Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = ambrosia beetle complexes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1947 KB  
Article
Reference Gene Identification and RNAi-Induced Gene Silencing in the Redbay Ambrosia Beetle (Xyleborus glabratus), Vector of Laurel Wilt Disease
by Morgan C. Knutsen and Lynne K. Rieske
Forests 2025, 16(10), 1577; https://doi.org/10.3390/f16101577 - 14 Oct 2025
Viewed by 1086
Abstract
Management of invasive species is especially difficult when the organisms involved are endophagous and their interactions complex. Such is the case with laurel wilt disease (LWD), a lethal vascular condition caused by Harringtonia lauricola, the fungal symbiont of the non-native redbay ambrosia [...] Read more.
Management of invasive species is especially difficult when the organisms involved are endophagous and their interactions complex. Such is the case with laurel wilt disease (LWD), a lethal vascular condition caused by Harringtonia lauricola, the fungal symbiont of the non-native redbay ambrosia beetle (RAB), Xyleborus glabratus Eichoff (Coleoptera: Curculionidae). LWD has caused extensive mortality of coastal redbay, Persea borbonia, and is expanding to utilize additional lauraceous hosts, including sassafras, Sassafras albidum. Current management has not been successful in preventing its spread, warranting investigation into additional techniques. RNA interference (RNAi) is a highly specific gene-silencing mechanism used for integrated pest management of crop pests and currently being investigated for use in forests. When targeting essential genes, RNAi can cause rapid insect mortality. Here we focus on RAB, identifying for the first time species-specific reference genes for quantitative real-time PCR (qPCR) and assessing mortality and gene expression after oral ingestion of double-stranded RNAs (dsRNAs) targeting essential genes (hsp, shi, and iap). Our study validates reference genes for expression analyses and shows significant mortality and changes in gene expression for all three target genes. Our research aims to contribute to the development of innovative management strategies for this invasive pest complex. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

14 pages, 645 KB  
Review
Overview and Recent Advances in Bioassays to Evaluate the Potential of Entomopathogenic Fungi Against Ambrosia Beetles
by Jesús Enrique Castrejón-Antonio and Patricia Tamez-Guerra
Insects 2025, 16(6), 615; https://doi.org/10.3390/insects16060615 - 10 Jun 2025
Cited by 1 | Viewed by 2280
Abstract
Ambrosia beetles, known for their symbiotic relationship with fungi cultivated within the tissues of host trees, have become significant pests, particularly when they serve as vectors for pathogenic fungi such as Raffaelea lauricola. Given the regulatory and environmental constraints for chemical application [...] Read more.
Ambrosia beetles, known for their symbiotic relationship with fungi cultivated within the tissues of host trees, have become significant pests, particularly when they serve as vectors for pathogenic fungi such as Raffaelea lauricola. Given the regulatory and environmental constraints for chemical application as a tool for their control, entomopathogenic fungi (EPF) represent a promising pest management alternative. This review presents an overview of bioassays assessing the pathogenicity and virulence of EPF against ambrosia beetles. Most studies have been performed in vivo (artificial diet) under laboratory conditions, focusing on exotic species and testing EPF genera such as Beauveria, Metarhizium, Isaria, and Purpureocillium. However, variations in inoculation methods, environmental conditions, and fungal formulations, have led to diverse results. In addition, the complex biology of these insects, particularly their dependence on symbiotic fungi, represents significant methodological challenges. Field trials (in situ bioassays) are still scarce, and there is a need to move toward standardized protocols and more objective experimental models that consider not only insects’ behavior but also ecological factors. Bridging this gap is essential for successfully implementing EPF-based strategies to assess ambrosia beetles’ biocontrol. Full article
Show Figures

