Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = amorphous–nanocrystalline composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3204 KB  
Article
Calcium Phosphate Ceramic Powders Prepared from Mechanochemically Activated Precursors
by Kostadinka Sezanova, Yordanka Tuparova, Pavletta Shestakova, Pavel Markov, Daniela Kovacheva and Diana Rabadjieva
Inorganics 2025, 13(10), 313; https://doi.org/10.3390/inorganics13100313 - 24 Sep 2025
Viewed by 279
Abstract
The chemical and structural similarity of calcium orthophosphates to hard tissues in the human body makes them suitable as biomaterials for bone implants, cements, injection systems, etc., for bone regeneration and reconstruction. Tetracalcium phosphate (Ca4(PO4)2O, TTCP) is [...] Read more.
The chemical and structural similarity of calcium orthophosphates to hard tissues in the human body makes them suitable as biomaterials for bone implants, cements, injection systems, etc., for bone regeneration and reconstruction. Tetracalcium phosphate (Ca4(PO4)2O, TTCP) is a promising component for such biomaterials due to its high calcium content and alkaline nature. The former makes it suitable for promoting mineralization, while the latter supports neutralization of the acidic environment, helping to prevent inflammation and improve the biocompatibility of the materials. However, it is the least used calcium orthophosphate due to the difficulties in its synthesis. This study examines the effect of high-energy mechanochemical activation on the phase evolution, particle morphology, and thermal behaviour of equimolar mixtures of Ca(OH)2 and CaHPO4, with the aim of optimizing precursor conditions for the synthesis of (TTCP)-rich ceramic materials. The results demonstrate that mechanochemical activation effectively induces structural disorder, promotes the formation of amorphous and nanocrystalline phases, and facilitates subsequent phase transitions upon calcination. The combined use of solid-state NMR, XRD, TEM, and thermal analysis provides a comprehensive understanding of the transformation pathways. Ultimately, 24 h of activation under the experimental conditions was identified as optimal for producing a precursor with a favorable phase composition for obtaining TTCP-rich ceramic materials after calcination at 1350 °C. Full article
(This article belongs to the Special Issue Featured Papers in Inorganic Materials 2025)
Show Figures

Figure 1

15 pages, 5165 KB  
Article
Carbon-Induced Structural Evolution and Synergistic Enhancement of Wear and Corrosion Resistance in (AlFeCoNi)C High-Entropy Alloy Carbide Films
by Duoli Chen, Yefeng Zhou, Xianting Yang, Mengyuan Guo, Jun Liang, Deming Huang, Yu Ni, Yurong Zhou, Yantao Li and Xin Jiang
Materials 2025, 18(18), 4411; https://doi.org/10.3390/ma18184411 - 22 Sep 2025
Viewed by 242
Abstract
The (AlFeCoNi)C high-entropy alloy carbide films (HECFs) with tunable carbon contents were fabricated by magnetron sputtering to investigate the carbon-driven structural evolution and its coupling effects on mechanical and chemical properties. With increasing carbon incorporation (0–47.6 at.%), the HECFs formed a composite structure [...] Read more.
The (AlFeCoNi)C high-entropy alloy carbide films (HECFs) with tunable carbon contents were fabricated by magnetron sputtering to investigate the carbon-driven structural evolution and its coupling effects on mechanical and chemical properties. With increasing carbon incorporation (0–47.6 at.%), the HECFs formed a composite structure of amorphous phase and BCC nanocrystalline phase, as evidenced by XRD and TEM. Atom probe tomography (APT) reveals Al segregation in the film. Remarkably, the wear rate decreases exponentially from 4.8 × 10−5 to 6.7 × 10−6 mm3/N·m, attributed to the amorphous carbon phase acting as solid lubricant. Simultaneously, the corrosion current density reduces by two orders of magnitude (7.2 × 10−8 A/cm2 in 3.5% NaCl), benefiting from the amorphous network inhibiting ion diffusion pathways. This work establishes a carbon-content–property correlation paradigm for designing multifunctional HEA films in extreme environments. Full article
(This article belongs to the Special Issue New Advances in High Entropy Alloys)
Show Figures

