Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = amphibious robot

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 10685 KiB  
Article
Development of a Cuttlefish-Inspired Amphibious Robot with Wave-Motion Propulsion and Rigid–Flexible Coupling
by Yichao Gao, Felix Pancheri, Tim C. Lueth and Yilun Sun
Biomimetics 2025, 10(6), 396; https://doi.org/10.3390/biomimetics10060396 - 12 Jun 2025
Viewed by 475
Abstract
Amphibious robots require efficient locomotion strategies to enable smooth transitions between terrestrial and aquatic environments. Drawing inspiration from the undulatory movements of aquatic organisms such as cuttlefish and knifefish, this study introduces a bio-inspired propulsion system that emulates natural wave-based locomotion to improve [...] Read more.
Amphibious robots require efficient locomotion strategies to enable smooth transitions between terrestrial and aquatic environments. Drawing inspiration from the undulatory movements of aquatic organisms such as cuttlefish and knifefish, this study introduces a bio-inspired propulsion system that emulates natural wave-based locomotion to improve adaptability and propulsion efficiency. A novel mechanism combining crank–rocker and sliding components is proposed to generate wave-like motions in robotic legs and fins, supporting both land crawling and aquatic paddling. By adopting a rigid–flexible coupling design, the system achieves a balance between structural integrity and motion flexibility. The effectiveness of the mechanism is systematically investigated through kinematic modeling, animation-based simulation, and experimental validation. The developed kinematic model captures the principles of wave propagation via the Crank–Slider–Rocker structure, offering insights into motion efficiency and thrust generation. Animation simulations are employed to visually validate the locomotion patterns and assess coordination across the mechanism. A functional prototype is fabricated and tested in both terrestrial and aquatic settings, demonstrating successful amphibious locomotion. The findings confirm the feasibility of the proposed design and underscore its potential in biomimetic robotics and amphibious exploration. Full article
(This article belongs to the Special Issue Bio-Inspired Soft Robotics: Design, Fabrication and Applications)
Show Figures

Figure 1

33 pages, 12896 KiB  
Article
A Bipedal Robotic Platform Leveraging Reconfigurable Locomotion Policies for Terrestrial, Aquatic, and Aerial Mobility
by Zijie Sun, Yangmin Li and Long Teng
Biomimetics 2025, 10(6), 374; https://doi.org/10.3390/biomimetics10060374 - 5 Jun 2025
Viewed by 710
Abstract
Biological systems can adaptively navigate multi-terrain environments via morphological and behavioral flexibility. While robotic systems increasingly achieve locomotion versatility in one or two domains, integrating terrestrial, aquatic, and aerial mobility into a single platform remains an engineering challenge. This work tackles this by [...] Read more.
Biological systems can adaptively navigate multi-terrain environments via morphological and behavioral flexibility. While robotic systems increasingly achieve locomotion versatility in one or two domains, integrating terrestrial, aquatic, and aerial mobility into a single platform remains an engineering challenge. This work tackles this by introducing a bipedal robot equipped with a reconfigurable locomotion framework, enabling seven adaptive policies: (1) thrust-assisted jumping, (2) legged crawling, (3) balanced wheeling, (4) tricycle wheeling, (5) paddling-based swimming, (6) air-propelled drifting, and (7) quadcopter flight. Field experiments and indoor statistical tests validated these capabilities. The robot achieved a 3.7-m vertical jump via thrust forces counteracting gravitational forces. A unified paddling mechanism enabled seamless transitions between crawling and swimming modes, allowing amphibious mobility in transitional environments such as riverbanks. The crawling mode demonstrated the traversal on uneven substrates (e.g., medium-density grassland, soft sand, and cobblestones) while generating sufficient push forces for object transport. In contrast, wheeling modes prioritize speed and efficiency on flat terrain. The aquatic locomotion was validated through trials in static water, an open river, and a narrow stream. The flight mode was investigated with the assistance of the jumping mechanism. By bridging terrestrial, aquatic, and aerial locomotion, this platform may have the potential for search-and-rescue and environmental monitoring applications. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Figure 1

