, including LEF1, CCND1 and WNT2, suggesting that IGF-1 and EGF play a positive role in HF growth and development. Utilization of the combined IGF-1 and EGF treatment may assist with hair and wool production and HF related diseases in mammals. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

15 pages, 2909 KiB  
Article
HNG, A Humanin Analogue, Promotes Hair Growth by Inhibiting Anagen-to-Catagen Transition
by Sung Min Kim, Jung-Il Kang, Hoon-Seok Yoon, Youn Kyung Choi, Ji Soo Go, Sun Kyung Oh, Meejung Ahn, Jeongtae Kim, Young Sang Koh, Jin Won Hyun, Eun-Sook Yoo and Hee-Kyoung Kang
Int. J. Mol. Sci. 2020, 21(12), 4553; https://doi.org/10.3390/ijms21124553 - 26 Jun 2020
Cited by 15 | Viewed by 5477
Abstract
The hair follicle goes through repetitive cycles including anagen, catagen, and telogen. The interaction of dermal papilla cells (DPCs) and keratinocytes regulates the hair cycle and hair growth. Humanin was discovered in the surviving brain cells of patients with Alzheimer’s disease. HNG, a [...] Read more.
The hair follicle goes through repetitive cycles including anagen, catagen, and telogen. The interaction of dermal papilla cells (DPCs) and keratinocytes regulates the hair cycle and hair growth. Humanin was discovered in the surviving brain cells of patients with Alzheimer’s disease. HNG, a humanin analogue, activates cell growth, proliferation, and cell cycle progression, and it protects cells from apoptosis. This study was performed to investigate the promoting effect and action mechanisms of HNG on hair growth. HNG significantly increased DPC proliferation. HNG significantly increased hair shaft elongation in vibrissa hair follicle organ culture. In vivo experiment showed that HNG prolonged anagen duration and inhibited hair follicle cell apoptosis, indicating that HNG inhibited the transition from the anagen to catagen phase mice. Furthermore, HNG activated extracellular signal-regulated kinase (Erk)1/2, Akt, and signal transducer and activator of transcription (Stat3) within minutes and up-regulated vascular endothelial growth factor (VEGF) levels on DPCs. This means that HNG could induce the anagen phase longer by up-regulating VEGF, which is a Stat3 target gene and one of the anagen maintenance factors. HNG stimulated the anagen phase longer with VEGF up-regulation, and it prevented apoptosis by activating Erk1/2, Akt, and Stat3 signaling. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

18 pages, 10689 KiB  
Article
Hair Growth Promoting Effect of 4HGF Encapsulated with PGA Nanoparticles (PGA-4HGF) by β-Catenin Activation and Its Related Cell Cycle Molecules
by Hye-Ji Lee, Ha-Kyoung Kwon, Hye Su Kim, Moon Il Kim and Hye-Jin Park
Int. J. Mol. Sci. 2019, 20(14), 3447; https://doi.org/10.3390/ijms20143447 - 13 Jul 2019
Cited by 18 | Viewed by 7579
Abstract
Poly-γ-glutamic acid (γ-PGA)-based nanoparticles draw remarkable attention as drug delivery agents due to their controlled release characteristics, low toxicity, and biocompatibility. 4HGF is an herbal mixture of Phellinus linteus grown on germinated brown rice, Cordyceps militaris grown on germinated soybeans, Polygonum multiflorum, [...] Read more.
Poly-γ-glutamic acid (γ-PGA)-based nanoparticles draw remarkable attention as drug delivery agents due to their controlled release characteristics, low toxicity, and biocompatibility. 4HGF is an herbal mixture of Phellinus linteus grown on germinated brown rice, Cordyceps militaris grown on germinated soybeans, Polygonum multiflorum, Ficus carica, and Cocos nucifera oil. Here, we encapsulated 4HGF within PGA-based hydrogel nanoparticles, prepared by simple ionic gelation with chitosan, to facilitate its penetration into hair follicles (HFs). In this study, we report the hair promoting activity of 4HGF encapsulated with PGA nanoparticles (PGA-4HGF) and their mechanism, compared to 4HGF alone. The average size of spherical nanoparticles was ~400 nm in diameter. Continuous release of PGA-4HGF was observed in a simulated physiological condition. As expected, PGA-4HGF treatment increased hair length, induced earlier anagen initiation, and elongated the duration of the anagen phase in C57BL/6N mice, compared with free 4HGF treatment. PGA-4HGF significantly increased dermal papilla cell proliferation and induced cell cycle progression. PGA-4HGF also significantly increased the total amount of β-catenin protein expression, a stimulator of the anagen phase, through induction of cyclinD1 and CDK4 protein levels, compared to free 4HGF treatment. Our findings underscore the potential of PGA nanocapsules to efficiently deliver 4HGF into HFs, hence promoting hair-growth. Therefore, PGA-4HGF nanoparticles may be promising therapeutic agents for hair growth disorders. Full article
(This article belongs to the Special Issue Cyclin-Dependent Kinases in Health and Diseases)
Show Figures

Graphical abstract

Back to TopTop