Figure 1

25 pages, 3459 KB  
Article
Phase Composition, Structure, and Microwave Absorption of Magnetron-Sputtered Co–C–Cr Multilayer Films
by Nadezhda Prokhorenkova, Almira Zhilkashinova, Madi Abilev, Leszek Łatka, Igor Ocheredko and Assel Zhilkashinova
Compounds 2025, 5(3), 27; https://doi.org/10.3390/compounds5030027 - 20 Jul 2025
Viewed by 470
Abstract
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving [...] Read more.
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving a critical knowledge gap in understanding how ternary multilayer architectures influence electromagnetic behavior. This study addresses this gap by investigating the structure, phase composition, and microwave absorption performance of Co–C–Cr multilayer coatings fabricated via magnetron sputtering onto porous silicon substrates. This study compares four-layer and eight-layer configurations to assess how multilayer architecture affects impedance matching, reflection coefficients, and absorption characteristics within the 8.2–12.4 GHz frequency range. Structural analyses using X-ray diffraction and transmission electron microscopy confirm the coexistence of amorphous and nanocrystalline phases, which enhance absorption through dielectric and magnetic loss mechanisms. Both experimental and simulated results show that increasing the number of layers improves impedance gradients and broadens the operational bandwidth. The eight-layer coatings demonstrate a more uniform absorption response, while four-layer structures exhibit sharper resonant minima. These findings advance the understanding of ternary multilayer systems and contribute to the development of frequency-selective surfaces and broadband microwave shielding materials. Full article
Show Figures

Figure 1

19 pages, 3303 KB  
Article
Microstructure and Hydrogen Sorption Kinetics of Ball-Milled Mg60Ni25Cu10Ce5 Nanocrystalline Powders
by Ádám Révész, Richárd Nagy, Zoltán Dankházi, Stanislava Todorova and Tony Spassov
Energies 2025, 18(11), 2925; https://doi.org/10.3390/en18112925 - 3 Jun 2025
Viewed by 539
Abstract
High-energy ball milling for different durations was used to synthesize nanocrystalline Mg60Ni25Cu10Ce5 powders. The morphology and microstructure of the milled powders were investigated by scanning electron microscopy and X-ray diffraction, respectively. It was found that different [...] Read more.
High-energy ball milling for different durations was used to synthesize nanocrystalline Mg60Ni25Cu10Ce5 powders. The morphology and microstructure of the milled powders were investigated by scanning electron microscopy and X-ray diffraction, respectively. It was found that different milling times result in considerably different phase composition. The powder milled for 1 h is characterized by elemental Mg, Ni, Cu and Ce with some minor content of intermetallics. In total, 3 h milling promotes the intensive formation of intermetallic compounds, while 10 h of powder processing results in a partially amorphous state coupled with compound phases. Isothermal hydrogenation and dehydrogenation experiments were conducted in a Sieverts’-type apparatus. It was found that all powders absorb H2 reversibly, while the shortest milling time provides the best overall capacity. Excellent kinetics without any activation cycle were obtained for the 3 h milled composite, releasing and absorbing 50% of the total hydrogen content within 120 s. Each kinetic measurement has satisfactorily been fitted by the Johnson–Mehl–Avrami function. X-ray diffraction analysis on the dehydrided powders confirmed the complete desorption. Full article
Show Figures