Figure 1

12 pages, 6417 KB  
Article
Xylosandrus crassiusculus (Motschulsky) on Cocoa Pods (Theobroma cacao L.): Matter of Bugs and Fungi
by Shivaji Hausrao Thube, R. Thava Prakasa Pandian, Arulappan Josephrajkumar, Anthara Bhavishya, B. J. Nirmal Kumar, Dnyaneshwar M. Firake, Vivek Shah, T. N. Madhu and Enrico Ruzzier
Insects 2022, 13(9), 809; https://doi.org/10.3390/insects13090809 - 5 Sep 2022
Cited by 15 | Viewed by 3888
Abstract
Exudation of mucilage from pinhead-sized boreholes in cocoa pods was recorded in Karnataka, India, during 2021. Further investigations showed the association of scolytine beetles with infested pods. The identity of the pest, Xylosandrus crassiusculus, was confirmed through morphological characterization and sequencing of [...] Read more.
Exudation of mucilage from pinhead-sized boreholes in cocoa pods was recorded in Karnataka, India, during 2021. Further investigations showed the association of scolytine beetles with infested pods. The identity of the pest, Xylosandrus crassiusculus, was confirmed through morphological characterization and sequencing of the mitochondrial COI gene. We studied the predisposing factors for its infestation, visible and concealed damaging symptoms, and fungal symbionts. In addition to its well-known symbiotic fungus, Ambrosiella roeperi, a new association of yeast, Ambrosiozyma monospora, was discovered. We also traced the possible role of the mirid bug, Helopeltis theivora, in host selection by X. crassiusculus. Overall results indicated that a ‘mirid bug-ambrosia beetle–pathogen complex’ is responsible for the severe damage to cocoa pods in South India. Full article
Show Figures

Figure 1

19 pages, 6078 KB  
Article
Characterization of Two Fusarium solani Species Complex Isolates from the Ambrosia Beetle Xylosandrus morigerus
by Nohemí Carreras-Villaseñor, José B. Rodríguez-Haas, Luis A. Martínez-Rodríguez, Alan J. Pérez-Lira, Enrique Ibarra-Laclette, Emanuel Villafán, Ana P. Castillo-Díaz, Luis A. Ibarra-Juárez, Edgar D. Carrillo-Hernández and Diana Sánchez-Rangel
J. Fungi 2022, 8(3), 231; https://doi.org/10.3390/jof8030231 - 26 Feb 2022
Cited by 15 | Viewed by 8425
Abstract
Ambrosia beetles are insect vectors of important plant diseases and have been considered as a threat to forest ecosystems, agriculture, and the timber industry. Several factors have been suggested as promoters of the pathogenic behavior of ambrosia beetles; one of them is the [...] Read more.
Ambrosia beetles are insect vectors of important plant diseases and have been considered as a threat to forest ecosystems, agriculture, and the timber industry. Several factors have been suggested as promoters of the pathogenic behavior of ambrosia beetles; one of them is the nature of the fungal mutualist and its ability to establish an infectious process. In Mexico, Xylosandrus morigerus is an invasive ambrosia beetle that damages many agroecosystems. Herein, two different isolates from the X. morigerus ambrosia beetle belonging to the Fusarium genus are reported. Both isolates belong to the Fusarium solani species complex (FSSC) but not to the Ambrosia Fusarium clade (AFC). The two closely related Fusarium isolates are pathogenic to different forest and agronomic species, and the morphological differences between them and the extracellular protease profile suggest intraspecific variability. This study shows the importance of considering these beetles as vectors of different species of fungal plant pathogens, with some of them even being phylogenetically closely related and having different pathogenic abilities, highlighting the relevance of the fungal mutualist as a factor for the ambrosia complex becoming a pest. Full article
(This article belongs to the Special Issue Plant-Pathogenic Fusarium Species)
Show Figures

