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Simple Summary: Ophraella communa is an effective biocontrol agent against the invasive common
ragweed Ambrosia artemisiifolia. However, whether some closely related non-target plants can become
alternative host plant species of O. communa in China remains unclear. Although extensive host-
plant selection tests have been used to ensure the host specificity of O. communa in other countries,
some doubts remain. In this study, we conducted a series of choice experiments in outdoor cages
and open fields to determine the preference of O. communa for A. artemisiifolia and three non-target
plant species: sunflower (Helianthus annuus), cocklebur (Xanthium sibiricum), and giant ragweed
(Ambrosia trifida). The results showed that this beetle poses no threat to the biosafety of H. anunuus
or A. trifida and exhibits a robust dispersal capacity to find and feed on A. artemisiifolia. However, in
the future, we should be aware that X. sibiricum has the potential to be an alternative host plant for
O. communa.

Abstract: Understanding the host-selection behavior of herbivorous insects is important to clarify
their efficacy and safety as biocontrol agents. To explore the host-plant selection of the beetle
Ophraella communa, a natural enemy of the alien invasive common ragweed (Ambrosia artemisiifolia),
we conducted a series of outdoor choice experiments in cages in 2010 and in open fields in 2010 and
2011 to determine the preference of O. communa for A. artemisiifolia and three non-target plant species:
sunflower (Helianthus annuus), cocklebur (Xanthium sibiricum), and giant ragweed (Ambrosia trifida).
In the outdoor cage experiment, no eggs were found on sunflowers, and O. communa adults rapidly
moved from sunflowers to the other three plant species. Instead, adults preferred to lay eggs on
A. artemisiifolia, followed by X. sibiricum and A. trifida, although very few eggs were observed on
A. trifida. Observing the host-plant selection of O. communa in an open sunflower field, we found that
O. communa adults always chose A. artemisiifolia for feeding and egg laying. Although several adults
(<0.02 adults/plant) stayed on H. annuus, no feeding or oviposition were observed, and adults quickly
transferred to A. artemisiifolia. In 2010 and 2011, 3 egg masses (96 eggs) were observed on sunflowers,
but they failed to hatch or develop into adults. In addition, some O. communa adults crossed the
barrier formed by H. annuus to feed and oviposit on A. artemisiifolia planted in the periphery, and
persisted in patches of different densities. Additionally, only 10% of O. communa adults chose to feed
and oviposit on the X. sibiricum barrier. These findings suggest that O. communa poses no threat to
the biosafety of H. anunuus and A. trifida and exhibits a robust dispersal capacity to find and feed on
A. artemisiifolia. However, X. sibiricum has the potential to be an alternative host plant for O. communa.
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1. Introduction

Exploring and understanding host specificity is an important part of the methodol-
ogy for selecting biological control agents [1–3], and the concept of insect behavior has
been widely applied to improve testing for host specificity [4–8]. During the long-term
evolutionary process, herbivorous insects have developed a series of specialized behavioral
strategies to distinguish between host and non-host plants [9], and multiple mechanisms
have been proposed to underlie host-plant selection [10–12]. For example, the “preference-
performance hypothesis” predicts that female insects evolve to oviposit on hosts on which
their offspring will fare best [13,14]. To maximize overall fitness, herbivorous insects must
assess host-plant quality, both between and within species, and locate and select the most
suitable host for feeding and larval development [15–17].

Although many agents used for the biological control of weeds exhibit extreme host
specificity, the endogenous conditions of the insect and test arena may cause host-plant se-
lection behavior to become more labile, thus affecting the host-plant range [18,19]. There are
numerous types of host specificity tests, including choice tests [20], non-choice tests [20,21],
cage tests [22], and open field choice tests [21]. The selection of the test, and even the
distribution pattern of the test plants, affects the host specificity results. For example,
Microthrix inconspicuella is a potential agent for the control of the polygonaceous weed
Emex australis, and, under caged quarantine conditions, the larvae of this moth have been
found to feed on apples, a rosaceous crop [23]. However, under field conditions or when
the larvae are contained in large sleeve cages, apple foliage is not attacked [22]. Therefore,
the outcomes of host specificity tests typically vary under different test designs, owing to
behavioral factors.