20 pages, 2645 KiB  
Article
NMPC-Based 3D Path Tracking of a Bioinspired Foot-Wing Amphibious Robot
by Heqiang Cao, Hailong Wang and Zhiqiang Hu
J. Mar. Sci. Eng. 2025, 13(6), 1043; https://doi.org/10.3390/jmse13061043 - 26 May 2025
Viewed by 271
Abstract
To achieve accurate 3D path tracking of a foot-wing hybrid-driven amphibious biomimetic robot under periodically varying forces, this study analyzes the periodic propulsion forces generated by the flapping motion of the robot’s feet and wings, along with the nonlinear hydrodynamic effects during underwater [...] Read more.
To achieve accurate 3D path tracking of a foot-wing hybrid-driven amphibious biomimetic robot under periodically varying forces, this study analyzes the periodic propulsion forces generated by the flapping motion of the robot’s feet and wings, along with the nonlinear hydrodynamic effects during underwater motion. To simplify the resulting complex force expressions, the scaling function averaging method is applied. Consequently, an accurate six-degree-of-freedom (6-DOF) dynamic model is established, in which the characteristic parameters of foot-wing flapping are adopted as control inputs. Based on this dynamic model, a nonlinear state-space representation of the robot’s underwater motion is constructed. In this formulation, 3D path tracking—derived from the Line-of-Sight (LOS) guidance method—and attitude stabilization are jointly defined as control objectives. To this end, a nonlinear model predictive control (NMPC) algorithm is employed to compute optimal control inputs, as it effectively addresses the challenges of strong nonlinearity, coupling effects, and multi-objective optimization. Finally, simulation experiments are conducted to validate the proposed control strategy. The results demonstrate that the robot is capable of accurately following the desired path. Furthermore, compared with conventional PID control, the NMPC approach significantly improves tracking stability and enhances the overall motion performance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 22785 KiB  
Article
A Computational Study on the Hydrodynamics of Bio-Inspired Quadrupedal Paddling
by Yihan Wang, Yumeng Cai, Bin Xie, Chi Zhu, Yunquan Li and Ye Chen
Biomimetics 2025, 10(3), 148; https://doi.org/10.3390/biomimetics10030148 - 27 Feb 2025
Viewed by 611
Abstract
Due to its exceptional terrain mobility, quadrupedal locomotion has been used in the design of many amphibious robots for broad applications including resource exploration, disaster rescue, and reconnaissance. In this work, swimming of a quadrupedal paddling model is considered, and the effects of [...] Read more.
Due to its exceptional terrain mobility, quadrupedal locomotion has been used in the design of many amphibious robots for broad applications including resource exploration, disaster rescue, and reconnaissance. In this work, swimming of a quadrupedal paddling model is considered, and the effects of the legs’ initial swing angle, swing amplitude, and power phase duration are numerically investigated through three paddling gaits, namely, the trotting gait, the diagonal, and the lateral sequence gaits. Three different modes for drag-based thrust generation, the “Trotting Mode”, the “Hindering Mode”, and the “Separate Mode”, are identified. In the “Trotting Mode”, each pair of diagonal legs contributes equally and alternately to the thrust within the paddling cycle, and its contribution is impaired by the other pair of diagonal legs. In the “Hindering Mode”, the thrust contribution of an individual leg is significantly undermined by the drag resulting from the preceding leg leaving its current power phase and entering the following recovery phase. In the “Separate Mode”, the four legs independently contribute to the total thrust by forming a compact four-peak waveform equally distributed within one paddling cycle. At a given swing amplitude, the leg configuration at peak thrust moment is identical, regardless of initial swing angle and power phase ratio. Meanwhile, a forward-tilted leg configuration with flatter upper- and lower-limb alignment at peak thrust moment consistently indicates a lower thrust generation. Hydrodynamic moments in the diagonal and lateral sequence gaits are much larger than those in the trotting gait. In addition, enhanced thrust is typically accompanied by larger hydrodynamic moments and a higher energy expenditure. Full article
(This article belongs to the Special Issue Bio-Inspired Soft Robotics: Design, Fabrication and Applications)
Show Figures

