Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = ambrosia insect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4850 KiB  
Article
Cell Structure of the Preoral Mycangia of Xyleborus (Coleoptera: Curculiondiae) Ambrosia Beetles
by Ross A. Joseph, Esther Tirmizi, Abolfazl Masoudi and Nemat O. Keyhani
Insects 2025, 16(6), 644; https://doi.org/10.3390/insects16060644 - 19 Jun 2025
Viewed by 562
Abstract
Ambrosia beetles have evolved specialized structures termed “mycangia”, which house and transport symbiotic microbes. Microbial partners include at least one obligate mutualistic filamentous fungus used as food for larvae and adults, and potentially secondary filamentous fungi, yeasts, and bacteria. Beetles in the genus [...] Read more.
Ambrosia beetles have evolved specialized structures termed “mycangia”, which house and transport symbiotic microbes. Microbial partners include at least one obligate mutualistic filamentous fungus used as food for larvae and adults, and potentially secondary filamentous fungi, yeasts, and bacteria. Beetles in the genus Xyleborus possess paired pre-oral mycangial structures located within the head on either side of the mouth parts. Mycangia develop in pupae, with newly emerged adults acquiring partners from the environment. However, information concerning the cellular structure and function of Xyleborus mycangia remains limited. We show that in X. affinis, mycangia are lined with a layer of striated dense material, enclosing layers of insect epithelial cells, with diverse spine-like structures. Larger (5–10 μm) projections were concentrated within and near the entrance of mycangia, with smaller filaments (4–8 μm) within the mycangia itself. Rows of “eyelash” structures lined the inside of mycangia, with fungal cells free-floating or in close association with these projections. Serial sections revealed mandibular articulations, and mandibular, pharyngeal, and labial muscles, along with the mycangial entry/exit channel. Sheets of comb-like spines at the mycangial entrance and opposite the mycangia attached to the roof of the labrum or epipharynx may serve as an interlocking mechanism for opening/closing the mycangia and guiding fungal cells into entry/exit channels. Additionally, mandibular fibra (muscle tissue) potentially enervating and affecting the mechanism of mycangial functioning were noted. These data add crucial mechanistic detail to the model of pre-oral mycangia in Xyleborus beetles, their cellular structures, and how they house and dispense microbial symbionts. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

14 pages, 645 KiB  
Review
Overview and Recent Advances in Bioassays to Evaluate the Potential of Entomopathogenic Fungi Against Ambrosia Beetles
by Jesús Enrique Castrejón-Antonio and Patricia Tamez-Guerra
Insects 2025, 16(6), 615; https://doi.org/10.3390/insects16060615 - 10 Jun 2025
Viewed by 1072
Abstract
Ambrosia beetles, known for their symbiotic relationship with fungi cultivated within the tissues of host trees, have become significant pests, particularly when they serve as vectors for pathogenic fungi such as Raffaelea lauricola. Given the regulatory and environmental constraints for chemical application [...] Read more.
Ambrosia beetles, known for their symbiotic relationship with fungi cultivated within the tissues of host trees, have become significant pests, particularly when they serve as vectors for pathogenic fungi such as Raffaelea lauricola. Given the regulatory and environmental constraints for chemical application as a tool for their control, entomopathogenic fungi (EPF) represent a promising pest management alternative. This review presents an overview of bioassays assessing the pathogenicity and virulence of EPF against ambrosia beetles. Most studies have been performed in vivo (artificial diet) under laboratory conditions, focusing on exotic species and testing EPF genera such as Beauveria, Metarhizium, Isaria, and Purpureocillium. However, variations in inoculation methods, environmental conditions, and fungal formulations, have led to diverse results. In addition, the complex biology of these insects, particularly their dependence on symbiotic fungi, represents significant methodological challenges. Field trials (in situ bioassays) are still scarce, and there is a need to move toward standardized protocols and more objective experimental models that consider not only insects’ behavior but also ecological factors. Bridging this gap is essential for successfully implementing EPF-based strategies to assess ambrosia beetles’ biocontrol. Full article
Show Figures

