A Soft Amphibious Voxel-Type Quadruped Robot Based on Origami Flexiball of Rhombic Dodecahedron
Abstract
:1. Introduction
2. Geometry and Elastic Constitutive Relation of Origami Flexiball
2.1. Geometry of Origami Flexiball
2.2. Elastic Constitutive Relation of Origami Flexiball
3. Soft Amphibious Robot Based on Origami Flexiball
3.1. Configuration of the Soft Voxel-Based Robot
3.2. Locomotion Modes of the Soft Voxel-Based Robot
3.3. Locomotion Experiments of the Soft Voxel-Based Robot
3.4. Locomotion Capability Assessment of the Soft Voxel-Based Robot
4. Conclusions
- Easy to manufacture. The 3D printing method with accessible soft elastic materials enables the voxel-type soft robot to be fabricated rapidly and at a low cost. The overall structure has no complex parts, and no complicated assembly or die preparation is required.
- Adaptability to multiple environments. One of the primary advantages is its ability to move both underwater and on land without the need for complex shape-shifting mechanisms. Their ability to seamlessly transition between aquatic and terrestrial environments makes them versatile for a wide range of applications, from marine exploration to terrestrial tasks. In particular, the robot’s origami polyhedra-induced hollow structure enables it to naturally adapt to underwater conditions, including variations in hydrostatic pressure and water currents. This adaptation enhances its stability and performance during underwater operations.
- Compact and modular design. Voxel-type soft robots are typically designed with modular components that enable compact storage and deployment. This modularity facilitates easy maintenance and reconfiguration for different mission requirements, enhancing their overall utility.
- Innovative design potential. By leveraging metamaterial features embodied in the origami polyhedra, these robots contribute an innovative approach to soft robotics. They demonstrate how geometrically inspired designs can achieve complex functionalities while maintaining simplicity and reliability in operation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yi, Y.; Geng, Z.; Zhang, J.; Cheng, S.; Fu, M. Design, modeling and control of a novel amphibious robot with dual-swing-legs propulsion mechanism. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015; pp. 559–566. [Google Scholar] [CrossRef]
- Shi, L.; Guo, S.; Mao, S.; Li, M.; Asaka, K. Development of a lobster-inspired underwater microrobot. Int. J. Adv. Robot. Syst. 2013, 10, 44. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jun, B.H. Design of six-legged walking robot, Little Crabster for underwater walking and operation. Adv. Robot. 2014, 28, 77–89. [Google Scholar] [CrossRef]
- Sun, L.; Wan, J.; Du, T. Fully 3D-printed tortoise-like soft mobile robot with muti-scenario adaptability. Bioinspir. Biomim. 2023, 18, 066011. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Tu, J.; Ti, X.; Wang, Z.; Hu, H. Hydrodynamic model of the beaver-like bendable webbed foot and paddling characteristics under different flow velocities. Ocean Eng. 2021, 234, 109179. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.; Lei, M.; Cheng, Z.; Zhao, X.; Xing, H.; Wei, Y. Design and Simulation of a Cormorant-inspired Amphibious Robot. In Proceedings of the 2023 IEEE International Conference on Mechatronics and Automation (ICMA), Harbin, China, 6–9 August 2023; pp. 1239–1244. [Google Scholar] [CrossRef]
- Crespi, A.; Badertscher, A.; Guignard, A.; Ijspeert, A.J. AmphiBot I: An amphibious snake-like robot. Robot. Auton. Syst. 2005, 50, 163–175. [Google Scholar] [CrossRef]
- Horvat, T.; Karakasiliotis, K.; Melo, K.; Fleury, L.; Thandiackal, R.; Ijspeert, A.J. Inverse kinematics and reflex based controller for body-limb coordination of a salamander-like robot walking on uneven terrain. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015; pp. 195–201. [Google Scholar] [CrossRef]
- Ren, K.; Yu, J. Research status of bionic amphibious robots: A review. Ocean Eng. 2021, 227, 108862. [Google Scholar] [CrossRef]
- Hu, F.; Wang, W.; Cheng, J.; Bao, Y. Origami spring–inspired metamaterials and robots: An attempt at fully programmable robotics. Sci. Prog. 2020, 103, 0036850420946162. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lee, Y.; Cha, Y. Origami pump actuator based pneumatic quadruped robot (OPARO). IEEE Access 2021, 9, 41010–41018. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, D.; Levine, D.J.; Sung, C. Origami-inspired robot that swims via jet propulsion. IEEE Robot. Autom. Lett. 2021, 6, 7145–7152. [Google Scholar] [CrossRef]