Graphical abstract

12 pages, 25768 KB  
Article
Characterization of the Exo-Metabolome of the Emergent Phytopathogen Fusarium kuroshium sp. nov., a Causal Agent of Fusarium Dieback
by Angélica Gutiérrez-Sánchez, Javier Plasencia, Juan L. Monribot-Villanueva, José B. Rodríguez-Haas, Jose Abel López-Buenfil, Clemente J. García-Ávila, Eliel Ruiz-May, Diana Sánchez-Rangel and José A. Guerrero-Analco
Toxins 2021, 13(4), 268; https://doi.org/10.3390/toxins13040268 - 9 Apr 2021
Cited by 8 | Viewed by 3946
Abstract
Fusarium kuroshium is the fungal symbiont associated with the ambrosia beetle Euwallacea kuroshio, a plague complex that attacks avocado, among other hosts, causing a disease named Fusarium dieback (FD). However, the contribution of F. kuroshium to the establishment of this disease remains [...] Read more.
Fusarium kuroshium is the fungal symbiont associated with the ambrosia beetle Euwallacea kuroshio, a plague complex that attacks avocado, among other hosts, causing a disease named Fusarium dieback (FD). However, the contribution of F. kuroshium to the establishment of this disease remains unknown. To advance the understanding of F. kuroshium pathogenicity, we profiled its exo-metabolome through metabolomics tools based on accurate mass spectrometry. We found that F. kuroshium can produce several key metabolites with phytotoxicity properties and other compounds with unknown functions. Among the metabolites identified in the fungal exo-metabolome, fusaric acid (FA) was further studied due to its phytotoxicity and relevance as a virulence factor. We tested both FA and organic extracts from F. kuroshium at various dilutions in avocado foliar tissue and found that they caused necrosis and chlorosis, resembling symptoms similar to those observed in FD. This study reports for first-time insights regarding F. kuroshium associated with its virulence, which could lead to the potential development of diagnostic and management tools of FD disease and provides a basis for understanding the interaction of F. kuroshium with its host plants. Full article
(This article belongs to the Special Issue Fusarium and Fusarium Toxins)
Show Figures

Graphical abstract

21 pages, 6883 KB  
Review
Laurel Wilt: Current and Potential Impacts and Possibilities for Prevention and Management
by Rabiu O. Olatinwo, Stephen W. Fraedrich and Albert E. Mayfield
Forests 2021, 12(2), 181; https://doi.org/10.3390/f12020181 - 4 Feb 2021
Cited by 21 | Viewed by 5993
Abstract
In recent years, outbreaks of nonnative invasive insects and pathogens have caused significant levels of tree mortality and disturbance in various forest ecosystems throughout the United States. Laurel wilt, caused by the pathogen Raffaelea lauricola (T.C. Harr., Fraedrich and Aghayeva) and the primary [...] Read more.
In recent years, outbreaks of nonnative invasive insects and pathogens have caused significant levels of tree mortality and disturbance in various forest ecosystems throughout the United States. Laurel wilt, caused by the pathogen Raffaelea lauricola (T.C. Harr., Fraedrich and Aghayeva) and the primary vector, the redbay ambrosia beetle (Xyleborus glabratus Eichhoff), is a nonnative pest-disease complex first reported in the southeastern United States in 2002. Since then, it has spread across eleven southeastern states to date, killing hundreds of millions of trees in the plant family Lauraceae. Here, we examine the impacts of laurel wilt on selected vulnerable Lauraceae in the United States and discuss management methods for limiting geographic expansion and reducing impact. Although about 13 species belonging to the Lauraceae are indigenous to the United States, the highly susceptible members of the family to laurel wilt are the large tree species including redbay (Persea borbonia (L.) Spreng) and sassafras (Sassafras albidum (Nutt.) Nees), with a significant economic impact on the commercial production of avocado (Persea americana Mill.), an important species native to Central America grown in the United States. Preventing new introductions and mitigating the impact of previously introduced nonnative species are critically important to decelerate losses of forest habitat, genetic diversity, and overall ecosystem value. Full article
Show Figures