Figure 1

16 pages, 4005 KiB  
Article
Fungi That Live Within Animals: Application of Cell Cytometry to Examine Fungal Colonization of Ambrosia Beetle (Xyleborus sp.) Mycangia
by Ross A. Joseph, Kamaldeep Bansal, Jane Nguyen, Michael Bielanski, Esther Tirmizi, Abolfazl Masoudi and Nemat O. Keyhani
J. Fungi 2025, 11(3), 184; https://doi.org/10.3390/jof11030184 - 26 Feb 2025
Cited by 1 | Viewed by 768
Abstract
Ambrosia beetles bore into trees, excavating galleries where they farm fungi as their sole source of nutrition. These mutualistic fungi typically do not cause significant damage to host trees; however, since their invasion into the U.S., the beetle Xyleborus glabratus has vectored its [...] Read more.
Ambrosia beetles bore into trees, excavating galleries where they farm fungi as their sole source of nutrition. These mutualistic fungi typically do not cause significant damage to host trees; however, since their invasion into the U.S., the beetle Xyleborus glabratus has vectored its fungal partner, Harringtonia lauricola, which has acted as a devastating plant pathogen resulting in the deaths of over 500 million trees. Here, we show differences in the mycangial colonization of the indigenous X. affinis ambrosia beetle by H. lauricola, and the native fungal species, H. aguacate and Raffaelea arxii. While X. affinis was a good host for H. lauricola, the related ambrosia beetle, X. ferrugineus, was only marginally colonized by H. lauricola. X. affinis beetles neither fed on, nor were colonized by, the distantly related fungus, Magnaporthe oryzae. Mycangial colonization was affected by the nutritional state of the fungus. A novel method for direct quantification of mycangial contents based on image cell cytometry was developed and validated. The method was used to confirm mycangial colonization and demonstrate alternating fungal partner switching, which showed significant variation and dynamic turnover. X. affinis pre-oral mycangial pouches were visualized using fluorescent and light microscopy, revealing that newly emerged pupae displayed uncolonized mycangia prior to feeding, whereas beetles fed H. lauricola contained single-celled fungi within 6 h post-feeding. Mixed populations of fungal cells were seen in the mycangia of beetles following alternating colonization. Nuclear counter-staining revealed insect cells surrounding the mycangia. These data highlight variation and specificity in ambrosia beetle–fungal pairings and provide a facile method for direct quantification of mycangial contents. Full article
(This article belongs to the Special Issue Diversity of Microscopic Fungi)
Show Figures

Figure 1

26 pages, 1865 KiB  
Review
Cladosporium—Insect Relationships
by Rosario Nicoletti, Elia Russo and Andrea Becchimanzi
J. Fungi 2024, 10(1), 78; https://doi.org/10.3390/jof10010078 - 19 Jan 2024
Cited by 12 | Viewed by 3385
Abstract
The range of interactions between Cladosporium, a ubiquitous fungal genus, and insects, a class including about 60% of the animal species, is extremely diverse. The broad case history of antagonism and mutualism connecting Cladosporium and insects is reviewed in this paper based [...] Read more.
The range of interactions between Cladosporium, a ubiquitous fungal genus, and insects, a class including about 60% of the animal species, is extremely diverse. The broad case history of antagonism and mutualism connecting Cladosporium and insects is reviewed in this paper based on the examination of the available literature. Certain strains establish direct interactions with pests or beneficial insects or indirectly influence them through their endophytic development in plants. Entomopathogenicity is often connected to the production of toxic secondary metabolites, although there is a case where these compounds have been reported to favor pollinator attraction, suggesting an important role in angiosperm reproduction. Other relationships include mycophagy, which, on the other hand, may reflect an ecological advantage for these extremely adaptable fungi using insects as carriers for spreading in the environment. Several Cladosporium species colonize insect structures, such as galleries of ambrosia beetles, leaf rolls of attelabid weevils and galls formed by cecidomyid midges, playing a still uncertain symbiotic role. Finally, the occurrence of Cladosporium in the gut of several insect species has intriguing implications for pest management, also considering that some strains have proven to be able to degrade insecticides. These interactions especially deserve further investigation to understand the impact of these fungi on pest control measures and strategies to preserve beneficial insects. Full article
(This article belongs to the Special Issue Exploring the Fascinating World of Fungal Symbioses)
Show Figures