- Carlson, J.; Friedman, J.; Kim, C.; Sung, C. REBOund: Untethered origami jumping robot with controllable jump height. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 10089–10095. [Google Scholar]
- Lee, D.Y.; Kim, S.R.; Kim, J.S.; Park, J.J.; Cho, K.J. Origami wheel transformer: A variable-diameter wheel drive robot using an origami structure. Soft Robot. 2017, 4, 163–180. [Google Scholar] [CrossRef]
- Dufour, L.; Owen, K.; Mintchev, S.; Floreano, D. A drone with insect-inspired folding wings. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 1576–1581. [Google Scholar]
- Chen, Z.; Tighe, B.; Zhao, J. Origami-Inspired Modules Enable A Reconfigurable Robot with Programmable Shapes and Motions. IEEE/ASME Trans. Mechatron. 2022, 27, 2016–2025. [Google Scholar] [CrossRef]
- Hu, F.; Li, T. An origami flexiball-inspired metamaterial actuator and its in-pipe robot prototype. Actuators 2021, 10, 67. [Google Scholar] [CrossRef]
- Hu, F.; Zhang, C. Origami Polyhedra-Based Soft Multicellular Robots. Soft Robot. 2024, 11, 244–259. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Kou, Z.; Sefene, E.M.; Mikolajczyk, T. An Origami Flexiball-Inspired Soft Robotic Jellyfish. J. Mar. Sci. Eng. 2023, 11, 714. [Google Scholar] [CrossRef]
- Rafeeq, M.; Toha, S.F.; Ahmad, S.; Razib, M.A. Locomotion strategies for amphibious robots-a review. IEEE Access 2021, 9, 26323–26342. [Google Scholar] [CrossRef]
- Bai, X.J.; Shang, J.Z.; Luo, Z.R.; Jiang, T.; Yin, Q. Development of amphibious biomimetic robots. J. Zhejiang Univ. Sci. A 2022, 23, 157–187. [Google Scholar] [CrossRef]
- Lv, C.; Krishnaraju, D.; Konjevod, G.; Yu, H.; Jiang, H. Origami based mechanical metamaterials. Sci. Rep. 2014, 4, 5979. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Li, S.; Ji, H.; Wang, K.W. Dynamics of a bistable Miura-origami structure. Phys. Rev. E 2017, 95, 052211. [Google Scholar] [CrossRef] [PubMed]
- Della Santina, C.; Katzschmann, R.K.; Biechi, A.; Rus, D. Dynamic control of soft robots interacting with the environment. In Proceedings of the 2018 IEEE International Conference on Soft Robotics (RoboSoft), Livorno, Italy, 24–28 April 2018; pp. 46–53. [Google Scholar]
- Bucolo, M.; Buscarino, A.; Famoso, C.; Fortuna, L.; Frasca, M. Control of imperfect dynamical systems. Nonlinear Dyn. 2019, 98, 2989–2999. [Google Scholar] [CrossRef]
- Wu, M.; Xu, X.; Zhao, Q.; Afridi, W.H.; Hou, N.; Afridi, R.H.; Zheng, X.; Wang, C.; Xie, G. A fully 3D-printed tortoise-inspired soft robot with terrains-adaptive and amphibious landing capabilities. Adv. Mater. Technol. 2022, 7, 2200536. [Google Scholar] [CrossRef]
- Baines, R.; Patiballa, S.K.; Booth, J.; Ramirez, L.; Sipple, T.; Garcia, A.; Fish, F.; Kramer-Bottiglio, R. Multi-environment robotic transitions through adaptive morphogenesis. Nature 2022, 610, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Faudzi, A.A.M.; Razif, M.R.M.; Endo, G.; Nabae, H.; Suzumori, K. Soft-amphibious robot using thin and soft McKibben actuator. In Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017; pp. 981–986. [Google Scholar]
Robot | Year | Actuation | Speed () | Terrain Adaptability | Tethering |
---|---|---|---|---|---|
The presented robot | 2024 | Rope-motor |
|
| No |
Ref. [4] | 2023 | Pneumatic |
|
| Yes |
Ref. [26] | 2022 | Pneumatic |
|
| Yes |
Ref. [27] | 2022 | Motor |
|
| Yes |
Ref. [28] | 2017 | Pneumatic | \ |
| Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, F.; Li, Y. A Soft Amphibious Voxel-Type Quadruped Robot Based on Origami Flexiball of Rhombic Dodecahedron. Biomimetics 2024, 9, 482. https://doi.org/10.3390/biomimetics9080482
Hu F, Li Y. A Soft Amphibious Voxel-Type Quadruped Robot Based on Origami Flexiball of Rhombic Dodecahedron. Biomimetics. 2024; 9(8):482. https://doi.org/10.3390/biomimetics9080482
Chicago/Turabian StyleHu, Fuwen, and Yanqiang Li. 2024. "A Soft Amphibious Voxel-Type Quadruped Robot Based on Origami Flexiball of Rhombic Dodecahedron" Biomimetics 9, no. 8: 482. https://doi.org/10.3390/biomimetics9080482
APA StyleHu, F., & Li, Y. (2024). A Soft Amphibious Voxel-Type Quadruped Robot Based on Origami Flexiball of Rhombic Dodecahedron. Biomimetics, 9(8), 482. https://doi.org/10.3390/biomimetics9080482