Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = amphiphilic core shell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5075 KiB  
Article
Stabilization of Styrene Pickering Emulsions Using SiO2 Derived from Waste Cement
by Guomei Xu, Jihua Zhang, Defei Long, Huayang Wang, Hanjie Ying and Hongxue Xie
Materials 2025, 18(10), 2281; https://doi.org/10.3390/ma18102281 - 14 May 2025
Viewed by 404
Abstract
The initial focus of this study was placed on the conversion of waste into valuable substances. Waste cement was systematically processed to extract silica powder, which was subsequently functionalized with γ-aminopropyl-trimethoxy-silane (KH550) via covalent grafting. The surface-modified silica particles demonstrated optimized amphiphilicity for [...] Read more.
The initial focus of this study was placed on the conversion of waste into valuable substances. Waste cement was systematically processed to extract silica powder, which was subsequently functionalized with γ-aminopropyl-trimethoxy-silane (KH550) via covalent grafting. The surface-modified silica particles demonstrated optimized amphiphilicity for interfacial stabilization, as confirmed by contact angle measurements. When employed in styrene/water Pickering emulsions, these modified silica particles exhibited exceptional stabilization efficiency, enabling the synthesis of core–shell polystyrene/silica composite microspheres visualized by SEM. It was demonstrated by the results that the Pickering emulsions could be stabilized by SiO2 when the appropriate polarity and concentration were achieved. XRD revealed successful silica integration without crystalline phase alteration. Thermogravimetric analysis demonstrated significantly enhanced thermal stability (50.6% residual mass at 800 °C), indicating substantial flame retardancy potential. This waste-to-functional-material strategy not only addresses environmental concerns but also provides an economically viable pathway for advanced polymer composites. Full article
(This article belongs to the Special Issue Recovered or Recycled Materials for Composites and Other Materials)
Show Figures

Figure 1

18 pages, 5253 KiB  
Article
Targeted PHA Microsphere-Loaded Triple-Drug System with Sustained Drug Release for Synergistic Chemotherapy and Gene Therapy
by Shuo Wang, Chao Zhang, Huandi Liu, Xueyu Fan, Shuangqing Fu, Wei Li and Honglei Zhang
Nanomaterials 2024, 14(20), 1657; https://doi.org/10.3390/nano14201657 - 16 Oct 2024
Viewed by 1774
Abstract
The combination of paclitaxel (PTX) with other chemotherapy drugs (e.g., gemcitabine, GEM) or genetic drugs (e.g., siRNA) has been shown to enhance therapeutic efficacy against tumors, reduce individual drug dosages, and prevent drug resistance associated with single-drug treatments. However, the varying solubility of [...] Read more.
The combination of paclitaxel (PTX) with other chemotherapy drugs (e.g., gemcitabine, GEM) or genetic drugs (e.g., siRNA) has been shown to enhance therapeutic efficacy against tumors, reduce individual drug dosages, and prevent drug resistance associated with single-drug treatments. However, the varying solubility of chemotherapy drugs and genetic drugs presents a challenge in co-delivering these agents. In this study, nanoparticles loaded with PTX were prepared using the biodegradable polymer material poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). These nanoparticles were surface-modified with target proteins (Affibody molecules) and RALA cationic peptides to create core-shell structured microspheres with targeted and cationic functionalization. A three-drug co-delivery system (PTX@PHBHHx-ARP/siRNAGEM) were developed by electrostatically adsorbing siRNA chains containing GEM onto the microsphere surface. The encapsulation efficiency of PTX in the nanodrug was found to be 81.02%, with a drug loading of 5.09%. The chemogene adsorption capacity of siRNAGEM was determined to be 97.3%. Morphological and size characterization of the nanodrug revealed that PTX@PHBHHx-ARP/siRNAGEM is a rough-surfaced microsphere with a particle size of approximately 150 nm. This nanodrug exhibited targeting capabilities toward BT474 cells with HER2 overexpression while showing limited targeting ability toward MCF-7 cells with low HER2 expression. Results from the MTT assay demonstrated that PTX@PHBHHx-ARP/siRNAGEM exhibits high cytotoxicity and excellent combination therapy efficacy compared to physically mixed PTX/GEM/siRNA. Additionally, Western blot analysis confirmed that siRNA-mediated reduction of Bcl-2 expression significantly enhanced cell apoptosis mediated by PTX or GEM in tumor cells, thereby increasing cell sensitivity to PTX and GEM. This study presents a novel targeted nanosystem for the co-delivery of chemotherapy drugs and genetic drugs. Full article
Show Figures

