Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = anaerobiosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2851 KiB  
Article
Characterization of Tellurite Toxicity to Escherichia coli Under Aerobic and Anaerobic Conditions
by Roberto Luraschi, Claudia Muñoz-Villagrán, Fabián A. Cornejo, Benoit Pugin, Fernanda Contreras Tobar, Juan Marcelo Sandoval, Jaime Andrés Rivas-Pardo, Carlos Vera and Felipe Arenas
Int. J. Mol. Sci. 2025, 26(15), 7287; https://doi.org/10.3390/ijms26157287 - 28 Jul 2025
Viewed by 264
Abstract
Tellurite (TeO32−) is a highly soluble and toxic oxyanion that inhibits the growth of Escherichia coli at concentrations as low as ~1 µg/mL. This toxicity has been primarily attributed to the generation of reactive oxygen species (ROS) during its intracellular [...] Read more.
Tellurite (TeO32−) is a highly soluble and toxic oxyanion that inhibits the growth of Escherichia coli at concentrations as low as ~1 µg/mL. This toxicity has been primarily attributed to the generation of reactive oxygen species (ROS) during its intracellular reduction by thiol-containing molecules and NAD(P)H-dependent enzymes. However, under anaerobic conditions, E. coli exhibits significantly increased tellurite tolerance—up to 100-fold in minimal media—suggesting the involvement of additional, ROS-independent mechanisms. In this study, we combined chemical-genomic screening, untargeted metabolomics, and targeted biochemical assays to investigate the effects of tellurite under both aerobic and anaerobic conditions. Our findings reveal that tellurite perturbs amino acid and nucleotide metabolism, leading to intracellular imbalances that impair protein synthesis. Additionally, tellurite induces notable changes in membrane lipid composition, particularly in phosphatidylethanolamine derivatives, which may influence biophysical properties of the membrane, such as fluidity or curvature. This membrane remodeling could contribute to the increased resistance observed under anaerobic conditions, although direct evidence of altered membrane fluidity remains to be established. Overall, these results demonstrate that tellurite toxicity extends beyond oxidative stress, impacting central metabolic pathways and membrane-associated functions regardless of oxygen availability. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