Figure 1

11 pages, 1081 KB  
Article
Reassessment of the Species in the Euwallacea Fornicatus (Coleoptera: Curculionidae: Scolytinae) Complex after the Rediscovery of the “Lost” Type Specimen
by Sarah M. Smith, Demian F. Gomez, Roger A. Beaver, Jiri Hulcr and Anthony I. Cognato
Insects 2019, 10(9), 261; https://doi.org/10.3390/insects10090261 - 22 Aug 2019
Cited by 95 | Viewed by 7627
Abstract
Ambrosia beetles of the Euwallacea fornicatus (Eichhoff, 1868) species complex are emerging tree pests, responsible for significant damage to orchards and ecosystems around the world. The species complex comprises seven described species, all of which are nearly identical. Given that the morphology-defined species [...] Read more.
Ambrosia beetles of the Euwallacea fornicatus (Eichhoff, 1868) species complex are emerging tree pests, responsible for significant damage to orchards and ecosystems around the world. The species complex comprises seven described species, all of which are nearly identical. Given that the morphology-defined species boundaries have been ambiguous, historically, there has been much disagreement on species validity, which was compounded by the presumed loss of the type series of E. fornicatus. The species complex was recently reviewed using morphometrics to associate the type specimens to the clades delineated with molecular data under the assumption of the lost type series. We rediscovered a syntype of Xyleborus fornicatus, and reevaluated the species in the complex using morphometrics. We propose the following taxonomic changes to the species complex: Euwallacea fornicatus (=E. tapatapaoensis (Schedl, 1951); = E. whitfordiodendrus (Schedl, 1942)) syn. res.); E. fornicatior (Eggers, 1923) (=E. schultzei (Schedl, 1951) syn. nov.); E. kuroshio (Gomez and Hulcr, 2018) and E. perbrevis (Schedl, 1951) stat. res. These taxonomic changes shift the species name associated with the widely used common names for two taxa, namely: Euwallacea fornicatus should be used for the “Polyphagous Shot Hole Borer”, and E. perbrevis for the “Tea Shot Hole Borer clade a”. A lectotype is designated for X. fornicatus in order to stabilize the use of the name. Full article
Show Figures

Figure 1

23 pages, 786 KB  
Article
Genomic Signals of Adaptation towards Mutualism and Sociality in Two Ambrosia Beetle Complexes
by Jazmín Blaz, Josué Barrera-Redondo, Mirna Vázquez-Rosas-Landa, Anahí Canedo-Téxon, Eneas Aguirre von Wobeser, Daniel Carrillo, Richard Stouthamer, Akif Eskalen, Emanuel Villafán, Alexandro Alonso-Sánchez, Araceli Lamelas, Luis Arturo Ibarra-Juarez, Claudia Anahí Pérez-Torres and Enrique Ibarra-Laclette
Life 2019, 9(1), 2; https://doi.org/10.3390/life9010002 - 22 Dec 2018
Cited by 4 | Viewed by 6937
Abstract
Mutualistic symbiosis and eusociality have developed through gradual evolutionary processes at different times in specific lineages. Like some species of termites and ants, ambrosia beetles have independently evolved a mutualistic nutritional symbiosis with fungi, which has been associated with the evolution of complex [...] Read more.
Mutualistic symbiosis and eusociality have developed through gradual evolutionary processes at different times in specific lineages. Like some species of termites and ants, ambrosia beetles have independently evolved a mutualistic nutritional symbiosis with fungi, which has been associated with the evolution of complex social behaviors in some members of this group. We sequenced the transcriptomes of two ambrosia complexes (Euwallacea sp. near fornicatusFusarium euwallaceae and Xyleborus glabratus–Raffaelea lauricola) to find evolutionary signatures associated with mutualism and behavior evolution. We identified signatures of positive selection in genes related to nutrient homeostasis; regulation of gene expression; development and function of the nervous system, which may be involved in diet specialization; behavioral changes; and social evolution in this lineage. Finally, we found convergent changes in evolutionary rates of proteins across lineages with phylogenetically independent origins of sociality and mutualism, suggesting a constrained evolution of conserved genes in social species, and an evolutionary rate acceleration related to changes in selective pressures in mutualistic lineages. Full article
(This article belongs to the Special Issue Evolution of Mutualistic Symbiosis)
Show Figures