Figure 1

19 pages, 4993 KiB  
Article
Nanosized Complexes of the Proteolytic Enzyme Serratiopeptidase with Cationic Block Copolymer Micelles Enhance the Proliferation and Migration of Human Cells
by Katya Kamenova, Anna Prancheva, Lyubomira Radeva, Krassimira Yoncheva, Maya M. Zaharieva, Hristo M. Najdenski and Petar D. Petrov
Pharmaceutics 2024, 16(8), 988; https://doi.org/10.3390/pharmaceutics16080988 - 25 Jul 2024
Cited by 4 | Viewed by 1265
Abstract
In this study, we describe the preparation of the cationic block copolymer nanocarriers of the proteolytic enzyme serratiopeptidase (SER). Firstly, an amphiphilic poly(2-(dimethylamino)ethyl methacrylate)-b-poly(ε-caprolactone)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA9-b-PCL35-b-PDMAEMA9) triblock copolymer was synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Then, [...] Read more.
In this study, we describe the preparation of the cationic block copolymer nanocarriers of the proteolytic enzyme serratiopeptidase (SER). Firstly, an amphiphilic poly(2-(dimethylamino)ethyl methacrylate)-b-poly(ε-caprolactone)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA9-b-PCL35-b-PDMAEMA9) triblock copolymer was synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Then, cationic micellar nanocarriers consisting of a PCL hydrophobic core and a PDMAEMA hydrophilic shell were formed by the solvent evaporation method. SER was loaded into the polymeric micelles by electrostatic interaction between the positively charged micellar shell and the negatively charged enzyme molecules. The particle size, zeta potential, and colloid stability of complexes as a function of SER concentration were investigated by dynamic and electrophoretic light scattering. It was found that SER retained its proteolytic activity after immobilization in polymeric carriers. Moreover, the complexes have a concentration-dependent enhancing effect on the proliferation and migration of human keratinocyte HaCaT and gingival fibroblast HGF cells. Full article
(This article belongs to the Special Issue Self-Assembled Amphiphilic Copolymers in Drug Delivery, 2nd Edition)
Show Figures

Figure 1

16 pages, 4396 KiB  
Article
Preparation, Characterization, and Antioxidant Properties of Self-Assembled Nanomicelles of Curcumin-Loaded Amphiphilic Modified Chitosan
by Qizhou Chen, Yuwei Jiang, Linlan Yuan, Lifen Liu, Xufeng Zhu, Rimeng Chen, Zhuo Wang, Kefeng Wu, Hui Luo and Qianqian Ouyang
Molecules 2024, 29(11), 2693; https://doi.org/10.3390/molecules29112693 - 6 Jun 2024
Cited by 5 | Viewed by 1884
Abstract
Curcumin (Cur) is a phytochemical with various beneficial properties, including antioxidant, anti-inflammatory, and anticancer activities. However, its hydrophobicity, poor bioavailability, and stability limit its application in many biological approaches. In this study, a novel amphiphilic chitosan wall material was synthesized. The process was [...] Read more.
Curcumin (Cur) is a phytochemical with various beneficial properties, including antioxidant, anti-inflammatory, and anticancer activities. However, its hydrophobicity, poor bioavailability, and stability limit its application in many biological approaches. In this study, a novel amphiphilic chitosan wall material was synthesized. The process was carried out via grafting chitosan with succinic anhydride (SA) as a hydrophilic group and deoxycholic acid (DA) as a hydrophobic group; 1H-NMR, FTIR, and XRD were employed to characterize the amphiphilic chitosan (CS—SA—DA). Using a low-cost, inorganic solvent-based procedure, CS—SA—DA was self-assembled to load Cur nanomicelles. This amphiphilic polymer formed self-assembled micelles with a core–shell structure and a critical micelle concentration (CMC) of 0.093 mg·mL−1. Cur-loaded nanomicelles were prepared by self-assembly and characterized by the Nano Particle Size Potential Analyzer and transmission electron microscopy (TEM). The mean particle size of the spherical Cur-loaded micelles was 770 nm. The drug entrapment efficiency and loading capacities were up to 80.80 ± 0.99% and 19.02 ± 0.46%, respectively. The in vitro release profiles of curcumin from micelles showed a constant release of the active drug molecule. Cytotoxicity studies and toxicity tests for zebrafish exhibited the comparable efficacy and safety of this delivery system. Moreover, the results showed that the entrapment of curcumin in micelles improves its stability, antioxidant, and anti-inflammatory activity. Full article
Show Figures