10 pages, 228 KiB  
Brief Report
Anaerobiosis and Mutations Can Reduce Susceptibility of Pseudomonas aeruginosa to Tobramycin Without Reducing the Cellular Concentration of the Antibiotic
by Woravimol Krittaphol, Lois W. Martin, Greg F. Walker and Iain L. Lamont
Pathogens 2025, 14(2), 187; https://doi.org/10.3390/pathogens14020187 - 13 Feb 2025
Viewed by 884
Abstract
Chronic infections of Pseudomonas aeruginosa are commonly treated with tobramycin. During infections, the bacteria can exist under conditions of oxygen deprivation that render them less susceptible to this antibiotic. The aims of this research were to investigate the genetic basis of tobramycin resistance [...] Read more.
Chronic infections of Pseudomonas aeruginosa are commonly treated with tobramycin. During infections, the bacteria can exist under conditions of oxygen deprivation that render them less susceptible to this antibiotic. The aims of this research were to investigate the genetic basis of tobramycin resistance under anaerobic conditions, and to investigate the effects of anaerobiosis and mutations on the cellular concentration of tobramycin. Ten mutants with lowered susceptibility to tobramycin than wild-type bacteria were evolved from a laboratory reference strain under anaerobic conditions. Mutations were identified by genome sequencing. Mutations had arisen most frequently in the fusA1 gene that encodes elongation factor EF-G1A and in genes involved in twitching motility. Cellular concentrations of tobramycin were then measured. Mutations in fusA1 or absence of the MexXY efflux pump that is associated with tobramycin resistance did not alter the cellular tobramycin concentration under either anaerobic or aerobic conditions. Anaerobic growth reduced the cellular concentration of tobramycin, relative to aerobically grown bacteria, in some but not all of five tested P. aeruginosa isolates. Overall, our findings indicate that anaerobiosis and mutations that reduce aminoglycoside effectiveness do not lower the cellular concentration of antibiotic but instead reduce susceptibility through other mechanisms. Full article
(This article belongs to the Section Bacterial Pathogens)
12 pages, 1669 KiB  
Article
Dark Anaerobic Conditions Induce a Fast Induction of the Xanthophyll Cycle in Chlamydomonas reinhardtii When Exposed to High Light
by Cecilia Faraloni, Eleftherios Touloupakis and Giuseppe Torzillo
Microorganisms 2024, 12(11), 2264; https://doi.org/10.3390/microorganisms12112264 - 8 Nov 2024
Cited by 3 | Viewed by 1210
Abstract
Background: Dark anaerobiosis promotes the acidification of the thylakoid lumen and a reduction in the plastoquinone (PQ) pool. The relationship between the reduction in the PQ pool in the dark and the induction of the xanthophyll cycle under high light stress was investigated [...] Read more.
Background: Dark anaerobiosis promotes the acidification of the thylakoid lumen and a reduction in the plastoquinone (PQ) pool. The relationship between the reduction in the PQ pool in the dark and the induction of the xanthophyll cycle under high light stress was investigated in Chlamydomonas reinhardtii. Methods: To achieve a comprehensive oxidative/reductive (aerobic/anaerobic conditions) state of the PQ pool, cultures were bubbled with air or nitrogen for 4 h. To induce the xanthophyll cycle, the cultures were then irradiated with 1200 µmolphotons m−2 s−1 white light for 1 h. Results: The anaerobic cultures exhibited a stronger induction of the xanthophyll cycle with a 3.4-fold higher de-epoxidation state than the aerobic cultures. Chlorophyll fluorescence measurements showed that this response was influenced by the previous redox state of the PQ pool, and that dark anaerobiosis triggers physiological responses, such as exposure to high light. Thus, the photosynthetic apparatus in anaerobic cultures was already alerted, at the moment of high light exposure, to give an appropriate response to the stress with a stronger induction of the xanthophyll cycle than in aerobic cultures. Conclusions: Our results provide new information on the importance of the redox signaling pathway and highlight the importance of the reductive conditions of the PQ pool in regulating the physiological responses of photosynthetic organisms to stress. Full article
Show Figures

Figure 1

40 pages, 3306 KiB  
Systematic Review
Peri-Implantitis-Associated Microbiota before and after Peri-Implantitis Treatment, the Biofilm “Competitive Balancing” Effect: A Systematic Review of Randomized Controlled Trials
by Federica Di Spirito, Massimo Pisano, Maria Pia Di Palo, Gianluigi Franci, Antonio Rupe, Antonino Fiorino and Carlo Rengo
Microorganisms 2024, 12(10), 1965; https://doi.org/10.3390/microorganisms12101965 - 28 Sep 2024
Cited by 8 | Viewed by 2585
Abstract
This systematic review of RCTs aimed to characterize short- and long-term changes in peri-implantitis-associated microbiota (total biofilm microbial load and predominant pathogens’ counts) following (any) peri-implantitis treatment in systemically healthy, non-smoking, partially/totally edentulous adults. The study protocol, compliant with the PRISMA statement, was [...] Read more.
This systematic review of RCTs aimed to characterize short- and long-term changes in peri-implantitis-associated microbiota (total biofilm microbial load and predominant pathogens’ counts) following (any) peri-implantitis treatment in systemically healthy, non-smoking, partially/totally edentulous adults. The study protocol, compliant with the PRISMA statement, was registered on PROSPERO (CRD42024514521) before the literature search. Data from 11 RCTs, assessed through the ROBINS-2 tool, were qualitatively synthesized. No data were retrieved on total edentulism, healthy peri-implant/periodontal sites, treated mucositis, gingivitis, and periodontitis sites. Shortly after treatment, Prevotella intermedia, Fusobacterium nucleatum, and Peptostreptococcus micros prevailed, indicating early colonization, as after implant placement. After both surgical and non-surgical approaches, although not eradicated, the peri-implant total biofilm load, red- and orange-complex species, and Aggregatibacter actinomycetemcomitans counts generally decreased for up to about three months. However, one month after treatment, red-complex species and Prevotella intermedia increased, likely due to persistent tissue-invasive bacteria, unresolved pathological conditions (high probing depth values) favoring anaerobiosis and dysbiosis, and a qualitatively and quantitatively decreased biofilm community, competing and balancing the predominant pathogens (biofilm “competitive balancing” effect), thus allowing recolonization by more virulent bacteria. Red-complex bacteria gradually leveled off to baseline at the six- and twelve-month follow-ups. Fusobacterium nucleatum remained almost unchanged after treatment. Full article
Show Figures