Figure 1

26 pages, 5898 KiB  
Article
Research on the Impact of the Slider on the Aerodynamic Characteristics of a Terrestrial–Aerial Spherical Robot
by Dongshuai Huo, Hanxu Sun, Xiaojuan Lan and Minggang Li
Actuators 2025, 14(3), 118; https://doi.org/10.3390/act14030118 - 27 Feb 2025
Viewed by 640
Abstract
This research introduces the first design concept for a ducted coaxial-rotor amphibious spherical robot (BYQ-A1), utilizing the principle of variable mass control. It investigates whether the BYQ-A1’s variable-mass slider has a certain regularity in its impact on the aerodynamic properties of the BYQ-A1. [...] Read more.
This research introduces the first design concept for a ducted coaxial-rotor amphibious spherical robot (BYQ-A1), utilizing the principle of variable mass control. It investigates whether the BYQ-A1’s variable-mass slider has a certain regularity in its impact on the aerodynamic properties of the BYQ-A1. Utilizing the Blade Element Momentum Theory (BEM) and Wall Jet Theory, an aerodynamic calculation model for the BYQ-A1 is established. An orthogonal experimental method is used to conduct tests on the impact of the variable-mass slider on the aerodynamic properties of the ducted coaxial-rotor system and validate the effectiveness of the aerodynamic calculation model. The results show that the slider generates an internal ground effect and ceiling effect within the BYQ-A1 that enhance the lift of the upper and lower rotors when the robot is equipped with it. The increased total lift compensates for the additional aerodynamic drag caused by the presence of the slider. This novel finding provides guidance for the subsequent optimization design and control method research of the BYQ-A1 and also offers valuable references for configuration schemes that incorporate necessary devices between coaxial dual rotors. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

20 pages, 17093 KiB  
Article
Enhancing Underwater Images of a Bionic Horseshoe Crab Robot Using an Artificial Lateral Inhibition Network
by Yuke Ma, Liang Zheng, Yan Piao, Yu Wang and Hui Yu
Sensors 2025, 25(5), 1443; https://doi.org/10.3390/s25051443 - 27 Feb 2025
Viewed by 554
Abstract
This paper proposes an underwater image enhancement technology based on an artificial lateral inhibition network (ALIN) generated in the compound eye of a bionic horseshoe crab robot (BHCR). The concept of a horizontal suppression network is applied to underwater image processing with the [...] Read more.
This paper proposes an underwater image enhancement technology based on an artificial lateral inhibition network (ALIN) generated in the compound eye of a bionic horseshoe crab robot (BHCR). The concept of a horizontal suppression network is applied to underwater image processing with the aim of achieving low energy consumption, high efficiency processing, and adaptability to limited computing resources. The lateral inhibition network has the effect of “enhancing the center and suppressing the surroundings”. In this paper, a pattern recognition algorithm is used to compare and analyze the images obtained by an artificial lateral inhibition network and eight main underwater enhancement algorithms (white balance, histogram equalization, multi-scale Retinex, and dark channel). Therefore, we can evaluate the application of the artificial lateral inhibition network in underwater image enhancement and the deficiency of the algorithm. The experimental results show that the ALIN plays an obvious role in enhancing the important information in underwater image processing technology. Compared with other algorithms, this algorithm can effectively improve the contrast between the highlight area and the shadow area in underwater image processing, solve the problem that the information of the characteristic points of the collected image is not prominent, and achieve the unique effect of suppressing the intensity of other pixel points without information. Finally, we conduct target recognition verification experiments to assess the ALIN’s performance in identifying targets underwater with the BHCR in static water environments. The experiments confirm that the BHCR can maneuver underwater using multiple degrees of freedom (MDOF) and successfully acquire underwater targets. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