Figure 1

16 pages, 5930 KiB  
Article
Chondroitin Sulfate-Based Nanocapsules as Nanocarriers for Drugs and Nutraceutical Supplements
by Magdalena Górniewicz, Dawid Wnuk, Aleksander Foryś, Barbara Trzebicka, Marta Michalik and Mariusz Kepczynski
Int. J. Mol. Sci. 2024, 25(11), 5897; https://doi.org/10.3390/ijms25115897 - 28 May 2024
Cited by 4 | Viewed by 1541
Abstract
Oil-core nanocapsules (NCs, also known as nanoemulsions) are of great interest due to their application as efficient carriers of various lipophilic bioactives, such as drugs. Here, we reported for the first time the preparation and characterization of NCs consisting of chondroitin sulfate (CS)-based [...] Read more.
Oil-core nanocapsules (NCs, also known as nanoemulsions) are of great interest due to their application as efficient carriers of various lipophilic bioactives, such as drugs. Here, we reported for the first time the preparation and characterization of NCs consisting of chondroitin sulfate (CS)-based shells and liquid oil cores. For this purpose, two amphiphilic CS derivatives (AmCSs) were obtained by grafting the polysaccharide chain with octadecyl or oleyl groups. AmCS-based NCs were prepared by an ultrasound-assisted emulsification of an oil phase consisting of a mixture of triglyceride oil and vitamin E in a dispersion of AmCSs. Dynamic light scattering and cryo-transmission electron microscopy showed that the as-prepared core–shell NCs have typical diameters in the range of 30–250 nm and spherical morphology. Since CS is a strong polyanion, these particles have a very low surface potential, which promotes their stabilization. The cytotoxicity of the CS derivatives and CS-based NCs and their impact on cell proliferation were analyzed using human keratinocytes (HaCaTs) and primary human skin fibroblasts (HSFs). In vitro studies showed that AmCSs dispersed in an aqueous medium, exhibiting mild cytotoxicity against HaCaTs, while for HSFs, the harmful effect was observed only for the CS derivative with octadecyl side groups. However, the nanocapsules coated with AmCSs, especially those filled with vitamin E, show high biocompatibility with human skin cells. Due to their stability under physiological conditions, the high encapsulation efficiency of their hydrophobic compounds, and biocompatibility, AmCS-based NCs are promising carriers for the topical delivery of lipophilic bioactive compounds. Full article
Show Figures