Figure 1

15 pages, 2890 KB  
Article
The Interface of Additive Manufactured Tungsten–Diamond Composites
by Xuehao Gao, Dongxu Cheng, Zhe Sun, Yihe Huang, Wentai Ouyang, Cunxiao Lan, Zhaoqing Li and Lin Li
Materials 2025, 18(11), 2574; https://doi.org/10.3390/ma18112574 - 30 May 2025
Viewed by 595
Abstract
Tungsten–diamond metal matrix composites (MMCs) fabricated via L-PBF show potential for applications in nuclear facility shielding, heat sinks, precision cutting/grinding tools, and aerospace hot-end components. In this paper, tungsten (W), diamond (D), and diamond with Ni coating (D-Ni) powders are used to fabricate [...] Read more.
Tungsten–diamond metal matrix composites (MMCs) fabricated via L-PBF show potential for applications in nuclear facility shielding, heat sinks, precision cutting/grinding tools, and aerospace hot-end components. In this paper, tungsten (W), diamond (D), and diamond with Ni coating (D-Ni) powders are used to fabricate W+D and W+(D-Ni) composites by L-PBF technology. The results show that at the interface of the W+D sample, the W powder melts while the D powder remains in a solid state during L-PBF processing, and W and C elements gradually diffuse into each other. Due to the high cooling rate of L-PBF processing, the C phase forms a diamond-like carbon (DLC) phase with an amorphous structure, and the W phase becomes a supersaturated solid solution of the C element. At the interface of the W+(D-Ni) sample, the diffusion capacity of Ni and W elements in the solid state is weaker than in the molten state. C and W elements diffuse into the Ni melt, forming a rich Ni area of the DLC phase, while Ni and W elements diffuse into the solid D powder, forming a lean Ni area of the DLC phase. In the rich Ni area of the DLC phase, Ni segregation leads to the precipitation of nanocrystals (several hundred nanometers), whereas in the lean Ni area of the DLC phase, the diffusion capacity of Ni and W elements in the solid D powder is limited, resulting in nanocrystalline sizes of only about tens of nanometers. During W dendrite growth, the addition of the Ni coating and the expelling of the C phenomenon leads to W grain refinement at the interface, which reduces the number and length of cracks in the W+(D-Ni) sample. This paper contributes to the theoretical development and engineering applications of tungsten–diamond MMCs fabricated by L-PBF. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

12 pages, 5558 KB  
Article
Evolution of the Phase Composition in a Nickel-Predominant NiTi Shape Memory Alloy During High-Energy Ball Milling
by Tomasz Goryczka, Grzegorz Dercz and Maciej Zubko
Materials 2025, 18(8), 1882; https://doi.org/10.3390/ma18081882 - 21 Apr 2025
Cited by 1 | Viewed by 529
Abstract
Three alloys differing in their nominal chemical composition (Ni50Ti50, Ni51Ti49, and Ni52Ti48) were produced in the form of powders using high-energy ball milling. Their microstructure, morphology, structure, and phase composition were [...] Read more.
Three alloys differing in their nominal chemical composition (Ni50Ti50, Ni51Ti49, and Ni52Ti48) were produced in the form of powders using high-energy ball milling. Their microstructure, morphology, structure, and phase composition were studied using the X-ray diffraction technique, scanning, and transmission electron microscopy. For the detailed structural analysis, the Rietveld method was used. The results show that each of the alloys consists of three fractions: fine, medium, and thick. The fractions varied in particle/agglomerate size from 200 nm to 800 μm. Additionally, they varied in phase composition. The fine fraction comprised a mixture of amorphous and nanocrystalline phases. Additionally, the medium and coarse phases showed crystalline solid solutions formed on the bases of nickel or titanium, as well as a crystalline bcc phase—a precursor of the parent phase (B2). The largest contribution in the alloy powders, over 80%, comes from the amorphous–nanocrystalline mixture (ANM). The increase in the nickel content resulted in an increase in ANM quantity of 3 wt.%. Similarly, the weight content of the titanium-based solid solution increased to about 7 wt.%. In contrast, the quantity of the nickel-based solid solution decreased from 3 wt.% to approximately 1 wt.% in the Ni50Ti50 and Ni52Ti48 alloys. Full article
Show Figures