23 pages, 13491 KiB  
Article
The Local Path Planning Algorithm for Amphibious Robots Based on an Improved Dynamic Window Approach
by Xiaoqiang Dai, Chengye Liu, Qiang Lai, Xin Huang, Qingjun Zeng and Ming Liu
J. Mar. Sci. Eng. 2025, 13(3), 399; https://doi.org/10.3390/jmse13030399 - 21 Feb 2025
Viewed by 1060
Abstract
The autonomous navigation capability of amphibious robots in complex water–land environments is a key technology. However, with the existing local path planning methods, it is difficult to meet the autonomous navigation needs of amphibious robots. To address the shortcomings of unreachable targets, poor [...] Read more.
The autonomous navigation capability of amphibious robots in complex water–land environments is a key technology. However, with the existing local path planning methods, it is difficult to meet the autonomous navigation needs of amphibious robots. To address the shortcomings of unreachable targets, poor adaptability, and limited planning range in a water–land environment, this study proposes a local path planning method based on the improved dynamic window approach (IDWA). A water–land hybrid kinematic model and an obstacle expansion method are applied in the new approach. The improved dynamic window approach enhances the automatic adaptability of complex water–land environments. The improved evaluation function and distance cost function avoid overshooting at the target endpoint. The speed resolution adaptive adjustment algorithm improves the ability to pass through a complex multiple-obstacle area, and the dynamic obstacle prediction algorithm optimizes obstacle avoidance paths. The simulation and lake experiments demonstrate that compared to traditional DWA, the IDWA reduces task completion time by 32.99%, algorithm runtime by 35.29%, and path length by 10.78%. The heading angle variations are decreased by 9.92% while maintaining an average speed of 0.70 m/s in complex environments. The experimental results validate that the proposed approach can effectively plan safe and smooth paths in complex water–land environments with multiple moving obstacles. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 7699 KiB  
Article
Multi-Modal Compliant Quadruped Robot Based on CPG Control Network
by Yumo Wang, Hong Ying, Xiang Li, Shuai Yu and Jiajun Xu
Electronics 2024, 13(24), 5015; https://doi.org/10.3390/electronics13245015 - 20 Dec 2024
Viewed by 1259
Abstract
Quadruped robots, with their biomimetic structure, are capable of stable locomotion in complex terrains and are vital in rescue, exploration, and military applications. However, developing multi-modal robots that feature simple motion control while adapting to diverse amphibious environments remains a significant challenge. These [...] Read more.
Quadruped robots, with their biomimetic structure, are capable of stable locomotion in complex terrains and are vital in rescue, exploration, and military applications. However, developing multi-modal robots that feature simple motion control while adapting to diverse amphibious environments remains a significant challenge. These robots need to excel at obstacle-crossing, waterproofing, and maintaining stability across various locomotion modes. To address these challenges, this paper introduces a novel leg–fin integrated propulsion mechanism for a bionic quadruped robot, utilizing rapidly advancing soft materials and integrated molding technologies. The robot’s motion is modeled and decomposed using an improved central pattern generator (CPG) control network. By leveraging the control characteristics of the CPG model, global control of the single-degree-of-freedom drive mechanism is achieved, allowing smooth transitions between different motion modes. The design is verified through simulations conducted in the Webots environment. Finally, a physical prototype of the quadruped compliant robot is constructed, and experiments are carried out to test its walking, turning, and obstacle-crossing abilities in various environments. The experimental results demonstrate that the robot shows a significant speed advantage in regions where land and water meet, reaching a maximum speed of 1.03 body lengths per second (bl/s). Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

26 pages, 7622 KiB  
Article
Design and Implementation of Small Modular Amphibious Robot System
by Fushen Ren and Zhongyang Wang
Processes 2024, 12(11), 2355; https://doi.org/10.3390/pr12112355 - 27 Oct 2024
Cited by 1 | Viewed by 1486
Abstract
Various marine engineering facilities have been eroded by marine organisms and wind waves for a long time, resulting in different types of damage to the surface of marine engineering facilities, such as the pile legs of offshore platforms. Therefore, in order to carry [...] Read more.
Various marine engineering facilities have been eroded by marine organisms and wind waves for a long time, resulting in different types of damage to the surface of marine engineering facilities, such as the pile legs of offshore platforms. Therefore, in order to carry out safety inspections and other work on marine engineering facilities, a small amphibious robot structure system and a set of control systems adapted to it are independently developed. Various problems such as the modular design of the structure, composite motion mode, adsorption stability, wall adaptability of the crawling mode, and flaw localization have been solved by means of three-dimensional modeling, mechanical analysis, simulation, and electronic design. At the same time, a set of control systems including hardware and software is developed for the amphibious robot. In order to improve the stability and efficiency of the amphibious robot working underwater, a sliding mode control algorithm based on the exponential reaching law and saturation function is designed. For the fixed depth and fixed heading control functions, the sliding mode control algorithm and the PID control algorithm are simulated and compared. Finally, several types of experiments are carried out for the amphibious robot. The simulation and experimental results show that all the functions of the amphibious robot meet work requirements, such as the motion performance of the composite motion mode. Compared with the PID control algorithm, the sliding mode control algorithm has a faster response speed and better stability, which is conducive to the efficient and stable work of the amphibious robot underwater. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