Figure 1

12 pages, 3858 KiB  
Article
Wide Temperature Stability of BaTiO3-NaNbO3-Gd2O3 Dielectric Ceramics with Grain Core–Shell Structure
by Zicheng Zhao, Yaoning Bai, Mingwei Li and Huiming Ji
Crystals 2024, 14(6), 488; https://doi.org/10.3390/cryst14060488 - 23 May 2024
Cited by 2 | Viewed by 1496
Abstract
As consumer electronics and industrial control systems continue to evolve, the operating temperature range of capacitors is gradually increasing. Barium titanate-based ceramic capacitors are widely used in the field of high dielectrics, so temperature-stable barium titanate-based dielectric materials have been a hot research [...] Read more.
As consumer electronics and industrial control systems continue to evolve, the operating temperature range of capacitors is gradually increasing. Barium titanate-based ceramic capacitors are widely used in the field of high dielectrics, so temperature-stable barium titanate-based dielectric materials have been a hot research topic in the field of dielectric ceramics. The construction of a core–shell structure by unequal doping is an effective way to obtain temperature-stable dielectric materials. At the same time, this structure retains part of the highly dielectric tetragonal phase, and materials with overall high dielectric constants can be obtained. In this work, we prepared BaTiO3-xNaNbO3-0.002Gd2O3 (x = 1.0–6.0 mol%) as well as BaTiO3-0.05NaNbO3-yGd2O3 (y = 0–0.30 mol%) dielectric ceramics. On the basis of high-electronic-bandgap NaNbO3-modified BaTiO3 dielectric ceramics, a core–shell structure with a larger proportion of core phase was obtained by further doping the amphiphilic rare-earth oxide Gd2O3. By designing this core–shell structure, the temperature stability range of capacitors can be expanded. At a doping level of 5.0 mol% NaNbO3 and 0.20 mol% Gd2O3, the room temperature dielectric constant εr = 4266 and dielectric loss tan δ = 0.95% conforms to the X8R standard (from −55 °C to 150 °C, TCC < ±15%); volume resistivity ρv = 10,200 GΩ·cm and breakdown strength Eb = 13.5 kV/mm is attained in BaTiO3-based ceramics. The system has excellent dielectric and insulating properties; it provides a new solution for temperature-stable dielectric ceramics. Full article
(This article belongs to the Special Issue Advanced Ferroelectric, Piezoelectric and Dielectric Ceramics)
Show Figures

Figure 1

13 pages, 1613 KiB  
Article
Hydrophobin-Coated Perfluorocarbon Microbubbles with Strong Non-Linear Acoustic Response
by Valentina Dichiarante, Giuseppina Salzano, Philippe Bussat, Emmanuel Gaud, Samir Cherkaoui and Pierangelo Metrangolo
Chemistry 2024, 6(2), 299-311; https://doi.org/10.3390/chemistry6020016 - 26 Mar 2024
Cited by 2 | Viewed by 2008
Abstract
Gas-filled microbubbles are well-established contrast agents for ultrasound imaging and widely studied as delivery systems for theranostics. Herein, we have demonstrated the promising potential of the hydrophobin HFBII—a fungal amphiphilic protein—in stabilizing microbubbles with various fluorinated core gases. A thorough screening of several [...] Read more.
Gas-filled microbubbles are well-established contrast agents for ultrasound imaging and widely studied as delivery systems for theranostics. Herein, we have demonstrated the promising potential of the hydrophobin HFBII—a fungal amphiphilic protein—in stabilizing microbubbles with various fluorinated core gases. A thorough screening of several experimental parameters was performed to find the optimized conditions regarding the preparation technique, type of core gas, HFBII initial concentration, and protein dissolution procedure. The best results were obtained by combining perfluorobutane (C4F10) gas with 1 mg/mL of aqueous HFBII, which afforded a total bubble concentration higher than 109 bubbles/mL, with long-term stability in solution (at least 3 h). Acoustic characterization of such microbubbles in the typical ultrasound frequency range used for diagnostic imaging showed the lower pressure resistance of HFBII microbubbles, if compared to conventional ones stabilized by phospholipid shells, but, at the same time, revealed strong non-linear behavior, with a significant harmonic response already at low acoustic pressures. These findings suggest the possibility of further improving the performance of HFBII-coated perfluorinated gas microbubbles, for instance by mixing the protein with other stabilizing agents, e.g., phospholipids, in order to tune the viscoelastic properties of the outer shell. Full article
Show Figures