Figure 1

16 pages, 3298 KB  
Article
Extraction, Preparation and Characterization of Nanocrystalline Cellulose from Lignocellulosic Simpor Leaf Residue
by Ukashat Mamudu, Asset Kabyshev, Kenzhebatyr Bekmyrza, Kairat A. Kuterbekov, Aliya Baratova, Lukman Ahmed Omeiza and Ren Chong Lim
Molecules 2025, 30(7), 1622; https://doi.org/10.3390/molecules30071622 - 5 Apr 2025
Cited by 2 | Viewed by 1695
Abstract
In this study, α-cellulose was extracted from lignocellulosic simpor leaf residue as a sustainable alternative to conventional cellulose sources. The extraction process involved the removal of hemicellulose, lignin, and other phytocompounds using alkali (NaOH) treatment and bleaching with hydrogen peroxide (H2O [...] Read more.
In this study, α-cellulose was extracted from lignocellulosic simpor leaf residue as a sustainable alternative to conventional cellulose sources. The extraction process involved the removal of hemicellulose, lignin, and other phytocompounds using alkali (NaOH) treatment and bleaching with hydrogen peroxide (H2O2). The nanocrystalline cellulose (NCC) was isolated from α-cellulose using sulfuric acid hydrolysis treatment followed by ultrasonication. The extracted α-cellulose and isolated NCC were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and dynamic light scattering (DLS). The obtained results confirmed that the extracted NCC exhibited characteristic cellulose functional groups and a crystallinity index of 64.7%, indicating the effective removal of amorphous regions through sulfuric acid hydrolysis. The thermal stability of the extracted cellulose increased to 332 °C due to the elimination of extractives. DLS analysis showed that the extracted NCC exhibited high colloidal stability in polar solvents, characterized by a zeta potential of −70.8 mV and an average particle size of 251.7 nm. This study highlights an environmentally friendly approach for converting low-value biomass waste into high-value cellulose materials with potential applications in sustainable packaging, biomedical applications and composite reinforcement. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

14 pages, 7361 KB  
Article
Improving the Soft Magnetic Characteristics of Nanocrystalline Soft Magnetic Composites Through the Incorporation of Ultrafine FeSiAl Powders
by Yanyan Song, Zhi Zhang, Shaoxiong Zhou, Ruibiao Zhang, Haichen Yu and Xiantao Li
Magnetochemistry 2025, 11(4), 25; https://doi.org/10.3390/magnetochemistry11040025 - 30 Mar 2025
Cited by 2 | Viewed by 1457
Abstract
Nanocrystalline powders, characterized by a biphasic amorphous nanocrystalline structure, demonstrate outstanding soft magnetic characteristics, including reduced coercivity (Hc), enhanced effective permeability (μe), and increased resistivity. However, their high hardness, poor formability, and significant core loss (P [...] Read more.
Nanocrystalline powders, characterized by a biphasic amorphous nanocrystalline structure, demonstrate outstanding soft magnetic characteristics, including reduced coercivity (Hc), enhanced effective permeability (μe), and increased resistivity. However, their high hardness, poor formability, and significant core loss (Pcv) restrict their use in high-performance molded inductors. In this study, FeSiBCuNb/FeSiAl nanocrystalline soft magnetic composites (NSMCs) were fabricated, and the influence of varying the FeSiAl concentration on the microstructure, density, and soft magnetic characteristics of NSMCs was investigated. Then, the underlying mechanisms of these effects were explained. The results demonstrate that FeSiAl exhibits apparent deformation following compression, effectively filling the air gap between the FeSiBCuNb powder particles, thereby enhancing coupling among the magnetic particles. Consequently, the density of the NSMCs was enhanced, leading to a significant improvement in their overall soft magnetic properties. When 50 wt.% FeSiAl is added, the NSMCs display outstanding magnetic properties, including a low Hc of 4.36 Oe, a high μe of 48.7, a low Pcv of 119.35 kW/m3 at 50 mT and 100 kHz, and a high DC-bias performance of 73.29% at 100 Oe. Compared to NSMCs without FeSiAl, μe increased by 59.4% and Pcv decreased by 66.1%. Meanwhile, the incorporation of ultrafine FeSiAl powder was found to significantly improve the material properties, as the deformable FeSiAl particles effectively fill interparticle gaps during compaction, enhancing density and magnetic coupling. The 50 wt.% FeSiAl composition demonstrated exceptional properties. These advances address critical challenges in high-frequency power electronic applications and provide a practical material solution for next-generation power electronics. Full article
(This article belongs to the Section Magnetic Materials)
Show Figures