23 pages, 17564 KiB  
Article
Hydrodynamic Simulation and Experiment of a Self-Adaptive Amphibious Robot Driven by Tracks and Bionic Fins
by Minghai Xia, Qunwei Zhu, Qian Yin, Zhongyue Lu, Yiming Zhu and Zirong Luo
Biomimetics 2024, 9(10), 580; https://doi.org/10.3390/biomimetics9100580 - 24 Sep 2024
Cited by 2 | Viewed by 2696
Abstract
Amphibious robots have broad prospects in the fields of industry, defense, and transportation. To improve the propulsion performance and reduce operation complexity, a novel bionic amphibious robot, namely AmphiFinbot-II, is presented in this paper. The swimming and walking components adopt a compound drive [...] Read more.
Amphibious robots have broad prospects in the fields of industry, defense, and transportation. To improve the propulsion performance and reduce operation complexity, a novel bionic amphibious robot, namely AmphiFinbot-II, is presented in this paper. The swimming and walking components adopt a compound drive mechanism, enabling simultaneous control for the rotation of the track and the wave-like motion of the undulating fin. The robot employs different propulsion methods but utilizes the same operation strategy, eliminating the need for mode switching. The structure and the locomotion principle are introduced. The performance of the robot in different motion patterns was analyzed via computational fluid dynamics simulation. The simulation results verified the feasibility of the wave-like swimming mechanism. Physical experiments were conducted for both land and underwater motion, and the results were consistent with the simulation regulation. Both the underwater linear and angular velocity were proportional to the undulating frequency. The robot’s maximum linear speed and steering speed on land were 2.26 m/s (2.79 BL/s) and 442°/s, respectively, while the maximum speeds underwater were 0.54 m/s (0.67 BL/s) and 84°/s, respectively. The research findings indicate that the robot possesses outstanding amphibious motion capabilities and a simplistic yet unified control approach, thereby validating the feasibility of the robot’s design scheme, and offering a novel concept for the development of high-performance and self-contained amphibious robots. Full article
(This article belongs to the Special Issue Bio-Inspired Approaches—a Leverage for Robotics)
Show Figures

Figure 1

19 pages, 5090 KiB  
Article
Lightweight Sewer Pipe Crack Detection Method Based on Amphibious Robot and Improved YOLOv8n
by Zhenming Lv, Shaojiang Dong, Jingyao He, Bo Hu, Qingyi Liu and Honghang Wang
Sensors 2024, 24(18), 6112; https://doi.org/10.3390/s24186112 - 21 Sep 2024
Cited by 3 | Viewed by 2954
Abstract
Aiming at the problem of difficult crack detection in underground urban sewage pipelines, a lightweight sewage pipeline crack detection method based on sewage pipeline robots and improved YOLOv8n is proposed. The method uses pipeline robots as the equipment carrier to move rapidly and [...] Read more.
Aiming at the problem of difficult crack detection in underground urban sewage pipelines, a lightweight sewage pipeline crack detection method based on sewage pipeline robots and improved YOLOv8n is proposed. The method uses pipeline robots as the equipment carrier to move rapidly and collect high-definition data of apparent diseases in sewage pipelines with both water and sludge media. The lightweight RGCSPELAN module is introduced to reduce the number of parameters while ensuring the detection performance. First, we replaced the lightweight detection head Detect_LADH to reduce the number of parameters and improve the feature extraction of modeled cracks. Finally, we added the LSKA module to the SPPF module to improve the robustness of YOLOv8n. Compared with YOLOv5n, YOLOv6n, YOLOv8n, RT-DETRr18, YOLOv9t, and YOLOv10n, the improved YOLOv8n has a smaller number of parameters of only 1.6 M. The FPS index reaches 261, which is good for real-time detection, and at the same time, the model also has a good detection accuracy. The validation of sewage pipe crack detection through real scenarios proves the feasibility of the proposed method, which has good results in targeting both small and long cracks. It shows potential in improving the safety maintenance, detection efficiency, and cost-effectiveness of urban sewage pipes. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