Figure 1

12 pages, 797 KiB  
Review
Metal Toxicity: Effects on Energy Metabolism in Fish
by Natalia A. Gashkina
Int. J. Mol. Sci. 2024, 25(9), 5015; https://doi.org/10.3390/ijms25095015 - 3 May 2024
Cited by 13 | Viewed by 3266
Abstract
Metals are dispersed in natural environments, particularly in the aquatic environment, and accumulate, causing adverse effects on aquatic life. Moreover, chronic polymetallic water pollution is a common problem, and the biological effects of exposure to complex mixtures of metals are the most difficult [...] Read more.
Metals are dispersed in natural environments, particularly in the aquatic environment, and accumulate, causing adverse effects on aquatic life. Moreover, chronic polymetallic water pollution is a common problem, and the biological effects of exposure to complex mixtures of metals are the most difficult to interpret. In this review, metal toxicity is examined with a focus on its impact on energy metabolism. Mechanisms regulating adenosine triphosphate (ATP) production and reactive oxygen species (ROS) emission are considered in their dual roles in the development of cytotoxicity and cytoprotection, and mitochondria may become target organelles of metal toxicity when the transmembrane potential is reduced below its phosphorylation level. One of the main consequences of metal toxicity is additional energy costs, and the metabolic load can lead to the disruption of oxidative metabolism and enhanced anaerobiosis. Full article
(This article belongs to the Special Issue Mechanisms of Heavy Metal Toxicity 2.0)
Show Figures

Figure 1

15 pages, 5154 KiB  
Article
Lactic Acid Production by Enterococcus durans Is Improved by Cell Recycling and pH Control
by Raissa Gabriela Martins Reis Barroso, Mônica Caramez Triches Damaso, Fabricio Machado and Sílvia Belém Gonçalves
Fermentation 2024, 10(3), 149; https://doi.org/10.3390/fermentation10030149 - 6 Mar 2024
Cited by 2 | Viewed by 2781
Abstract
Lactic acid bacteria are widely used because they produce lactic acid naturally, are resistant to acidic pH and a wide temperature range, and frequently produce lactic acid as a primary metabolite. In this study, Enterococcus durans isolated from buffalo milk was employed in [...] Read more.
Lactic acid bacteria are widely used because they produce lactic acid naturally, are resistant to acidic pH and a wide temperature range, and frequently produce lactic acid as a primary metabolite. In this study, Enterococcus durans isolated from buffalo milk was employed in lactic acid fermentation with the primary goal of obtaining fermentation parameters for an effective process enabling the use of lactose as an alternative carbon source. Fermentative parameters such as initial concentration of carbon source, dissolved oxygen concentration, cell recycling, and batch with pulse operation mode were studied to find the best conditions for L-(+)-lactic acid production. The association of 20 g·L−1 of lactose with 10 g·L−1 of glucose enabled the best bioconversion to lactic acid. Anaerobiosis did not contribute to increasing lactic acid production. Batch fermentation with cell recycling was the strategy that enhanced lactic acid production and lactose consumption, reaching 26.07 g·L−1, 0.36 g·L−1·h−1 of productivity and yielding about 0.86 g·g−1. It is fundamental to evaluate the parameters of lactic acid fermentation and provide efficient and sustainable production methods. Full article
Show Figures