Figure 1

19 pages, 3214 KiB  
Article
Composition and Diversity of the Endobacteria and Ectobacteria of the Invasive Bark Beetle Hylurgus ligniperda (Fabricius) (Curculionidae: Scolytinae) in Newly Colonized Areas
by Ying Gu, Sixun Ge, Jiale Li, Lili Ren, Chuanzhen Wang and Youqing Luo
Insects 2024, 15(1), 12; https://doi.org/10.3390/insects15010012 - 27 Dec 2023
Cited by 2 | Viewed by 2062
Abstract
Hylurgus ligniperda (Fabricius) (Curculionidae: Scolytinae) is a new invasive pest beetle in China, which colonized the Shandong province, causing devastating damage. Originating in Europe, it has spread to Oceania, Asia, North and South America. Bacterial associates have been frequently reported to play a [...] Read more.
Hylurgus ligniperda (Fabricius) (Curculionidae: Scolytinae) is a new invasive pest beetle in China, which colonized the Shandong province, causing devastating damage. Originating in Europe, it has spread to Oceania, Asia, North and South America. Bacterial associates have been frequently reported to play a vital role in strengthening the ecological adaptations of bark and ambrosia beetles. The environmental adaptability of H. ligniperda may be supported by their associated bacteria. Bacterial communities colonizing different body parts of insects may have different functions. However, little is known about the bacteria associated with H. ligniperda and their potential involvement in facilitating the adaptation and invasion of the beetles into new environments. In this study, we employed high-throughput sequencing technology to analyze the bacterial communities associated with male and female adults of H. ligniperda by comparing those colonizing the elytra, prothorax, and gut. Results showed that the bacterial communities of male and female adults were similar, and the elytra samples had the highest bacterial diversity and richness, followed by the gut, while the prothorax had the lowest. The dominant phyla were Proteobacteria, Firmicutes, and Actinobacteriota, while the dominant genera were Serratia, Lactococcus, Rhodococcus, unclassified Enterobacteriaceae, and Gordonia. Among these, Rhodococcus and Gordonia were the specific genera of endobacteria and ectobacteria, respectively. Differences in the distribution of associated bacteria may suggest that they have different ecological functions for H. ligniperda. The results of functional prediction showed that bacteria were enriched in terpenoid backbone biosynthesis, degradation of aromatic compounds, limonene and pinene degradation, neomycin, kanamycin and gentamicin biosynthesis, indicating that they may assist their beetles in synthesizing pheromones, degrading toxic secondary metabolites of host trees, and antagonizing pathogenic fungi. These results help us understand the interaction between H. ligniperda and bacteria and highlight possible contributions to the invasion process. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

12 pages, 1980 KiB  
Article
Biocontrol of Xyleborus affinis (Curculionidae: Scolitinae) Females and Progeny by Beauveria bassiana (Hypocreales: Cordycipitaceae) in a Sawdust Artificial Diet Model
by Jesús E. Castrejón-Antonio, Patricia Tamez-Guerra, Nohemi García-Ortiz, Facundo Muñiz-Paredes, Juan Carlos Sánchez-Rangel and Roberto Montesinos-Matías
Insects 2023, 14(5), 477; https://doi.org/10.3390/insects14050477 - 19 May 2023
Cited by 4 | Viewed by 2123
Abstract
The ambrosia beetle Xyleborus affinis, recently reported affecting avocado trees in Mexico, represents one of the most widespread insects worldwide. Previous reports have shown that Xyleborus genera members are susceptible to Beauveria bassiana and other entomopathogenic fungus strains. However, their effect on [...] Read more.
The ambrosia beetle Xyleborus affinis, recently reported affecting avocado trees in Mexico, represents one of the most widespread insects worldwide. Previous reports have shown that Xyleborus genera members are susceptible to Beauveria bassiana and other entomopathogenic fungus strains. However, their effect on borer beetles’ progeny has not been fully investigated. The aim of the present study was to determine the insecticidal activity of B. bassiana on X. affinis adult females and their progeny in an artificial sawdust diet bioassay model. The B. bassiana strains CHE-CNRCB 44, 171, 431, and 485 were individually tested on females at concentrations ranging from 2 × 106 to 1 × 109 conidia mL−1. After 10 d of incubation, diet was evaluated to count laid eggs, larvae, and adults. Insect conidia loss after exposure was determined by attached conidia to each insect after 12 h of exposure. The results showed that females’ mortality ranged between 3.4% and 50.3% in a concentration–response manner. Furthermore, we did not observe statistical differences among strains at the highest concentration. CHE-CNRCB 44 showed the highest mortality at the lowest concentration and reduced larvae and laid eggs at the highest concentration (p < 0.01). Strains CHE-CNRCB 44, 431, and 485 significantly decreased larvae, as compared with the untreated control. After 12 h, up to 70% of conidia was removed by the effect of the artificial diet. In conclusion, B. bassiana has the potential to control X. affinis adult females and progeny. Full article
Show Figures