18 pages, 5229 KiB  
Article
A Soft Amphibious Voxel-Type Quadruped Robot Based on Origami Flexiball of Rhombic Dodecahedron
by Fuwen Hu and Yanqiang Li
Biomimetics 2024, 9(8), 482; https://doi.org/10.3390/biomimetics9080482 - 9 Aug 2024
Cited by 1 | Viewed by 1925
Abstract
The research work presents a novel voxel-type soft amphibious robot based on an assembly of origami flexiballs. The geometric and elastic constitutive models of the origami flexiball are theoretically established to elucidate its intricate deformation mechanism. Especially, the zero-energy storage phenomenon and the [...] Read more.
The research work presents a novel voxel-type soft amphibious robot based on an assembly of origami flexiballs. The geometric and elastic constitutive models of the origami flexiball are theoretically established to elucidate its intricate deformation mechanism. Especially, the zero-energy storage phenomenon and the quasi-zero-stiffness characteristic are revealed to prove that the origami flexiball is suitable for serving as soft robotic components. As a proof of concept, fourteen origami flexiballs are interconnected to form a quadruped robot capable of walking or crawling in both underwater and terrestrial environments, including flat surfaces and sandy terrain. Its adaptability across multiple environments is enhanced by the origami polyhedra-inspired hollow structure, which naturally adjusts to underwater conditions such as hydrostatic pressure and currents, improving stability and performance. Other advantages of the voxel-type soft amphibious quadruped robot include its ease of manufacture using 3D printing with accessible soft elastic materials, ensuring rapid and cost-effective fabrication. We anticipate its potentially versatile applications, including underwater pipeline inspections, offshore maintenance, seabed exploration, ecological monitoring, and marine sample collection. By leveraging metamaterial features embodied in the origami polyhedra, the presented voxel-type soft robot exemplifies an innovative approach to achieving complex functionalities in soft robotics. Full article
(This article belongs to the Special Issue Research in Biomimetic Underwater Devices)
Show Figures

Graphical abstract

29 pages, 11897 KiB  
Article
Research and Implementation of Pneumatic Amphibious Soft Bionic Robot
by Wenchuan Zhao, Yu Zhang, Lijian Yang, Ning Wang and Linghui Peng
Machines 2024, 12(6), 393; https://doi.org/10.3390/machines12060393 - 7 Jun 2024
Cited by 1 | Viewed by 1596
Abstract
To meet the requirements of amphibious exploration, ocean exploration, and military reconnaissance tasks, a pneumatic amphibious soft bionic robot was developed by taking advantage of the structural characteristics, motion forms, and propulsion mechanisms of the sea lion fore-flippers, inchworms, Carangidae tails, and dolphin [...] Read more.
To meet the requirements of amphibious exploration, ocean exploration, and military reconnaissance tasks, a pneumatic amphibious soft bionic robot was developed by taking advantage of the structural characteristics, motion forms, and propulsion mechanisms of the sea lion fore-flippers, inchworms, Carangidae tails, and dolphin tails. Using silicone rubber as the main material of the robot, combined with the driving mechanism of the pneumatic soft bionic actuator, and based on the theory of mechanism design, a systematic structural design of the pneumatic amphibious soft bionic robot was carried out from the aspects of flippers, tail, head–neck, and trunk. Then, a numerical simulation algorithm was used to analyze the main executing mechanisms and their coordinated motion performance of the soft bionic robot and to verify the rationality and feasibility of the robot structure design and motion forms. With the use of rapid prototyping technology to complete the construction of the robot prototype body, based on the motion amplitude, frequency, and phase of the bionic prototype, the main execution mechanisms of the robot were controlled through a pneumatic system to carry out experimental testing. The results show that the performance of the robot is consistent with the original design and numerical simulation predictions, and it can achieve certain maneuverability, flexibility, and environmental adaptability. The significance of this work is the development of a pneumatic soft bionic robot suitable for amphibious environments, which provides a new idea for the bionic design and application of pneumatic soft robots. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