Figure 1

23 pages, 7149 KiB  
Article
Identification of XTH Family Genes and Expression Analysis of Endosperm Weakening in Lettuce (Lactuca sativa L.)
by Qi Zhang, Aixia Zhang, Le Yang, Jinpeng Wei, Jinlong Bei, Zhenjiang Xu, Xiaofeng Wang and Bingxian Chen
Agronomy 2024, 14(2), 324; https://doi.org/10.3390/agronomy14020324 - 1 Feb 2024
Cited by 7 | Viewed by 1875
Abstract
Seed germination requires the relaxation of endosperm cap and radicle cell walls, with cell wall hydrolases playing a significant role in this process. Our study revealed that a type of cell wall hydrolase, xyloglucan endotransglucosylase, may significantly contribute to endosperm weakening during lettuce [...] Read more.
Seed germination requires the relaxation of endosperm cap and radicle cell walls, with cell wall hydrolases playing a significant role in this process. Our study revealed that a type of cell wall hydrolase, xyloglucan endotransglucosylase, may significantly contribute to endosperm weakening during lettuce seed germination. Through bioinformatics analysis, the XTH gene family in lettuce was divided into five subfamilies localized on nine chromosomes. Notably, there were significant differences in gene structure among the members of the LsXTHs family containing 1–4 exons and 20 conserved motifs. Among these motifs, motif1, motif2, and motif3 encoded the XTH structural domain. The promoter regions of LsXTHs contained a large number of cis-acting elements responsive to various abiotic stresses, such as drought, anaerobiosis, low temperature, high temperature, and salt stress. Germination experiments showed that seeds imbibed in water and 5 μmol/L abscisic acid (ABA) were able to achieve typical germination with radicle protrusion from the endosperm cap, achieving germination of 100% and 36%, respectively. Conversely, in 0.3% sodium dichloroisocyanurate (SDIC), the swollen seeds were unable to germinate or complete atypical germination, resulting in a germination rate of 30%. Compared to the control, the mechanical strength of the endosperm cap of seeds imbibed in 0.3% SDIC for 8 h increased by 14%, indicating that SDIC may inhibit seed germination by enhancing the mechanical strength of the endosperm cap. Enzyme activity analysis revealed that during lettuce seed germination, XTH enzyme activity in the endosperm cap was significantly higher than in other tissues and increased gradually with imbibition. Transcriptome analysis of the endosperm cap detected the expression of 10 LsXTH genes. Among these, LsXTH43 exhibited the highest expression during germination and was significantly upregulated two-fold by high temperatures, suggesting a potential role in the high-temperature germination of lettuce seeds. Additionally, SDIC downregulated the expression of LsXTHs to varying degrees, with the expression of LsXTH15 reduced to only 6% of its original level. Low temperature, high temperature, drought, and salt stress all reduced the expression of most LsXTHs to different degrees; when seeds germinated under waterlogging and cadmium stress, LsXTH6, LsXTH7, LsXTH8, LsXTH32, and LsXTH33 were all upregulated to some extent. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