Several behavioral factors influence test results, including sequential behavioral re-
sponses during host-plant selection [24–26], experience and learning [27–31], and time-
dependent effects [32]. These factors may lead to two types of false results. A false positive
result refers to an attack during the test but no potential for attack under field conditions,
whereas a false negative result occurs when a plant species is not attacked during the test
but might be attacked in the field. For example, if non-target plants are near the host plant,
they may be more prone to attack, and insects may habituate to and accept non-host plants
through repeated contact, thus leading to a false positive result. False results may lead to
the rejection of potential biological control agents that might be adequately host-specific, or
to the release of candidate agents that may attack non-host plants in the field.

To minimize the potential for false results, many test methods have been designed,
including the use of large arenas [33], natural arenas [4], open field testing [34], and
behavior-based host-selection tests, which should indicate whether a plant is susceptible to
feeding or oviposition by a biological control agent under any set of field conditions [1,5].
In this study, we experimentally analyzed under field conditions the host-selection behavior
of a potential biological control agent, Ophraella communa (Coleoptera: Chrysomelidae),
against the common ragweed Ambrosia artemisiifolia (Asteraceae).

Ophraella communa has been found to be an effective agent for the biological con-
trol of common ragweed, a widespread and harmful invasive alien weed [35,36], and
has achieved great success in China [37]. It is an oligophagous leaf beetle that feeds on
plants of the Asteraceae family. Several studies have focused on its host range, and it
has been reported to attack cockleburs (Iva axillaris, Xanthium strumarium, X. canadense,
and X. italicum), giant ragweed (Ambrosia trifida), sunflower (Helianthus annuus), feverfew
(Parthenium hysterophorus), and Jerusalem artichoke (H. tuberosus) (Asteraceae) [2,35,36,38].
Watanabe and Hirai, Hu and Meng, Kim et al., and Kim and Lee concluded that O. communa
could feed on sunflower plants and even complete generations [36,38–40]. Therefore, this
beetle was rejected for release as a biocontrol agent for ragweed because of the possible
damage to crops in Australia [41]. Although extensive host-plant selection tests have been
used to ensure the host specificity of O. communa [2,42–44], some doubts remain, such as
whether cockleburs can become an alternative host-plant species and the host-plant range
expansion of O. communa in China is unclear. The risk of attack by O. communa and the
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subsequent level of damage that might occur in sunflower crops under field conditions
remain unknown [19,36,45].

Host and non-host plants often coexist under natural conditions, and the “physical
obstruction hypothesis” describes the situation in which host plants are effectively hidden
by large or tall non-host plants [13], which are usually used to protect crops from pest
infestations in the field. Similarly, a biological control agent may have difficulty locating a
targeted invasive host when the plant coexists with larger or taller non-host plants. In China
and Europe, A. artemisiifolia has become a major agricultural weed, especially spring-sown
crops, such as sunflower and maize [46–48]. Sunflower is a large and tall plant that can
easily act as a barrier to biological control. Therefore, when O. communa is used to control
A. artemisiifolia in sunflower cultivation, it is unclear whether the weed can hide among the
crops, leading to a reduction in biological control efficiency.

Understanding the characteristics of the host-plant selection behavior of O. communa
is important for better prediction and evaluation of its safety and efficacy as a biological
control agent. It is also important to determine whether cockleburs can become alternative
host-plant species in China, what is the risk of attack by O. communa on sunflower, and the
control efficacy of A. artemisiifolia under field conditions. Therefore, in this study, outdoor
cage and open field tests were performed to investigate the host-selection behavior of this
beetle in the hope of answering these questions.

2. Materials and Methods
2.1. Host Plants

Seeds of A. artemisiifolia were collected from the Institute of Plant Protection of the
Hunan Academy of Agricultural Sciences (IPP, HAAS, 25◦21′17.81” N, 114◦33′40.00” E), and
X. strumarium and A. trifida seeds were collected from the experimental farm of Shenyang
Agricultural University, Liaoning Province (41◦48′ N, 123◦24′ E). Seeds of H. annuus (oil
sunflower, cv. CH609) were purchased from Ku-Fu-Tian Seed Company, Inner Mongolia
Autonomous Region, China.