Graphical abstract

16 pages, 6808 KiB  
Article
The Effect of Colloidal Nanoparticles on Phase Separation of Block and Heteroarm Star Copolymers Confined between Polymer Brushes
by Minna Sun, Wenyu Chen, Lei Qin and Xu-Ming Xie
Materials 2024, 17(4), 804; https://doi.org/10.3390/ma17040804 - 7 Feb 2024
Cited by 2 | Viewed by 1588
Abstract
The effect of colloidal nanoparticles on the phase changes of the amphiphilic AB linear diblock, A1A2B, and A2B heteroarm star copolymers confined between two polymer brush substrates was investigated by using a real-space self-consistent field theory. By [...] Read more.
The effect of colloidal nanoparticles on the phase changes of the amphiphilic AB linear diblock, A1A2B, and A2B heteroarm star copolymers confined between two polymer brush substrates was investigated by using a real-space self-consistent field theory. By changing the concentrations of nanoparticles and polymer brushes, the phase structure of the amphiphilic AB copolymer transforms from lamellar to core-shell hexagonal phase to cylinder phase. The pattern of A2B heteroarm star copolymer changes from core-shell hexagonal phases to lamellar phases and the layer decreases when increasing the density of the polymer brushes. The results showed that the phase behavior of the system is strongly influenced by the polymer brush architecture and the colloidal nanoparticle numbers. The colloidal nanoparticles and the soft confined surface of polymer brushes make amphiphilic AB copolymers easier to form ordered structures. The dispersion of the nanoparticles was also investigated in detail. The soft surfaces of polymer brushes and the conformation of the block copolymers work together to force the nanoparticles to disperse evenly. It will give helpful guidance for making some new functional materials by nano etching technology, nano photoresist, and nanoprinting. Full article
(This article belongs to the Special Issue Feature Paper in the Section 'Polymeric Materials' (2nd Edition))
Show Figures

Figure 1

12 pages, 2529 KiB  
Article
Tailoring Properties of Hyaluronate-Based Core–Shell Nanocapsules with Encapsulation of Mixtures of Edible Oils
by Justyna Bednorz, Krzysztof Smela and Szczepan Zapotoczny
Int. J. Mol. Sci. 2023, 24(19), 14995; https://doi.org/10.3390/ijms241914995 - 8 Oct 2023
Cited by 4 | Viewed by 1399
Abstract
Dispersions of core–shell nanocapsules (nanoemulsion) composed of liquid oil cores and polysaccharide-based shells were fabricated with emulsification using various mixtures of edible oils and amphiphilic hyaluronate derivatized with 12-carbon alkyl chains forming the shells. Such nanocapsules, with typical diameters in the 100–500 nm [...] Read more.
Dispersions of core–shell nanocapsules (nanoemulsion) composed of liquid oil cores and polysaccharide-based shells were fabricated with emulsification using various mixtures of edible oils and amphiphilic hyaluronate derivatized with 12-carbon alkyl chains forming the shells. Such nanocapsules, with typical diameters in the 100–500 nm range, have been previously shown as promising carriers of lipophilic bioactive compounds. Here, the influence of some properties of the oil cores on the size and stability of the capsules were systematically investigated using oil binary mixtures. The results indicated that, in general, the lower the density, viscosity, and interfacial tension (IFT) between the oil and aqueous polymer solution phases, the smaller the size of the capsules. Importantly, an unexpected synergistic reduction of IFT of mixed oils was observed leading to the values below the measured for individual oils. Such a behavior may be used to tailor size but also other properties of the nanocapsules (e.g., stability, solubility of encapsulated compounds) that could not be achieved applying just a single oil. It is in high demand for applications in pharmaceutical or food industries and opens opportunities of using more complex combinations of oils with more components to achieve an even further reduction of IFT leading to even smaller nanocapsules. Full article
Show Figures

Figure 1

13 pages, 3413 KiB  
Communication
PEGA-BA@Ce6@PFCE Micelles as Oxygen Nanoshuttles for Tumor Hypoxia Relief and Enhanced Photodynamic Therapy
by Junan Zhang, Xiaoyun Jiang, Wenyue Luo, Yongjie Mo, Chunyan Dai and Linhua Zhu
Molecules 2023, 28(18), 6697; https://doi.org/10.3390/molecules28186697 - 19 Sep 2023
Cited by 1 | Viewed by 1584
Abstract
Tumor hypoxia, which is mainly caused by the inefficient microvascular systems induced by rapid tumor growth, is a common characteristic of most solid tumors and has been found to hinder treatment outcomes for many types of cancer therapeutics. In this study, an amphiphilic [...] Read more.
Tumor hypoxia, which is mainly caused by the inefficient microvascular systems induced by rapid tumor growth, is a common characteristic of most solid tumors and has been found to hinder treatment outcomes for many types of cancer therapeutics. In this study, an amphiphilic block copolymer, poly (ethylene glycol) methyl ether acrylate-block-n-butyl acrylate (PEGA-BA), was prepared via the ATRP method and self-assembled into core-shell micelles as nano radiosensitizers. These micelles encapsulated a photosensitizer, Chlorin e6 (Ce6), and demonstrated well-defined morphology, a uniform size distribution, and high oxygen loading capacity. Cell experiments showed that PEGA-BA@Ce6@PFCE micelles could effectively enter cells. Further in vitro anticancer studies demonstrated that the PEGA-BA@Ce6@PFCE micelles significantly suppressed the tumor cell survival rate when exposed to a laser. Full article
Show Figures