Figure 1

13 pages, 2646 KiB  
Article
Host-Plant Selection Behavior of Ophraella communa, a Biocontrol Agent of the Invasive Common Ragweed Ambrosia artemisiifolia
by Jisu Jin, Meiting Zhao, Zhongshi Zhou, Ren Wang, Jianying Guo and Fanghao Wan
Insects 2023, 14(4), 334; https://doi.org/10.3390/insects14040334 - 29 Mar 2023
Cited by 5 | Viewed by 2441
Abstract
Understanding the host-selection behavior of herbivorous insects is important to clarify their efficacy and safety as biocontrol agents. To explore the host-plant selection of the beetle Ophraella communa, a natural enemy of the alien invasive common ragweed (Ambrosia artemisiifolia), we [...] Read more.
Understanding the host-selection behavior of herbivorous insects is important to clarify their efficacy and safety as biocontrol agents. To explore the host-plant selection of the beetle Ophraella communa, a natural enemy of the alien invasive common ragweed (Ambrosia artemisiifolia), we conducted a series of outdoor choice experiments in cages in 2010 and in open fields in 2010 and 2011 to determine the preference of O. communa for A. artemisiifolia and three non-target plant species: sunflower (Helianthus annuus), cocklebur (Xanthium sibiricum), and giant ragweed (Ambrosia trifida). In the outdoor cage experiment, no eggs were found on sunflowers, and O. communa adults rapidly moved from sunflowers to the other three plant species. Instead, adults preferred to lay eggs on A. artemisiifolia, followed by X. sibiricum and A. trifida, although very few eggs were observed on A. trifida. Observing the host-plant selection of O. communa in an open sunflower field, we found that O. communa adults always chose A. artemisiifolia for feeding and egg laying. Although several adults (<0.02 adults/plant) stayed on H. annuus, no feeding or oviposition were observed, and adults quickly transferred to A. artemisiifolia. In 2010 and 2011, 3 egg masses (96 eggs) were observed on sunflowers, but they failed to hatch or develop into adults. In addition, some O. communa adults crossed the barrier formed by H. annuus to feed and oviposit on A. artemisiifolia planted in the periphery, and persisted in patches of different densities. Additionally, only 10% of O. communa adults chose to feed and oviposit on the X. sibiricum barrier. These findings suggest that O. communa poses no threat to the biosafety of H. anunuus and A. trifida and exhibits a robust dispersal capacity to find and feed on A. artemisiifolia. However, X. sibiricum has the potential to be an alternative host plant for O. communa. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