The A. artemisiifolia, X. strumarium, and A. trifida seeds were sown in individual seed
trays with sterilized nutritional soil (Langfang Dingxin Seedling Company, Langfang, China)
and individually transplanted into plastic pots (15 cm in diameter and 10 cm in height)
with loamy clay soil at the three- to four-leaf stage. H. annuus seeds were sown directly
in the same plastic pots. The seedlings were placed in an unheated and naturally lit
greenhouse at the Langfang Experimental Station of the Institute of Plant Protection,
Chinese Academy of Agricultural Sciences (LF Station, IPP, CAAS) in Langfang City,
Hebei Province (39◦30′42” N, 116◦36′07” E) and watered every four days. All individuals
of each species were used in the experiments when they were approximately 20–30 cm
in height.

2.2. Insect Culture

Ophraella communa pupae were collected from IPP and HAAS and used to construct
colonies on A. artemisiifolia plants at the LF Station, IPP, and CAAS. The O. communa
population was maintained in an unheated greenhouse under a 16 h L:8 h D photoperiod
at 26 ± 1 ◦C and 70 ± 10% relative humidity (RH) and was used for the experiments after
three generations.

2.3. Distribution and Oviposition Preference Behavior of O. communa Adults on Four Different
Coexisting Plant Species in Outdoor Cages

The experiments were conducted in outdoor cages (6.5 × 24.5 m) at LF Station, IPP,
CAAS. Five sample plots (2.5 × 4.5 m) were regularly arranged in the field, and each plot
was covered with a single mesh cage (2 m in height) on 2 July 2010 (Figure 1A). Two plants
of each of the four tested species (approximately 30–40 cm in height) were transplanted into
the above cages on 8 July 2010. The planting patterns are shown in Figure 1B. O. communa
adults at 2 days of age were randomly collected from the greenhouse, and on 15 July 2010,
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10 pairs (female: male = 1:1) were released on each sunflower plant in each cage. From
the day after release to the 5th day, the numbers of adults and eggs on each plant in
each cage were counted daily; the observations were performed every other day until the
27th day after release (one O. communa generation). Five replicates were performed for
each experiment.
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sites in each plot.

2.4. Host-Plant Selection Behavior of O. communa on Regularly Distributed Ragweed Patches in
Sunflower Plots

The experiments were conducted in an open field (45× 70 m) at the LF Station, IPP, and
CAAS in 2010 and 2011. Six sample plots (20 × 20 m) were prepared, and X. strumarium
was planted among different barrier bands (Figure 2A). The intercropping patterns of
A. artemisiifolia and H. annuus are shown in Figure 2B. In each plot, 20 A. artemisiifolia plants
were evenly planted in the center of each plot (shaded area in the figure with a 1 m radius),
and 24 sunflowers were planted in a homocentric ring with a 3 m radius to create the
sunflower barrier. Twenty-seven and forty-five sunflowers were planted in homocentric
rings with radii of 6 and 9 m, respectively. One, two, and three A. artemisiifolia plants
per cluster were evenly intercropped at intervals of three sunflowers in the 6 m radius
homocentric ring and at intervals of four sunflowers in the 9 m homocentric ring. Sunflower
and ragweed seedlings were planted 80 cm apart. O. communa adults at 2 days of age
were randomly collected from the laboratory culture; on July 4 of both years, 40 pairs were
released on A. artemisiifolia in the center of each plot. After three days, visual sampling was
used to count the numbers of O. communa adults, eggs, larvae, and pupae on A. artemisiifolia
and sunflower plants in each plot, and observations were performed every six days until
the sunflower fruit ripened on September 26. Six replicates were performed for each
experiment and continued for two years.
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2.5. Data Analysis

Statistical analyses were performed using the SAS system for Windows V8. The
experimental data were checked for normality and homoscedasticity, and if required, were
arcsine square-root or log-transformed before analysis. In the outdoor cages experiment,
three-way ANOVA followed by the Tukey test (p values ≤ 0.05) was performed to compare
the data on O. communa distribution (adults and eggs) considering the effects of plant
species, days after release and cages (blocks) and their interactions. In the open field
experiment, preliminary analyses indicated no significant effects of year and blocks (plots).
Therefore, a three-way ANOVA followed by the Tukey test (p values ≤ 0.05) was used to
test for the effects of plant species, distance from center, and ragweed cluster density on the
cumulative densities of the different O. communa developmental stages.