18 pages, 11791 KiB  
Article
Virulence of Pseudomonas aeruginosa in Cystic Fibrosis: Relationships between Normoxia and Anoxia Lifestyle
by Rosanna Papa, Esther Imperlini, Marika Trecca, Irene Paris, Gianluca Vrenna, Marco Artini and Laura Selan
Antibiotics 2024, 13(1), 1; https://doi.org/10.3390/antibiotics13010001 - 19 Dec 2023
Cited by 4 | Viewed by 2802
Abstract
The airways of cystic fibrosis (CF) patients are colonized by many pathogens and the most common is Pseudomonas aeruginosa, an environmental pathogen that is able to infect immunocompromised patients thanks to its ability to develop resistance to conventional antibiotics. Over 12% of [...] Read more.
The airways of cystic fibrosis (CF) patients are colonized by many pathogens and the most common is Pseudomonas aeruginosa, an environmental pathogen that is able to infect immunocompromised patients thanks to its ability to develop resistance to conventional antibiotics. Over 12% of all patients colonized by P. aeruginosa harbour multi-drug resistant species. During airway infection in CF, P. aeruginosa adopts various mechanisms to survive in a hostile ecological niche characterized by low oxygen concentration, nutrient limitation and high osmotic pressure. To this end, P. aeruginosa uses a variety of virulence factors including pigment production, biofilm formation, motility and the secretion of toxins and proteases. This study represents the first report that systematically analyzes the differences in virulence features, in normoxia and anoxia, of clinical P. aeruginosa isolated from CF patients, characterized by multi- or pan-drug antibiotic resistance compared to antibiotic sensitive strains. The virulence features, such as biofilm formation, protease secretion and motility, are highly diversified in anaerobiosis, which reflects the condition of chronic CF infection. These findings may contribute to the understanding of the real-world lifestyle of pathogens isolated during disease progression in each particular patient and to assist in the design of therapeutic protocols for personalized medicine. Full article
Show Figures

Figure 1

12 pages, 6229 KiB  
Article
Fungal Biodeterioration and Preservation of Miniature Artworks
by Valeria Ventorino, Antonietta La Storia, Alessandro Robertiello, Silvia Corsi, Ida Romano, Luigi Sannino and Olimpia Pepe
J. Fungi 2023, 9(11), 1054; https://doi.org/10.3390/jof9111054 - 27 Oct 2023
Cited by 4 | Viewed by 1983
Abstract
The study of biodeterioration is an important issue to allow the best conservation and prevent the decay of cultural heritage and artworks. In Naples (Italy), a particular museum (Museodivino) preserves the miniature artworks representing Dante’s Divine Comedy and Nativity scenes, executed with organic-based [...] Read more.
The study of biodeterioration is an important issue to allow the best conservation and prevent the decay of cultural heritage and artworks. In Naples (Italy), a particular museum (Museodivino) preserves the miniature artworks representing Dante’s Divine Comedy and Nativity scenes, executed with organic-based materials in walnut and clay shells. Since they showed putative signs of biodeterioration, the first aim of this study was to verify the presence of microbial colonization. A culture-dependent approach and molecular biology allowed us to isolate and identify the sole fungal strain Aspergillus NCCD (Nativity and Dante’s Divine Comedy) belonging to the A. sydowii sub-clade. Based on this result, a sustainable and eco-friendly approach was applied to find a method to preserve the miniature artwork by contrasting the growth of the strain NCCD. Several essential oils used as a natural biocide were tested against Aspergillus strain NCCD belonging to the A. sydowii subclade to determine their potential antimicrobial activity. Results revealed that basil, cloves, fennel, and thyme essential oils exerted antifungal activity, although their effect depended also on the concentration used. Moreover, anoxic treatment and the control of the relative humidity were used in the presence of thyme, in vitro, and in vivo assays to define the impact on fungal growth. No fungal development was detected in vivo in the shells treated with thyme essential oil at high relative humidity after 60 days of incubation at 28 °C. These results highlighted that although relative humidity was the major factor affecting the development of the strain Aspergillus NDDC, the application of thyme in an anaerobic environment is essential in contrasting the fungal growth. Identifying the biodeterioration agent allowed us to plan an eco-friendly, non-destructive approach to be successfully used to guarantee the conditions suitable for conserving miniature artwork. Full article
Show Figures