24 pages, 10129 KiB  
Article
Amphibious Multifunctional Hydrogel Flexible Haptic Sensor with Self-Compensation Mechanism
by Zhenhao Sun, Yunjiang Yin, Baoguo Liu, Tao Xue and Qiang Zou
Sensors 2024, 24(10), 3232; https://doi.org/10.3390/s24103232 - 19 May 2024
Cited by 1 | Viewed by 1928
Abstract
In recent years, hydrogel-based wearable flexible electronic devices have attracted much attention. However, hydrogel-based sensors are affected by structural fatigue, material aging, and water absorption and swelling, making stability and accuracy a major challenge. In this study, we present a DN-SPEZ dual-network hydrogel [...] Read more.
In recent years, hydrogel-based wearable flexible electronic devices have attracted much attention. However, hydrogel-based sensors are affected by structural fatigue, material aging, and water absorption and swelling, making stability and accuracy a major challenge. In this study, we present a DN-SPEZ dual-network hydrogel prepared using polyvinyl alcohol (PVA), sodium alginate (SA), ethylene glycol (EG), and ZnSO4 and propose a self-calibration compensation strategy. The strategy utilizes a metal salt solution to adjust the carrier concentration of the hydrogel to mitigate the resistance drift phenomenon to improve the stability and accuracy of hydrogel sensors in amphibious scenarios, such as land and water. The ExpGrow model was used to characterize the trend of the ∆R/R0 dynamic response curves of the hydrogels in the stress tests, and the average deviation of the fitted curves ϵ¯ was calculated to quantify the stability differences of different groups. The results showed that the stability of the uncompensated group was much lower than that of the compensated group utilizing LiCl, NaCl, KCl, MgCl2, and AlCl3 solutions (ϵ¯ in the uncompensated group in air was 276.158, 1.888, 2.971, 30.586, and 13.561 times higher than that of the compensated group in LiCl, NaCl, KCl, MgCl2, and AlCl3, respectively; ϵ¯ in the uncompensated group in seawater was 10.287 times, 1.008 times, 1.161 times, 4.986 times, 1.281 times, respectively, higher than that of the compensated group in LiCl, NaCl, KCl, MgCl2 and AlCl3). In addition, for the ranking of the compensation effect of different compensation solutions, the concentration of the compensation solution and the ionic radius and charge of the cation were found to be important factors in determining the compensation effect. Detection of events in amphibious environments such as swallowing, robotic arm grasping, Morse code, and finger–wrist bending was also performed in this study. This work provides a viable method for stability and accuracy enhancement of dual-network hydrogel sensors with strain and pressure sensing capabilities and offers solutions for sensor applications in both airborne and underwater amphibious environments. Full article
Show Figures

Figure 1

25 pages, 12147 KiB  
Article
Development of Portable Magnetic Adsorption Amphibious Robot
by Fushen Ren, Jiaxiang Zhu, Jun Liu, Baojin Wang and Kekuan Wang
Appl. Sci. 2024, 14(7), 2820; https://doi.org/10.3390/app14072820 - 27 Mar 2024
Cited by 2 | Viewed by 1819
Abstract
In this study, a portable magnetic adsorption amphibious robot which can operate on and below the waterline is developed for special curved environments, such as the pile legs of offshore platforms and the outer walls of ships. An open robot integrated control system [...] Read more.
In this study, a portable magnetic adsorption amphibious robot which can operate on and below the waterline is developed for special curved environments, such as the pile legs of offshore platforms and the outer walls of ships. An open robot integrated control system based on a domestic chip is developed, and two operating modes of local control operation and remote wireless operation are realized. A permanent magnet adsorption scheme combining a magnetic adsorption track and a synchronous belt wheel is designed, static and dynamic analysis of the wall-climbing operation of the robot is carried out, and a kinematic model of the underwater robot is established. The experimental results show that the robot can effectively complete amphibious tasks and can realize the accurate control of attitude in water, proving it to be an effective tool for amphibious tasks, such as operating on the pile legs of offshore platforms and the outer walls of ships. Full article
(This article belongs to the Special Issue Mobile Robotics and Autonomous Intelligent Systems)
Show Figures

Figure 1

Back to TopTop