3. Results
3.1. Distribution of O. communa Adults on Four Different Coexisting Plant Species in Outdoor Cages

In the outdoor cages experiment, the results of three-way ANOVA indicated that only
plant species had a significant effect on dynamics of O. communa adults, whereas days after
release, cages and their interactions had no significant effects (Supplementary Table S1).
O. communa adults released on H. annuus moved rapidly to the other three plant species, and
there was a significantly lower number of O. communa adults on sunflower compared to the
other plant species (Figure 3). After release, approximately 70% of the beetles were observed
on the four different plant species, approximately 32.5% and 25% moved to A. artemisiifolia
and X. sibiricum, respectively, approximately 2% moved to A. trifida (two adults on one
plant), and approximately 10% remained on the sunflower plants. On the third day after
release, most adult beetles were found to feed on A. artemisiifolia and X. sibiricum. Only one
adult remained on a single sunflower plant, and several tiny feeding spots were observed;
however, this area was negligible compared to the entire leaf area. After five days, no adult
beetles were found on the sunflowers, but the population of adult O. communa remained
high in A. artemisiifolia and X. sibiricum. One or two adults occasionally fed on A. trifida.
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3.2. Oviposition Preference Behavior of O. communa Adults on Four Different Coexisting Plant
Species in Outdoor Cages

In the outdoor cages experiment, the results of the three-way ANOVA showed sig-
nificant effects of the plant, the day, and their interaction on the dynamics of O. communa
egg deposition (Supplementary Table S1). By tracking the movement of O. communa
adults among the four tested plant species, we found that they preferred to lay eggs on
A. artemisiifolia followed by X. sibiricum. Very few eggs (<60) were observed on one A. trifida
plant and no eggs were found on H. annuus plants during the entire survey period. The
oviposition of O. communa on A. artemisiifolia showed a significant peak of 623.0 eggs per
plant on 24 July 2010, which was significantly higher than that on X. sibiricum (146.2 eggs
per cage) and A. trifida (9 eggs per cage) (Figure 4).
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3.3. Host-Plant Selection Behavior of O. communa on Regularly Distributed Ragweed Patches in
Sunflower Plots

In the open field experiment, the results of the three-way ANOVA indicated that only
plant species had a significant effect on the number of O. communa individuals in different
developmental stages, whereas distance, density, and the interactions between the three
factors had no significant effects (Supplementary Table S2). In 2010 and 2011, there were
significant differences in the number of O. communa individuals at different developmental
stages in A. artemisiifolia compared with H. annuus (Figure 5). In both years, the number of
O. communa adults on common ragweed was significantly higher than that on sunflower
(Figure 5a,b). The number of eggs laid also showed consistency (Figure 5c,d). Very few
eggs were found on sunflowers, and all died during development. Moreover, the number
of larvae (Figure 5e,f) and pupae (Figure 5g,h) on sunflower was significantly lower and
was close to zero.
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Figure 5. The number of O. communa individuals in different developmental stages on A. artemisiifolia
(individuals/plant) and H. annuus (individuals/plant) planted in 2010 and 2011. All values are
shown as the means ± SE. ** p < 0.01, highly significant. (a): the number of O. communa adults on
A. artemisiifolia and H. annuus in 2010, (b): the number of O. communa adults on A. artemisiifolia and
H. annuus in 2011,(c): the number of O. communa eggs on A. artemisiifolia and H. annuus in 2010.,
(d): the number of O. communa eggs on A. artemisiifolia and H. annuus in 2011.,(e): the number of
O. communa larvae on A. artemisiifolia and H. annuus in 2010.,(f): the number of O. communa larvae on
A. artemisiifolia and H. annuus in 2011.,(g): the number of O. communa pupae on A. artemisiifolia and
H. annuus in 2010, (h): the number of O. communa pupae on A. artemisiifolia and H. annuus in 2011.
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In addition, based on two years of observation and records, the O. communa adults were
mainly found feeding and/or ovipositing on A. artemisiifolia planted in the center of each
plot during the early period after release, and very few adults were found on A. artemisiifolia
planted in homocentric rings with radii of 6 m and 9 m (Supplementary Figure S1a,b).
During the entire survey period, from July to September, the O. communa population
completed two generations on A. artemisiifolia planted in the center and one generation in
both homocentric rings. By September (60 days after release), almost all A. artemisiifolia
planted in the center had died, and adult O. communa had moved to A. artemisiifolia planted
in both homocentric rings to feed and oviposit (Supplementary Figure S1).