Figure 1

15 pages, 826 KiB  
Article
Optimization of the Use of Industrial Wastes in Anaerobic Soil Disinfestation for the Control of Fusarium Wilt in Strawberry
by Paloma Hernández-Muñiz, Celia Borrero, Javier Ordóñez-Martín, Ana M. Pastrana and Manuel Avilés
Plants 2023, 12(18), 3185; https://doi.org/10.3390/plants12183185 - 6 Sep 2023
Cited by 9 | Viewed by 1928
Abstract
Anaerobic soil disinfestation (ASD) is proposed as an alternative to the use of chemical fumigants against Fusarium wilt in strawberry crops. Different residual wastes (rice bran, fishmeal, and residual strawberry extrudate) were assessed as amendments for ASD. Two different concentrations and two incubation [...] Read more.
Anaerobic soil disinfestation (ASD) is proposed as an alternative to the use of chemical fumigants against Fusarium wilt in strawberry crops. Different residual wastes (rice bran, fishmeal, and residual strawberry extrudate) were assessed as amendments for ASD. Two different concentrations and two incubation durations were tested in growth chamber trials. The abundance of several microbial groups was noted before and after the treatments. Strawberry plants were grown in the treated soils to record Fusarium wilt disease severity. The population density of F. oxysporum increased after ASD in most amendments with rice bran and residual strawberry extrudate. Changes in Trichoderma spp., copiotrophic bacteria, and Streptomyces spp. populations were observed after anaerobiosis treatments and plant trials. A reduction in the disease severity was achieved in ASD-treated soils with 20 t/ha of rice bran at both 25 and 60 days of incubation, but not when using a 13.5 t/ha dose. Similarly, treatments using 19.3 t/ha of fishmeal for both incubation durations were able to reduce disease severity. In contrast, a severity reduction was only obtained in soils treated with 25.02 t/ha of the residual strawberry extrudate and incubated for 60 days in anaerobic conditions. Two of the three by-products tested were able to reduce Fusarium wilt symptoms in strawberry plants after an ASD-treatment period of only 25 days. Accordingly, the technique seems promising for strawberry growers in Huelva, Spain, and highly sustainable by giving value to residues produced in surrounding areas. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

16 pages, 1581 KiB  
Article
The Production of γ-Aminobutyric Acid from Free and Immobilized Cells of Levilactobacillus brevis Cultivated in Anaerobic and Aerobic Conditions
by Teresa Zotta, Immacolata Faraone, Marilisa Giavalisco, Eugenio Parente, Ludovica Lela, Livia Vanessa Storti and Annamaria Ricciardi
Microorganisms 2022, 10(11), 2184; https://doi.org/10.3390/microorganisms10112184 - 3 Nov 2022
Cited by 5 | Viewed by 2000
Abstract
γ-aminobutyric acid (GABA) has several beneficial effects on human health. GABA may be produced via chemical synthesis or through microbial metabolism, and Levilactobacillus brevis is recognized as a GABA-producing species. In this study, 11 Lvb. brevis strains were screened for GABA production, and [...] Read more.
γ-aminobutyric acid (GABA) has several beneficial effects on human health. GABA may be produced via chemical synthesis or through microbial metabolism, and Levilactobacillus brevis is recognized as a GABA-producing species. In this study, 11 Lvb. brevis strains were screened for GABA production, and the best producers were selected to verify the effect of aerobic (AE) and respiratory (RS) cultivations on growth parameters, biomass, and GABA accumulation. Lvb. brevis LB12 was then used to evaluate the combined effect of the incubation atmosphere (anaerobiosis vs. aerobiosis), cell protection (free vs. immobilized cells), and cell recycling (fresh vs. starved cells) on GABA production. Glutamate (GLU) consumption and GABA accumulation were detected by Thin-layer Chromatography (TLC) and RP-HPLC analyses. The ability to produce GABA was widespread among the strains. AE and RS growth improved biomass production, but oxygen availability impaired GLU to GABA conversion, and the anaerobically growing cells had the highest GABA productivity. Immobilized strains had lower efficiency in both GLU uptake and conversion compared to free cells, probably due to the poor diffusion in alginate beads. The use of resting cells allowed further GABA production without the cultivation step, but cell activity was exhausted after three cycles of reutilization. Lvb. brevis LB12 is an excellent GABA producer, and AE cultivation can be exploited to improve the final cell density; however, the conditions for boosting GLU to GABA conversion and cell regeneration need to be further investigated. Full article
Show Figures