12 pages, 1723 KiB  
Article
Characterization and Functional Analysis of OcomOBP7 in Ophraella communa Lesage
by Yang Yue, Chao Ma, Yan Zhang, Hong-Song Chen, Jian-Ying Guo, Ting-Hui Liu and Zhong-Shi Zhou
Insects 2023, 14(2), 190; https://doi.org/10.3390/insects14020190 - 14 Feb 2023
Cited by 6 | Viewed by 2262
Abstract
The olfactory system plays a key role in various insect behaviors, and odorant-binding proteins participate in the first step of the olfactory process. Ophraella communa Lesage is an oligophagous phytophagous insect that is a specific biological control agent for Ambrosia artemisiifolia L. The [...] Read more.
The olfactory system plays a key role in various insect behaviors, and odorant-binding proteins participate in the first step of the olfactory process. Ophraella communa Lesage is an oligophagous phytophagous insect that is a specific biological control agent for Ambrosia artemisiifolia L. The leaf beetle must identify and locate A. artemisiifolia through olfaction; however, its odorant-binding protein (OBP) function has not yet been reported. In this study, OcomOBP7 was cloned, and its tissue expression profile and binding ability were analyzed using RT-qPCR and fluorescence binding assays, respectively. Sequence analysis demonstrated that OcomOBP7 belongs to the classical OBP family. The RT-qPCR results showed that OcomOBP7 was specifically expressed in the antennae, indicating that OcomOBP7 may be involved in chemical communication. The fluorescence binding assay showed that OcomOBP7 has an extensive binding ability to alkenes. The electroantennography experiments showed that O. communa antennal response to α-pinene and ocimene decreased significantly after interference because the two odors specifically bound to OcomOBP7. In summary, α-pinene and ocimene are odorant ligands corresponding to OcomOBP7, indicating that OcomOBP7 is involved in the chemical recognition of A. artemisiifolia. Our study lays a theoretical foundation for research into O. communa attractants, which is helpful for the better biological control of A. artemisiifolia by O. communa. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

12 pages, 2118 KiB  
Article
The Role of Mycangial Fungi Associated with Ambrosia Beetles (Euwallacea interjectus) in Fig Wilt Disease: Dual Inoculation of Fusarium kuroshium and Ceratocystis ficicola Can Bring Fig Saplings to Early Symptom Development
by Zi-Ru Jiang, Takeshige Morita, Shota Jikumaru, Keiko Kuroda, Hayato Masuya and Hisashi Kajimura
Microorganisms 2022, 10(10), 1912; https://doi.org/10.3390/microorganisms10101912 - 27 Sep 2022
Cited by 7 | Viewed by 3570
Abstract
The ambrosia beetle, Euwallacea interjectus, is a wood-boring pest and a vector of Ceratocystis ficicola, a pathogenic fungus causing fig (Ficus carica) wilt disease (FWD) in Japan. The ambrosia fungi, Fusarium kuroshium and Neocosmospora metavorans, have been frequently [...] Read more.
The ambrosia beetle, Euwallacea interjectus, is a wood-boring pest and a vector of Ceratocystis ficicola, a pathogenic fungus causing fig (Ficus carica) wilt disease (FWD) in Japan. The ambrosia fungi, Fusarium kuroshium and Neocosmospora metavorans, have been frequently isolated from heads (including mycangia) of wild and reared adult female E. interjectus, respectively. However, the exact mechanisms driving FWD as well as the interactions between F. kuroshium and C. ficicola in fig orchard remain unclear. To verify the role of the mycangial fungi in the FWD progression, fig saplings were subjected to inoculation treatments (T1, F. kuroshium; T2, N. metavorans, reference positive control; T3, C. ficicola; T4, F. kuroshium + C. ficicola, realistic on-site combination). T3 and T4 saplings began wilting approximately 12 days after inoculation, leading to eventual death. Median duration from inoculation to death of the T4 saplings was approximately four days significantly faster than that of the T3 saplings. Xylem sap-conduction test indicated that dysfunction and necrosis area were considerably wider in the T4 saplings than in T3 saplings. These results demonstrate that the synergistic action of F. kuroshium and C. ficicola contributed to accelerated wilting in the saplings. Based on these discoveries, we proposed a model for system changes in the symbiosis between E. interjectus and its associated fungi in FWD in Japan. Full article
(This article belongs to the Special Issue Advances in Plant-Microbe Interactions)
Show Figures