4. Discussion

The host-plant selection behavior of herbivorous insects is complex. When larval
and/or adult insects encounter target or non-target plants, the morphology and chemical
properties of the plant surfaces are first evaluated by the contact receptors (antennae,
mouthparts, ovipositors) of the insects, and the inner chemical characteristics of the plants
are assessed to determine whether they are acceptable or antagonistic [49]. In non-choice
tests, herbivorous insects are typically confined to only one test plant species; therefore, they
tend to have a broader host range than in choice tests [5,20,50]. Host range overestimation
may lead to the rejection of candidate biological control agents that are adequately host-
specific under field conditions [4]. The risk of O. communa feeding on sunflower is negligible
because the leaf beetle is occasionally found on H. annuus when all A. artemisiifolia plants
are defoliated near the sunflower field. If the beetle feeds only on sunflower, the number
of offspring will be reduced and the beetle cannot survive [42]. To date, there has been
a debate on whether O. communa can feed on and damage H. annuus even though host
specificity tests have been conducted for nearly 30 years.

In our field cage test, several tiny feeding spots from adult O. communa were found
on sunflower leaves. However, those adults left the sunflower plant in the next survey
(four days after release) and did not feed or oviposit on the sunflower thereafter. In the
open field investigation, adult O. communa released on A. artemisiifolia in the center of the
plot primarily fed and oviposited there. As O. communa spread to the periphery, several
adults were occasionally found on sunflowers, but no feeding or oviposition behavior
was observed. Our results demonstrate that adult O. communa are averse to sunflower
compared with ragweed. “Preference-performance hypothesis”, also known as the “mother
knows best” hypothesis, predicts that females prefer a host that assures the greatest fitness
of their offspring [14,51,52]. In our study, no O. communa eggs were found on sunflowers
in the cage test, but three egg masses were found on sunflowers in open sunflower fields
in 2010 and 2011. However, only one egg mass hatched, and all larvae died during
development. These results support the conclusion that sunflower is an unsuitable host
plant for O. communa offspring and are consistent with findings from previous studies
carried out in Canada [42] and China [43,44,53]. In addition, it is worth noting that we
should be alert to the possibility of individuals dispersing from outside the field into the
experimental plots in the open field experiment, because ragweed leaf beetles are known
to disperse over long distances. Yamanaka et al. [54] found that, with the passage of time,
O. communa spills over to adjacent locations at roughly the one-beetle-generation time
scale according to the “resource concentration hypothesis” and “reaction–diffusion theory”.
In addition, herbivorous insects can find their host plants over long distances to feed and
oviposit, even though the host plants are hidden in a range of other plants and plant volatile
organic compounds play an important role in the host location process. Insects rely on a
powerful olfactory system, with olfactory receptor neurons able to identify volatiles cues,
made by specific key compounds or specific blends emitted from suitable host plants [55,56].
For example, diterpene hydrocarbons released by the seedlings of brassicaceous hosts
Brassica oleracea and Brassica napus species, alone or in combination with one or more minor
compounds, are key vectors for host localization by Bagrada hilaris [57,58].
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In many herbivorous species, female adults avoid reproduction in places where their
offspring are at a high risk of predation [59–62]. In this study, many natural enemies, such as
ladybeetles (Harmonia axyridis and Coccinella septempunctata), lacewings (Chrysopa spp.), and
Pentatomidae, were observed on sunflower leaves (data not shown). This study confirmed
that O. communa is safe for use as a biological control agent to control ragweed, based
on its host-selection behavior in an open field experiment. However, when all common
ragweed plants are completely eradicated or defoliated from the local population, the leaf
beetle O. communa of suboptimal alternative host plants (A. trifida and H. annuus) should
not be ignored. It has been reported that O. communa began feeding on A. trifida after all
A. artemisiifolia plants were defoliated under field conditions in Japan [63].