Figure 1

16 pages, 3154 KiB  
Article
Synthesis and Characterization of Ciprofloxacin Loaded Star-Shaped Polycaprolactone–Polyethylene Glycol Hydrogels for Oral Delivery
by Wan Khartini Wan Abdul Khodir, Mohamad Wafiuddin Ismail, Shafida Abd Hamid, Rusli Daik, Deny Susanti, Muhammad Taher and Vincenzo Guarino
Micromachines 2023, 14(7), 1382; https://doi.org/10.3390/mi14071382 - 6 Jul 2023
Cited by 1 | Viewed by 1996
Abstract
The administration of poorly water-soluble drugs represents a relevant problem due to the low body fluids transport efficiency through hydrophilic hydrogels. Star-shaped co-polymers, i.e., amphiphilic polymers such as those with a hydrophobic core and a hydrophilic outer shell, can be used to improve [...] Read more.
The administration of poorly water-soluble drugs represents a relevant problem due to the low body fluids transport efficiency through hydrophilic hydrogels. Star-shaped co-polymers, i.e., amphiphilic polymers such as those with a hydrophobic core and a hydrophilic outer shell, can be used to improve weak interactions with drugs, with relevant benefits in terms of administration and controlled delivery. In this work, two different co-polymers, four-arm star-shaped PCL–PEG and six-arm star-shaped PCL–PEG, were synthesized via ring-opening polymerization to be loaded with ciprofloxacin. 1H-NMR and FTIR analyses confirmed that PCL arms were successfully grafted to the mPEG backbone, while DSC analysis indicated similar crystallinity and melting point, ranging from 56 to 60 °C, independent of the different co-polymer architecture. Therefore, both star-shaped PCL-PEGs were investigated as cargo device for ciprofloxacin. No significant differences were observed in terms of drug entrapment efficiency (>95%) and drug release, characterized by a pronounced burst followed by a slow sustained release, only slightly affected by the co-polymer architecture. This result was also confirmed with curve fitting via the Korsmeyer–Peppas model. Lastly, good antibacterial properties and biocompatibility exhibited in both star-shaped PCL–PEG co-polymers suggest a promising use for oral delivery applications. Full article
Show Figures

Figure 1

18 pages, 9751 KiB  
Article
Novel Fluorescent Benzimidazole-Hydrazone-Loaded Micellar Carriers for Controlled Release: Impact on Cell Toxicity, Nuclear and Microtubule Alterations in Breast Cancer Cells
by Rayna Bryaskova, Nikolai Georgiev, Nikoleta Philipova, Ventsislav Bakov, Kameliya Anichina, Maria Argirova, Sonia Apostolova, Irina Georgieva and Rumiana Tzoneva
Pharmaceutics 2023, 15(6), 1753; https://doi.org/10.3390/pharmaceutics15061753 - 16 Jun 2023
Cited by 4 | Viewed by 2222
Abstract
Fluorescent micellar carriers with controlled release of a novel anticancer drug were developed to enable intracellular imaging and cancer treatment simultaneously. The nanosized fluorescent micellar systems were embedded with a novel anticancer drug via the self-assembling behavior of well-defined block copolymers based on [...] Read more.
Fluorescent micellar carriers with controlled release of a novel anticancer drug were developed to enable intracellular imaging and cancer treatment simultaneously. The nanosized fluorescent micellar systems were embedded with a novel anticancer drug via the self-assembling behavior of well-defined block copolymers based on amphiphilic poly(acrylic acid)-block-poly(n-butyl acrylate) (PAA-b-PnBA) copolymer obtained by Atom Transfer Radical Polymerization (ATRP) and hydrophobic anticancer benzimidazole-hydrazone drug (BzH). Through this method, well-defined nanosized fluorescent micelles were obtained consisting of a hydrophilic PAA shell and a hydrophobic PnBA core embedded with the BzH drug due to the hydrophobic interactions, thus reaching very high encapsulation efficiency. The size, morphology, and fluorescent properties of blank and drug-loaded micelles were investigated using dynamic light scattering (DLS), transmission electron microscopy (TEM), and fluorescent spectroscopy, respectively. Additionally, after 72 h of incubation, drug-loaded micelles released 3.25 μM of BzH, which was spectrophotometrically determined. The BzH drug-loaded micelles were found to exhibit enhanced antiproliferative and cytotoxic effects on MDA-MB-231 cells, with long-lasting effects on microtubule organization, with apoptotic alterations and preferential localization in the perinuclear space of cancer cells. In contrast, the antitumor effect of BzH alone or incorporated in micelles on non-cancerous cells MCF-10A was relatively weak. Full article
(This article belongs to the Special Issue Application of Polymeric Micelles for Drug and Gene Delivery)
Show Figures