Figure 1

17 pages, 3884 KiB  
Article
Ambrosia Beetle Attacks in Mediterranean Cork Oak Forests Following Fire: Which Factors Drive Host Selection?
by Filipe X. Catry, Manuela Branco, Francisco Moreira, Edmundo Sousa and Francisco Rego
Fire 2022, 5(4), 115; https://doi.org/10.3390/fire5040115 - 12 Aug 2022
Cited by 2 | Viewed by 2933
Abstract
Mediterranean Basin forest ecosystems are recurrently affected by wildfires. The occurrence of insect pests following fire may be a critical factor affecting tree survival and forest recovery. Although ambrosia beetles are viewed with increasing concern, information about the host selection and colonization behavior [...] Read more.
Mediterranean Basin forest ecosystems are recurrently affected by wildfires. The occurrence of insect pests following fire may be a critical factor affecting tree survival and forest recovery. Although ambrosia beetles are viewed with increasing concern, information about the host selection and colonization behavior of these beetles in Mediterranean broadleaf forests is very scarce and inexistent in areas affected by wildfires. After a forest fire in Portugal, we selected 841 burned and unburned cork oak trees and assessed the presence and intensity of ambrosia beetle attacks, as well as other tree characteristics, and used generalized linear models to investigate the factors driving host selection. In contrast with burned oaks, where beetle attacks were frequent, the unburned trees were little affected. Attacks in the burned forest were more frequent in larger trees that suffered higher fire severity, in trees being exploited for cork (but with thicker bark), and in trees that were closer to the unburned area. A contagious effect to neighboring unburned trees was not observed, and cork harvesting in subsequent years following fire also did not increase the probability of beetle attacks. These results help us to understand the risk of ambrosia beetle attacks and improve forest management in cork oak forests. Full article
(This article belongs to the Special Issue Mediterranean Fires)
Show Figures

Figure 1

16 pages, 1109 KiB  
Article
Electroantennographic Responses of Wild and Laboratory-Reared Females of Xyleborus affinis Eichhoff and Xyleborus ferrugineus (Fabricius) (Coleoptera: Curculionidae: Scolytinae) to Ethanol and Bark Volatiles of Three Host-Plant Species
by Patricia Romero, Luis A. Ibarra-Juárez, Daniel Carrillo, José A. Guerrero-Analco, Paul E. Kendra, Ana L. Kiel-Martínez and Larissa Guillén
Insects 2022, 13(7), 655; https://doi.org/10.3390/insects13070655 - 21 Jul 2022
Cited by 10 | Viewed by 3207
Abstract
Chemical ecology studies on ambrosia beetles are typically conducted with either wild or laboratory-reared specimens. Unlike laboratory-reared insects, important aspects that potentially influence behavioral responses, such as age, physiological state, and prior experience are unknown in wild specimens. In this study, we compared [...] Read more.
Chemical ecology studies on ambrosia beetles are typically conducted with either wild or laboratory-reared specimens. Unlike laboratory-reared insects, important aspects that potentially influence behavioral responses, such as age, physiological state, and prior experience are unknown in wild specimens. In this study, we compared the electroantennographic (EAG) responses of laboratory-reared and wild X. affinis and X. ferrugineus to 70% ethanol and bark odors (host kairomones) of Bursera simaruba, Mangifera indica, and Persea schiedeana aged for 2, 24, and 48 h. Chemical analyses of each odor treatment (bark species x length of aging) were performed to determine their volatilome composition. EAG responses were different between laboratory-reared and wild X. ferrugineus when exposed to ethanol, whereas wild X. affinis exhibited similar EAG responses to the laboratory-reared insects. Ethanol elicited the strongest olfactory responses in both species. Among the bark-odors, the highest responses were triggered by B. simaruba at 48 h in X. affinis, and P. schiedeana at 24 and 48 h in X. ferrugineus. Volatile profiles varied among aged bark samples; 3-carene and limonene were predominant in B. simaruba, whereas α-copaene and α-cubebene were abundant in P. schiedeana. Further studies are needed to determine the biological function of B. simaruba and P. schiedeana terpenes on X. affinis and X. ferrugineus, and their potential application for the development of effective lures. Full article
(This article belongs to the Topic Advances in Chemical Ecology)
Show Figures