Figure 1

23 pages, 8944 KB  
Review
Stress-Induced Magnetic Anisotropy in Fe-Based Amorphous/Nanocrystalline Alloys: Mechanisms, Advances and Challenges
by Jianqiang Zhang, Yanjun Qin, Xiaobin Liu, Yuxiang Zhao, Wenqiang Dang, Xiaozhen Fan, Xinyi Chen, Yuanrong Yu, Zixuan Yang, Shipeng Gao, Duanqiang Wu and Yunzhang Fang
Materials 2025, 18(7), 1499; https://doi.org/10.3390/ma18071499 - 27 Mar 2025
Cited by 2 | Viewed by 1306
Abstract
Fe-based amorphous and nanocrystalline alloys, such as FINEMET and its improved variants, are highly valued as green energy-saving materials due to their unique magnetic properties, including high permeability, low coercivity, and near-zero saturation magnetostriction. These characteristics have enabled their extensive use in power [...] Read more.
Fe-based amorphous and nanocrystalline alloys, such as FINEMET and its improved variants, are highly valued as green energy-saving materials due to their unique magnetic properties, including high permeability, low coercivity, and near-zero saturation magnetostriction. These characteristics have enabled their extensive use in power electronics and information technology. However, the full potential of these alloys remains unfulfilled due to insufficient understanding of their stress sensitivity. This study focuses on the development history, heat treatment, annealing processes, chemical composition, and underlying mechanisms of Fe-based amorphous and nanocrystalline alloys, aiming to provide insights into stress-induced magnetic anisotropy and guide the development of greener and more efficient soft magnetic materials. Full article
Show Figures

Figure 1

21 pages, 9367 KB  
Article
Mechanical and Electrochemical Properties of Titanium Aluminum Nitride Coatings with Different Nitrogen Flow Rates on CrMnSi Steel by Filter Cathode Vacuum Arc Technology
by Hongshuai Cao, Xiao Ouyang, Xianying Wu, Lin Chen, Jiakun Wu, Jie Wu, Junfeng Wang and Bin Liao
Coatings 2025, 15(4), 379; https://doi.org/10.3390/coatings15040379 - 24 Mar 2025
Cited by 3 | Viewed by 1052
Abstract
In order to address the weaknesses of poor corrosion resistance of hydraulic cylinder piston rods, we have developed a surface protection strategy for titanium aluminum nitride coatings by filter cathode vacuum arc (FCVA) technology. The optimization and regulatory mechanism of N2 flow [...] Read more.
In order to address the weaknesses of poor corrosion resistance of hydraulic cylinder piston rods, we have developed a surface protection strategy for titanium aluminum nitride coatings by filter cathode vacuum arc (FCVA) technology. The optimization and regulatory mechanism of N2 flow rate on the microstructure, mechanical, and electrochemical oxidation behaviors have been emphasized. The results indicated that all coatings revealed a nanocrystalline amorphous composite structure dominated by an fcc TiAlN phase. However, the solid solution content, growth orientation, and grain size could be controlled by the nitrogen flow rate, thereby achieving optimized hardness, adhesion strength, corrosion, and oxidation resistance. Specifically, with the increase in the N2 flow rate, the solid solution content continued to rise, while the crystal orientation transformed from the (111) to the (200) plane, and the grain size initially increased and then decreased. As a result, mechanical properties, including hardness, toughness, resistance to plastic deformation, and adhesion strength, displayed a trend of initially increasing and then decreasing. The corrosion failure of coatings was linked to surface defects controlled by the N2 flow rate, rather than the composition and phase structure. The coating displayed superior corrosion resistance at low N2 flow rates due to fewer macroscopic particles and pore defects. This study provides valuable insights into the corrosion behavior of an aluminum titanium nitrogen coating, providing crucial guidance for coating design in harsh environments. Full article
Show Figures