Figure 1

14 pages, 3900 KiB  
Article
Activity of Drug Combinations against Mycobacterium abscessus Grown in Aerobic and Hypoxic Conditions
by Alessio Lanni, Emanuele Borroni, Angelo Iacobino, Cristina Russo, Leonarda Gentile, Lanfranco Fattorini and Federico Giannoni
Microorganisms 2022, 10(7), 1421; https://doi.org/10.3390/microorganisms10071421 - 14 Jul 2022
Cited by 14 | Viewed by 2771
Abstract
Infections caused by Mycobacterium abscessus (Mab), an environmental non-tuberculous mycobacterium, are difficult to eradicate from patients with pulmonary diseases such as cystic fibrosis and bronchiectasis even after years of antibiotic treatments. In these people, the low oxygen pressure in mucus and biofilm may [...] Read more.
Infections caused by Mycobacterium abscessus (Mab), an environmental non-tuberculous mycobacterium, are difficult to eradicate from patients with pulmonary diseases such as cystic fibrosis and bronchiectasis even after years of antibiotic treatments. In these people, the low oxygen pressure in mucus and biofilm may restrict Mab growth from actively replicating aerobic (A) to non-replicating hypoxic (H) stages, which are known to be extremely drug-tolerant. After the exposure of Mab A and H cells to drugs, killing was monitored by measuring colony-forming units (CFU) and regrowth in liquid medium (MGIT 960) of 1-day-old A cells (A1) and 5-day-old H cells (H5). Mab killing was defined as a lack of regrowth of drug-exposed cells in MGIT tubes after >50 days of incubation. Out of 18 drugs tested, 14-day treatments with bedaquiline-amikacin (BDQ-AMK)-containing three-drug combinations were very active against A1 + H5 cells. However, drug-tolerant cells (persisters) were not killed, as shown by CFU curves with typical bimodal trends. Instead, 56-day treatments with the nitrocompounds containing combinations BDQ-AMK-rifabutin-clarithromycin-nimorazole and BDQ-AMK-rifabutin-clarithromycin-metronidazole-colistin killed all A1 + H5 Mab cells in 42 and 56 days, respectively, as shown by lack of regrowth in agar and MGIT medium. Overall, these data indicated that Mab persisters may be killed by appropriate drug combinations. Full article
Show Figures

Figure 1

11 pages, 1099 KiB  
Communication
Differential Gene Expression of Mucor lusitanicus under Aerobic and Anaerobic Conditions
by Mónika Homa, Sandugash Ibragimova, Csilla Szebenyi, Gábor Nagy, Nóra Zsindely, László Bodai, Csaba Vágvölgyi, Gábor Nagy and Tamás Papp
J. Fungi 2022, 8(4), 404; https://doi.org/10.3390/jof8040404 - 15 Apr 2022
Cited by 8 | Viewed by 3209
Abstract
Mucor lusitanicus and some other members of the fungal order Mucorales display the phenomenon of morphological dimorphism. This means that these fungi aerobically produce filamentous hyphae, developing a coenocytic mycelium, but they grow in a multipolar yeast-like form under anaerobiosis. Revealing the molecular [...] Read more.
Mucor lusitanicus and some other members of the fungal order Mucorales display the phenomenon of morphological dimorphism. This means that these fungi aerobically produce filamentous hyphae, developing a coenocytic mycelium, but they grow in a multipolar yeast-like form under anaerobiosis. Revealing the molecular mechanism of the reversible yeast-hyphal transition can be interesting for both the biotechnological application and in the understanding of the pathomechanism of mucormycosis. In the present study, transcriptomic analyses were carried out after cultivating the fungus either aerobically or anaerobically revealing significant changes in gene expression under the two conditions. In total, 539 differentially expressed genes (FDR < 0.05, |log2FC| ≥ 3) were identified, including 190 upregulated and 349 downregulated transcripts. Within the metabolism-related genes, carbohydrate metabolism was proven to be especially affected. Anaerobiosis also affected the transcription of transporters: among the 14 up- and 42 downregulated transporters, several putative sugar transporters were detected. Moreover, a considerable number of transcripts related to amino acid transport and metabolism, lipid transport and metabolism, and energy production and conversion were proven to be downregulated when the culture had been transferred into an anaerobic atmosphere. Full article
(This article belongs to the Special Issue Fungi: What Have We Learned from Omics?)
Show Figures