Figure 1

14 pages, 3488 KiB  
Article
Potential European Geographical Distribution of Gnathotrichus materiarius (Fitch, 1858) (Coleoptera: Scolytinae) under Current and Future Climate Conditions
by Radosław Witkowski, Marcin K. Dyderski, Marta Bełka and Andrzej Mazur
Forests 2022, 13(7), 1097; https://doi.org/10.3390/f13071097 - 13 Jul 2022
Cited by 4 | Viewed by 3720
Abstract
Gnathotrichus materiarius (Fitch, 1858) is an alien ambrosia beetle from North America, that has been spreading across Europe since the 1930s. The species infests coniferous trees, excavating galleries in sapwood. However, to date very few studies have predicted changes in ambrosia beetle habitat [...] Read more.
Gnathotrichus materiarius (Fitch, 1858) is an alien ambrosia beetle from North America, that has been spreading across Europe since the 1930s. The species infests coniferous trees, excavating galleries in sapwood. However, to date very few studies have predicted changes in ambrosia beetle habitat suitability under changing climate conditions. To fill that gap in the current knowledge, we used the MaxEnt algorithm to estimate areas potentially suitable for this species in Europe, both under current climate conditions and those forecasted for the years 2050 and 2070. Our analyses showed areas where the species has not been reported, though the climatic conditions are suitable. Models for the forecasted conditions predicted an increase in suitable habitats. Due to the wide range of host trees, the species is likely to spread through the Balkans, the Black Sea and Caucasus region, Baltic countries, the Scandinavian Peninsula, and Ukraine. As a technical pest of coniferous sapwood, it can cause financial losses due to deterioration in quality of timber harvested in such regions. Our results will be helpful for the development of a climate-change-integrated management strategy to mitigate potential adverse effects. Full article
(This article belongs to the Special Issue Diversity and Distribution of Forest Insects)
Show Figures

Figure 1

17 pages, 3077 KiB  
Article
Ceratocystiopsis quercina sp. nov. Associated with Platypus cylindrus on Declining Quercus suber in Portugal
by Maria L. Inácio, José Marcelino, Arlindo Lima, Edmundo Sousa and Filomena Nóbrega
Biology 2022, 11(5), 750; https://doi.org/10.3390/biology11050750 - 13 May 2022
Cited by 7 | Viewed by 3018
Abstract
Platypus cylindrus is the most common ambrosia beetle in stands of Quercus suber in Portugal. This insect farms specialized fungi in sapwood galleries, using its mycangia to carry and store these organisms. Some ectosymbiotic fungi carried by P. cylindrus are phytopathogenic and cause [...] Read more.
Platypus cylindrus is the most common ambrosia beetle in stands of Quercus suber in Portugal. This insect farms specialized fungi in sapwood galleries, using its mycangia to carry and store these organisms. Some ectosymbiotic fungi carried by P. cylindrus are phytopathogenic and cause extensive tree mortality and severe economic losses. To understand the role of P. cylindrus fungal symbionts in stands of Q. suber we examined beetle galleries present in declining and/or dying cork oak trees during field surveys. Logs with active galleries were obtained in situ and from captured emerging beetles. Insects were aseptically dissected, and their mycangia and intestine were retrieved. Morphological and molecular profiles of fungal isolates obtained from cultured insect parts were carried out to accurately characterize and identify isolated fungi. Molecular characterizations were performed with DNA sequence data from four loci, i.e., LSU, SSU, 5.8S-ITS2-28S, and TUB. Morphological results consistently showed a collection of Ophiostoma-like fungal axenic isolates, while phylogenies inferred that this collection constitutes an undescribed taxon reported herein for the first time in association with P. cylindrus in Portuguese cork oak stands. The novel species was erected as Ceratocystiopsis quercina sp. nov. and constitutes a new phytopathogenic fungal species associated with symptoms of vegetative cork oak decline. Full article
(This article belongs to the Special Issue Recent Advances in Molecular Genetics of Plant-Microbe Interactions)
Show Figures