Figure 1

15 pages, 3372 KiB  
Article
Well-Defined Shell-Sheddable Core-Crosslinked Micelles with pH and Oxidation Dual-Response for On-Demand Drug Delivery
by Xinfeng Cheng, Qiyang Li, Xiaomeng Sun, Yuxin Ma, Huanping Xie, Weiguang Kong, Xianchao Du, Zhenghui Zhang, Dongfang Qiu and Yong Jin
Polymers 2023, 15(9), 1990; https://doi.org/10.3390/polym15091990 - 23 Apr 2023
Cited by 8 | Viewed by 2319
Abstract
Micellar-nanocarrier-based drug delivery systems possessing characteristics such as an excellent circulation stability, inhibited premature release and on-demand site-specific release are urgently needed for enhanced therapeutic efficacy. Therefore, a novel kind of shell-sheddable core-crosslinked polymeric micelles with pH and oxidation dual-triggered on-demand drug release [...] Read more.
Micellar-nanocarrier-based drug delivery systems possessing characteristics such as an excellent circulation stability, inhibited premature release and on-demand site-specific release are urgently needed for enhanced therapeutic efficacy. Therefore, a novel kind of shell-sheddable core-crosslinked polymeric micelles with pH and oxidation dual-triggered on-demand drug release behavior was facilely constructed. The multifunctional micelles were self-assembled from a carefully designed amphiphilic triblock PEGylated polyurethane (PEG-acetal-PUBr-acetal-PEG) employing an acid-labile acetal linker at the hydrophilic–hydrophobic interface and pendant reactive bromo-containing polyurethane (PU) as the hydrophobic block, followed by a post-crosslinking via oxidation-cleavable diselenide linkages. These well-defined micelles exhibited an enhanced structural stability against dilution, achieved through the incorporation of diselenide crosslinkers. As expected, they were found to possess dual pH- and oxidation-responsive dissociation behaviors when exposure to acid pH (~5.0) and 50 mM H2O2 conditions, as evidenced using dynamic light-scattering (DLS) and atomic force microscopy (AFM) analyses. An in vitro drug release investigation showed that the drug indomethacin (IND) could be efficiently encapsulated in the micelles, which demonstrated an inhibited premature release compared to the non-crosslinked ones. It is noteworthy that the resulting micelles could efficiently release entrapped drugs at a fast rate in response to either pH or oxidation stimuli. Moreover, the release could be significantly accelerated in the presence of both acid pH and oxidation conditions, relative to a single stimulus, owing to the synergetic degradation of micelles through pH-induced dePEGylation and oxidation-triggered decrosslinking processes. The proposed shell-sheddable core-crosslinked micelles with a pH and oxidation dual-response could be potential candidates as drug carriers for on-demand drug delivery. Full article
(This article belongs to the Special Issue Polymeric Materials for Drug Delivery II)
Show Figures