Figure 1

20 pages, 6454 KB  
Article
Variation in Nanocrystalline Phase Content on Mechanical Properties and Wear Resistance of FeCrMoWBRE Amorphous/Nanocrystalline Coating Deposited by High-Velocity Arc Spraying
by Hao Du, Wei Xin, Bo Wang, Ji’an Feng, Xingchuan Xia, Yujiang Wang and Shicheng Wei
Nanomaterials 2025, 15(4), 305; https://doi.org/10.3390/nano15040305 - 17 Feb 2025
Cited by 2 | Viewed by 866
Abstract
The incorporation of a homogeneously distributed nanocrystalline phase in Fe-based amorphous coatings is widely acknowledged to enhance wear resistance across various applications. In this study, FeCrMoWBRE amorphous/nanocrystalline composite coatings were fabricated on 45# steel substrates using high-velocity arc spraying (HVAS). The coatings were [...] Read more.
The incorporation of a homogeneously distributed nanocrystalline phase in Fe-based amorphous coatings is widely acknowledged to enhance wear resistance across various applications. In this study, FeCrMoWBRE amorphous/nanocrystalline composite coatings were fabricated on 45# steel substrates using high-velocity arc spraying (HVAS). The coatings were produced under varying spraying voltages, currents, and distances, following the Taguchi experimental design methodology. The microstructure, mechanical properties, and wear resistance of the coatings were systematically analyzed, with a particular focus on the relationship between nanocrystalline/amorphous phase content and key performance metrics, including microhardness, adhesive strength, and wear rate. A positive correlation was observed between the nanocrystalline phase content and both mechanical properties and wear resistance. The coating with optimized nanocrystalline phase content of 21.4% exhibits the lowest wear rate of 1.39 × 10−7 mm3·N−1·m−1 under a 100 N load and oil lubrication. These findings underscore the critical role of controlling the nanocrystalline phase content in Fe-based amorphous/nanocrystalline composite coatings to maximize wear resistance under oil-lubricated conditions. Full article
(This article belongs to the Special Issue Nano Surface Engineering: 2nd Edition)
Show Figures