In our choice test using closed cages in the field, most O. communa adults (25%) moved
rapidly from H. annuus to X. sibiricum, in addition to the host-plant A. artemisiifolia, to
feed and lay eggs, and several were found feeding and oviposition on X. canadense but
not on H. annuus. Additionally, when A. artemisiifolia died in October, many O. communa
adults moved to X. canadense to prepare for overwintering (unpublished data). In Japan,
O. communa can also be found feeding on X. canadense, and adults in the field have been
found to move to X. canadense overwinter after the death of A. artemisiifolia in late sum-
mer [39]. Our results indicated that X. sibiricum may be a suitable host-plant species for
this beetle. This result is consistent with those of Cao et al. [43] and Liu et al. [64], who
suggested that X. sibiricum could be used as a lower-ranked host plant next to the target
weed. In China, X. canadense is a common weed in cultivated fields, especially in soybean,
tobacco, and sunflower fields [65–67]. Therefore, O. communa may be used to control
X. canadense in China in the future.

In its native range, O. communa does not utilize A. trifida as a host plant [36,54,68,69],
and, in our study, although A. trifida was attacked by several adults, the damage level was
very low. Therefore, the beetle cannot effectively control A. trifida, and there have been no
reports on the use of O. communa to effectively control A. trifida in China. However, this
beetle has been reported to feed extensively on A. trifida in fields throughout the Japanese
islands [35,36,63]. These results indicate the expansion of the host range of occasionally
introduced O. communa, which may be the result of the co-evolution of herbivorous insects
and host plants [19,69,70].

In our study, after the adult O. communa that were released on A. artemisiifolia plants
in the center of the sunflower field completed one generation (approximately 30 days),
they initiated a search for suitable host plants across the sunflower barrier (planted in
homocentric rings with a radius of 3 m), and the number of O. communa in the peripheral
population was supplemented by the population in the center. This result indicated
that O. communa has a robust capacity to find A. artemisiifolia for feeding. The “resource
concentration hypothesis” predicts that specialist herbivorous insects are more likely to
find and stay longer on host plants growing in dense or nearly pure contexts [71–73]. In our
study, the cumulative densities of O. communa feeding or remaining on A. artemisiifolia did
not differ among plant clusters of different densities, which does not support the “resource
concentration hypothesis”. This result was consistent with the observations of Yamanaka
et al. [54]. Insects with high dispersal abilities may not be limited by patch borders. Hence,
their densities per plant did not differ among host-plant patches of different sizes [74].
In addition, if patches are closer together, insects may move more easily between them,
thus diminishing differences in density [75,76]. O. communa has been shown to rapidly
disperse after introduction into a new area [77–79], and our results further support this high
dispersal ability. Certainly, the proximity of the A. artemisiifolia clusters (< 4.5 m) may have
resulted in a lack of difference in the densities of O. communa in plants. In this study, we
used well-established plants as test plants (all 135 individuals of each species were used for
the experiments when they were approximately 20–30 cm in height). However, sunflower
was sown; thus, seeding and younger sunflower plants were exposed to O. communa and
these might be more susceptible to feeding and oviposition. More experiments are needed
to confirm this in the future. Finally, how can we better predict the long-term benefits and
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risks of ragweed biology control? We advocate research on host specificity and population
differentiation before the release of biocontrol agents to promote the development of
improved biological control under changing global conditions [3,19,80].

5. Conclusions

In summary, by observing the host-plant selection behavior of O. communa, we
conclude that this beetle poses no threat to the biosafety of H. annuus. In addition,
X. sibiricum has the potential to become an alternative host plant for O. communa in
the future; however, it cannot efficiently control A. trifida in China. In the open field
study, some O. communa adults crossed the barrier formed by H. annuus to feed and lay
eggs on A. artemisiifolia planted in the periphery, and the spatial interactions between
A. artemisiifolia and O. communa did not support the “resource concentration hypothe-
sis”. We conclude that O. communa has a robust dispersal capacity to find and feed on
A. artemisiifolia.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects14040334/s1, Figure S1: Occurrence and frequency of
Ophraella communa individuals in different developmental stages on A. artemisiifolia planted at different
distances; Table S1: Three-way ANOVA of the effects of four plant species, days after release, and
cages (blocks) on Ophraella communa distribution (adults and eggs) in outdoor cages; Table S2:
Three-way ANOVA of the effects of plant species, distance from center, and ragweed cluster density
on the number of O. communa individuals in different developmental stages on A. artemisiifolia and
H. annuus planted.
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