Figure 1

9 pages, 1250 KiB  
Article
Difficulties Associated with Small-Scale Production of Carbonic Maceration Wines
by Pilar Santamaría, Lucía González-Arenzana, Rocío Escribano-Viana, Patrocinio Garijo, Rosa López, Susana Sanz and Ana Rosa Gutiérrez
Fermentation 2022, 8(1), 27; https://doi.org/10.3390/fermentation8010027 - 10 Jan 2022
Cited by 7 | Viewed by 2792
Abstract
The aim of the work was to study the vinification by carbonic maceration carried out in small volume tanks, because the use of these deposits is necessary in scientific studies where repetitions are mandatory. For this, vinifications were carried out in 300-kg tanks [...] Read more.
The aim of the work was to study the vinification by carbonic maceration carried out in small volume tanks, because the use of these deposits is necessary in scientific studies where repetitions are mandatory. For this, vinifications were carried out in 300-kg tanks with grapes of the Tempranillo variety. We studied the development of the alcoholic and malolactic fermentations and the microorganisms responsible for them. The results showed an alteration of the wines as a result of the low levels of yeast and the huge bacteria population. This was probably due to the difficulty in maintaining the necessary temperature and anaerobic conditions in the small tanks employed. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

12 pages, 1736 KiB  
Article
Nitric Oxide Induced stx2 Expression Is Inhibited by the Nitric Oxide Reductase, NorV, in a Clade 8 Escherichia coli O157:H7 Outbreak Strain
by Rim Al Safadi, Michelle L. Korir and Shannon D. Manning
Microorganisms 2022, 10(1), 106; https://doi.org/10.3390/microorganisms10010106 - 5 Jan 2022
Cited by 1 | Viewed by 1845
Abstract
Escherichia coli O157:H7 pathogenesis is due to Shiga toxin (Stx) production, though variation in virulence has been observed. Clade 8 strains, for instance, were shown to overproduce Stx and were more common among hemolytic uremic syndrome cases. One candidate gene, norV, which [...] Read more.
Escherichia coli O157:H7 pathogenesis is due to Shiga toxin (Stx) production, though variation in virulence has been observed. Clade 8 strains, for instance, were shown to overproduce Stx and were more common among hemolytic uremic syndrome cases. One candidate gene, norV, which encodes a nitric oxide (NO) reductase found in a clade 8 O157:H7 outbreak strain (TW14359), was thought to impact virulence. Hence, we screened for norV in 303 O157 isolates representing multiple clades, examined stx2 expression following NO exposure in TW14359 for comparison to an isogenic mutant (ΔnorV), and evaluated survival in THP-1 derived macrophages. norV was intact in strains representing clades 6–9, whereas a 204 bp deletion was found in clades 2 and 3. During anaerobic growth, NO induced stx2 expression in TW14359. A similar increase in stx2 expression was observed for the ΔnorV mutant in anaerobiosis, though it was not impaired in its ability to survive within macrophages relative to TW14359. Altogether, these data suggest that NO enhances virulence by inducing Stx2 production in TW14359, and that toxin production is inhibited by NorV encoded by a gene found in most clade 8 strains. The mechanism linked to these responses, however, remains unclear and likely varies across genotypes. Full article
Show Figures

Figure 1

Back to TopTop