Figure 1

18 pages, 13259 KB  
Article
Impact of Ni Doping on the Microstructure and Mechanical Properties of TiB2 Films
by Ying Wang, Xu Wang, Hailong Shang, Xiaotong Liu, Yu Qi, Xiaoben Qi and Ning Zhong
Nanomaterials 2025, 15(3), 229; https://doi.org/10.3390/nano15030229 - 31 Jan 2025
Cited by 1 | Viewed by 1108
Abstract
The TiB2 film exhibits exceptional hardness and chemical stability due to its unique crystal structure and robust covalent bonds, but it also demonstrates high brittleness and poor toughness, which restricts its practical applications in engineering. By appropriately incorporating metal dopants, the toughness [...] Read more.
The TiB2 film exhibits exceptional hardness and chemical stability due to its unique crystal structure and robust covalent bonds, but it also demonstrates high brittleness and poor toughness, which restricts its practical applications in engineering. By appropriately incorporating metal dopants, the toughness of the ceramic matrix can be enhanced without compromising its inherent hardness. In this study, TiB2 films with different nickel contents (0–32.22 at.%) were fabricated through radio frequency magnetron sputtering. The microstructure, chemical composition, phase structure, and mechanical properties were analyzed using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and nanoindentation tester. The pure TiB2 film exhibited (0001) and (0002) peaks; however, the addition of nickel resulted in broadening of the (0001) peak and disappearance of the (0002) peak, and no crystalline nickel or other nickel-containing phases could be identified. It was found that the incorporation of nickel refines the grain structure of titanium diboride, with nickel present in an amorphous form at the boundaries of titanium diboride, thereby forming a wrapped structure. The enrichment of nickel at the grain boundary becomes more pronounced as the nickel content is further increased, which hinders the growth of TiB2 grains, resulting in the thinning of columnar crystals and formation of nanocrystalline in the film, and the coating hardness remains above 20 GPa, when the nickel content is less than 10.83 at.%. With the increase in nickel content, titanium diboride exhibited a tendency to form an amorphous structure, while nickel became increasingly enriched at the boundaries, and the coating hardness and elastic modulus decreased. The wrapped microstructure could absorb the energy generated by compressive shear stress through plastic deformation, which should be beneficial to improve the toughness of the coatings. The addition of nickel enhanced the adhesion between the film and substrate while reducing the friction coefficient of the film. Specifically, when the nickel content reached 4.26 at.%, a notable enhancement in both nanohardness and toughness was observed for nanocomposite films. Full article
(This article belongs to the Special Issue Design and Applications of Heterogeneous Nanostructured Materials)
Show Figures

Figure 1

31 pages, 6043 KB  
Review
Low-Loss Soft Magnetic Materials and Their Application in Power Conversion: Progress and Perspective
by Weiwang Wang, Jiaqi Fan, Changshen Li, Yue Yu, Anding Wang, Shengtao Li and Jinjun Liu
Energies 2025, 18(3), 482; https://doi.org/10.3390/en18030482 - 22 Jan 2025
Cited by 7 | Viewed by 4083
Abstract
Amorphous and nanocrystalline alloys, as novel soft magnetic materials, can enable high efficiency in a wide range of power conversion techniques. Their wide application requires a thorough understanding of the fundamental material mechanisms, typical characteristics, device design, and applications. The first part of [...] Read more.
Amorphous and nanocrystalline alloys, as novel soft magnetic materials, can enable high efficiency in a wide range of power conversion techniques. Their wide application requires a thorough understanding of the fundamental material mechanisms, typical characteristics, device design, and applications. The first part of this review briefly overviews the development of amorphous and nanocrystalline alloys, including the structures of soft magnetic composites (SMCs), the key performance, and the underlying property-structure correction mechanisms. The second part discusses three kinds of high-power conversion applications of amorphous and nanocrystalline alloys, such as power electronics transformers (PETs), high-power inductors, and high-power electric motors. Further detailed analysis of these materials and applications are reviewed. Finally, some critical issues and future challenges for material tailoring, device design, and power conversion application are also highlighted. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