Graphical abstract

19 pages, 6078 KiB  
Article
Characterization of Two Fusarium solani Species Complex Isolates from the Ambrosia Beetle Xylosandrus morigerus
by Nohemí Carreras-Villaseñor, José B. Rodríguez-Haas, Luis A. Martínez-Rodríguez, Alan J. Pérez-Lira, Enrique Ibarra-Laclette, Emanuel Villafán, Ana P. Castillo-Díaz, Luis A. Ibarra-Juárez, Edgar D. Carrillo-Hernández and Diana Sánchez-Rangel
J. Fungi 2022, 8(3), 231; https://doi.org/10.3390/jof8030231 - 26 Feb 2022
Cited by 14 | Viewed by 7352
Abstract
Ambrosia beetles are insect vectors of important plant diseases and have been considered as a threat to forest ecosystems, agriculture, and the timber industry. Several factors have been suggested as promoters of the pathogenic behavior of ambrosia beetles; one of them is the [...] Read more.
Ambrosia beetles are insect vectors of important plant diseases and have been considered as a threat to forest ecosystems, agriculture, and the timber industry. Several factors have been suggested as promoters of the pathogenic behavior of ambrosia beetles; one of them is the nature of the fungal mutualist and its ability to establish an infectious process. In Mexico, Xylosandrus morigerus is an invasive ambrosia beetle that damages many agroecosystems. Herein, two different isolates from the X. morigerus ambrosia beetle belonging to the Fusarium genus are reported. Both isolates belong to the Fusarium solani species complex (FSSC) but not to the Ambrosia Fusarium clade (AFC). The two closely related Fusarium isolates are pathogenic to different forest and agronomic species, and the morphological differences between them and the extracellular protease profile suggest intraspecific variability. This study shows the importance of considering these beetles as vectors of different species of fungal plant pathogens, with some of them even being phylogenetically closely related and having different pathogenic abilities, highlighting the relevance of the fungal mutualist as a factor for the ambrosia complex becoming a pest. Full article
(This article belongs to the Special Issue Plant-Pathogenic Fusarium Species)
Show Figures

Graphical abstract

13 pages, 2149 KiB  
Article
Scanning Electron Microscopic Analysis of Antennal Sensilla and Tissue-Expression Profiles of Chemosensory Protein Genes in Ophraella communa (Coleoptera: Chrysomelidae)
by Chao Ma, Yang Yue, Yan Zhang, Zhen-Ya Tian, Hong-Song Chen, Jian-Ying Guo and Zhong-Shi Zhou
Insects 2022, 13(2), 183; https://doi.org/10.3390/insects13020183 - 9 Feb 2022
Cited by 9 | Viewed by 2816
Abstract
Ophraella communa is an efficient biocontrol agent used against the invasive weed Ambrosia artemisiifolia. It is an herbivorous insect that feeds on specific plants; the olfactory functions of this insects plays an important role in their search for host plants. There are [...] Read more.
Ophraella communa is an efficient biocontrol agent used against the invasive weed Ambrosia artemisiifolia. It is an herbivorous insect that feeds on specific plants; the olfactory functions of this insects plays an important role in their search for host plants. There are no reports on O. communa sensilla types, morphology, or chemosensory protein (CSP) genes. In this study, we observed the external structure and distribution of antennal sensilla in adult O. communa antennae by scanning electron microscopy; moreover, we cloned 11 CSPs (CSP1–CSP11) and elucidated their tissue-expression profiles using quantitative real-time polymerase chain reaction. Six types of sensilla were identified: sensilla trichodea (including two subtypes), sensilla chaetica, sensilla basiconica (including two subtypes), sensilla styloconica, sensilla coeloconica, and Böhm bristles. Both male and female antennae had all six types of sensilla, and no sexual dimorphism was noted in sensillar types or distribution. We also found that the expression levels of CSP2, CSP3, CSP4, CSP6, and CSP7 in male and female antennae were higher than those in other tissues, which suggests that these five CSPs may be related to olfactory function in O. communa. Ultimately, our results lay the foundation for interpreting the olfactory functions of adult O. communa. Full article
(This article belongs to the Collection Insect Sensory Biology)
Show Figures

Figure 1

Back to TopTop