Figure 1

19 pages, 4462 KiB  
Article
Unimolecular Micelles from Randomly Grafted Arborescent Copolymers with Different Core Branching Densities: Encapsulation of Doxorubicin and In Vitro Release Study
by Mosa Alsehli and Mario Gauthier
Materials 2023, 16(6), 2461; https://doi.org/10.3390/ma16062461 - 20 Mar 2023
Cited by 3 | Viewed by 2037
Abstract
A series of amphiphilic arborescent copolymers of generations G1 and G2 with an arborescent poly(γ-benzyl L-glutamate) (PBG) core and poly(ethylene oxide) (PEO) chain segments in the shell, PBG-g-PEO, were synthesized and evaluated as drug delivery nanocarriers. The PBG building blocks were [...] Read more.
A series of amphiphilic arborescent copolymers of generations G1 and G2 with an arborescent poly(γ-benzyl L-glutamate) (PBG) core and poly(ethylene oxide) (PEO) chain segments in the shell, PBG-g-PEO, were synthesized and evaluated as drug delivery nanocarriers. The PBG building blocks were generated by ring-opening polymerization of γ-benzyl L-glutamic acid N-carboxyanhydride (Glu-NCA) initiated with n-hexylamine. Partial or full deprotection of the benzyl ester groups followed by coupling with PBG chains yielded a comb-branched (arborescent polymer generation zero or G0) PBG structure. Additional cycles of deprotection and grafting provided G1 and G2 arborescent polypeptides. Side chains of poly(ethylene oxide) were then randomly grafted onto the arborescent PBG substrates to produce amphiphilic arborescent copolymers. Control over the branching density of G0PBG was investigated by varying the length and the deprotection level of the linear PBG substrates used in their synthesis. Three G0PBG cores with different branching densities, varying from a compact and dense to a loose and more porous structure, were thus synthesized. These amphiphilic copolymers behaved similar to unimolecular micelles in aqueous solutions, with a unimodal number- and volume-weighted size distributions in dynamic light scattering measurements. It was demonstrated that these biocompatible copolymers can encapsulate hydrophobic drugs such as doxorubicin (DOX) within their hydrophobic core with drug loading efficiencies of 42–65%. Sustained and pH-responsive DOX release was observed from the unimolecular micelles, which suggests that they could be useful as drug nanocarriers for cancer therapy. Full article
(This article belongs to the Special Issue Νanoparticles for Biomedical Applications)
Show Figures

Graphical abstract

16 pages, 3588 KiB  
Article
Effects of an Amphiphilic Micelle of Diblock Copolymer on Water Adsorption of Cement Paste
by Lei Dong, Fei Meng, Pan Feng, Qianping Ran, Chonggen Pan and Jianming He
Materials 2023, 16(6), 2190; https://doi.org/10.3390/ma16062190 - 9 Mar 2023
Cited by 2 | Viewed by 1900
Abstract
To reduce the inhibiting effects of polystyrene-based emulsion on the hydration process and strength development of cementitious materials, an amphiphilic diblock copolymer polystyrene-block-poly(acrylic acid) (PS-b-PAA) was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization and demonstrated in cement paste [...] Read more.
To reduce the inhibiting effects of polystyrene-based emulsion on the hydration process and strength development of cementitious materials, an amphiphilic diblock copolymer polystyrene-block-poly(acrylic acid) (PS-b-PAA) was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization and demonstrated in cement paste system for improving the resistance to water absorption without significantly reducing 28-day compressive strength. Firstly, the dissolved PS-b-PAA was added into water, and it quickly self-assembled into amphiphilic 80 nm-sized micelles with hydrophobic polystyrene-based core and hydrophilic poly(acrylic acid)-based shell. The improved dispersion compared to that of polystyrene emulsion may minimize the inhibiting effects on strength development, as the effects of PS-b-PAA micelle as hydrophobic admixtures on rheological properties, compressive strength, water absorption, hydration process, and pore structure of 28-day cement pastes were subsequently investigated. In comparison with the control sample, the saturated water absorption amount of cement pastes with 0.4% PS-b-PAA was reduced by 20%, and the 28-day compressive strength was merely reduced by 2.5%. Besides, the significantly increased hydrophobicity instead of slightly decreased porosity of cement paste with PS-b-PAA may contribute more to the reduced water adsorption characteristics. The study based on prepared PS-b-PAA micelle suggested a promising alternative strategy for fabricating polystyrene-modified concrete with reduced water absorption and unaffected compressive strength. Full article
(This article belongs to the Special Issue Advances of Chemical Admixtures for Modern Concrete)
Show Figures

Figure 1

Back to TopTop