22 pages, 8218 KB  
Article
Effect of Al and Ta Impurities on Si Adsorption on (001) and (111) Surfaces of B1-TiN
by Yury M. Koroteev, Leonid A. Svyatkin, Sergey O. Ognev and Vyacheslav M. Silkin
Crystals 2025, 15(1), 37; https://doi.org/10.3390/cryst15010037 - 30 Dec 2024
Viewed by 987
Abstract
Nowadays, the application of protective multicomponent coatings based on hard metal nitrides is increasingly used to increase the resistance of structures and tools to wear, corrosion, and oxidation. In the present work, the multicomponent system Ti-Al-Ta-Si-N is studied, which has high hardness and [...] Read more.
Nowadays, the application of protective multicomponent coatings based on hard metal nitrides is increasingly used to increase the resistance of structures and tools to wear, corrosion, and oxidation. In the present work, the multicomponent system Ti-Al-Ta-Si-N is studied, which has high hardness and crack resistance combined with thermal stability and oxidation resistance. The process of formation of the nanocrystalline structure of the coating during its deposition on materials plays a key role in the optimization of these properties. The nanocrystalline structure of the coating is formed due to Si impurity, which is poorly soluble in the Ti1−x−yAlxTayN system based on B1-TiN and segregates mainly along grain boundaries, forming grain boundary amorphous phases of SizN type. In order to find the optimal composition of multicomponent coatings with improved physical and mechanical properties, it is necessary to understand the peculiarities of interaction of Si impurity with the surface of B1-TiN phase in the presence of Al and Ta substitutional impurities. In the present work, with the help of first-principles calculations of electronic and atomic structure of (001) and (111) surfaces of the Ti1−x−yAlxTayN system with adsorbed Si atom and the interatomic bond study apparatus based on the calculation of a crystal orbital Hamilton population and a crystal orbital bond index, the nature of the bonds between adsorbed Si and the N, Ti, Al, and Ta atoms of the Ti1−x−yAlxTayN surface system has been studied. It was found that the binding energy of Si with the Ti1−x−yAlxTayN surface system can be both higher and lower than the binding energy of its bonding with the surface of the binary TiN compound depending on the position of the Al and Ta substitution atoms in the surface layers. The Si bonding with the atoms of the Ti1−x−yAlxTayN surface is ionic–covalent in nature. It is shown that the Si-Ta interaction has the highest degree of covalency and strength, and the Si-Al interaction is predominantly ionic in most cases considered and is weaker than the Si-Ti and Si-N bonds. Impurity atoms of Al or Ta have very little effect on the Si-Ti and Si-N bonds due to the local nature of the bonds in the Ti1−x−yAlxTayN surface system with adsorbed silicon atoms. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

20 pages, 11208 KB  
Article
Facile Synthesis of a Micro–Nano-Structured FeOOH/BiVO4/WO3 Photoanode with Enhanced Photoelectrochemical Performance
by Ruixin Li, Faqi Zhan, Guochang Wen, Bing Wang, Jiahao Qi, Yisi Liu, Chenchen Feng and Peiqing La
Catalysts 2024, 14(11), 828; https://doi.org/10.3390/catal14110828 - 17 Nov 2024
Cited by 4 | Viewed by 1462
Abstract
In the realm of photoelectrocatalytic (PEC) water splitting, the BiVO4/WO3 photoanode exhibits high electron–hole pair separation and transport capacity, rendering it a promising avenue for development. However, the charge transport and reaction kinetics at the heterojunction interface are suboptimal. This [...] Read more.
In the realm of photoelectrocatalytic (PEC) water splitting, the BiVO4/WO3 photoanode exhibits high electron–hole pair separation and transport capacity, rendering it a promising avenue for development. However, the charge transport and reaction kinetics at the heterojunction interface are suboptimal. This study uses the hydrothermal–electrodeposition–dip coating–calcination method to prepare a microcrystalline WO3 photoanode thin film as the substrate material and combines it with nanocrystalline BiVO4 to form a micro–nano-structured heterojunction photoanode to enhance the intrinsic and surface/interface charge transport properties of the photoanode. Under the condition of 1.23 V vs. RHE, the photoelectric current density reaches 1.09 mA cm−2, which is twice that of WO3. Furthermore, by using a simple impregnation–mineralization method to load the amorphous FeOOH catalyst, a noncrystalline–crystalline composite structure is formed to increase the number of active sites on the surface and reduce the overpotential of water oxidation, lowering the onset potential from 0.8 V to 0.6 V (vs. RHE). The photoelectric current density is further increased to 2.04 mA cm−2 (at 1.23 V vs. RHE). The micro–nano-structure and noncrystalline–crystalline composite structure proposed in this study will provide valuable insights for the design and synthesis of high-efficiency photoelectrocatalysts. Full article
(This article belongs to the Special Issue Catalysts for Energy Storage)
Show Figures

Graphical abstract

Back to TopTop