Graphical abstract

11 pages, 1443 KB  
Article
Distribution, Pest Status and Fungal Associates of Euwallacea nr. fornicatus in Florida Avocado Groves
by Daniel Carrillo, Luisa F. Cruz, Paul E. Kendra, Teresa I. Narvaez, Wayne S. Montgomery, Armando Monterroso, Charlotte De Grave and Miriam F. Cooperband
Insects 2016, 7(4), 55; https://doi.org/10.3390/insects7040055 - 14 Oct 2016
Cited by 66 | Viewed by 7281
Abstract
Members of a complex of cryptic species, that correspond morphologically to the ambrosia beetle Euwallacea fornicatus (Eichhoff) (Coleoptera: Curculionidae: Scolytinae), were recently found attacking avocado (Persea americana Mill.) in Israel and California. In early 2016, an outbreak of another member of this [...] Read more.
Members of a complex of cryptic species, that correspond morphologically to the ambrosia beetle Euwallacea fornicatus (Eichhoff) (Coleoptera: Curculionidae: Scolytinae), were recently found attacking avocado (Persea americana Mill.) in Israel and California. In early 2016, an outbreak of another member of this species complex was detected infesting approximately 1500 avocado trees in an avocado orchard at Homestead, Florida. An area-wide survey was conducted in commercial avocado groves of Miami-Dade County, Florida to determine the distribution and abundance of E. nr. fornicatus, to identify different populations of E. nr. fornicatus and their fungal associates, and to assess the extent of damage to avocado trees. Ewallacea nr. fornicatus were captured in 31 of the 33 sampled sites. A sample of 35 beetles from six different locations was identified as E. nr. fornicatus sp. #2, which is genetically distinct from the species causing damage in California and Israel. Eleven fungal associates were identified: an unknown Fusarium sp., AF-8, AF-6, Graphium euwallaceae, Acremonium sp. Acremonium morum, Acremonium masseei, Elaphocordyceps sp. and three yeast species. The unknown Fusarium isolates were the most abundant and frequently found fungus species associated with adult beetles and lesions surrounding the beetle galleries. In addition to fungal associates, three bacteria species were found associated with adult E. nr. fornicatus. Visual inspections detected significant damage in only two orchards. A large number of beetles were captured in locations with no apparent damage on the avocado trees suggesting that E. nr. fornicatus are associated with other host(s) outside the groves or with dead trees or branches inside the groves. More research is needed to determine the potential threat E. nr. fornicatus and its fungal associates pose to the avocado industry and agricultural and natural ecosystems in Florida. Full article
(This article belongs to the Special Issue Invasive Insect Species)
Show Figures

Figure 1

20 pages, 124 KB  
Review
What is Next in Bark Beetle Phylogeography?
by Dimitrios N. Avtzis, Coralie Bertheau and Christian Stauffer
Insects 2012, 3(2), 453-472; https://doi.org/10.3390/insects3020453 - 7 May 2012
Cited by 14 | Viewed by 8234
Abstract
Bark beetle species within the scolytid genera Dendroctonus, Ips, Pityogenes and Tomicus are known to cause extensive ecological and economical damage in spruce and pine forests during epidemic outbreaks all around the world. Dendroctonus ponderosae poses the most recent example having [...] Read more.
Bark beetle species within the scolytid genera Dendroctonus, Ips, Pityogenes and Tomicus are known to cause extensive ecological and economical damage in spruce and pine forests during epidemic outbreaks all around the world. Dendroctonus ponderosae poses the most recent example having destroyed almost 100,000 km2 of conifer forests in North America. The success and effectiveness of scolytid species lies mostly in strategies developed over the course of time. Among these, a complex system of semiochemicals promotes the communication and aggregation on the spot of infestation facilitating an en masse attack against a host tree’s defenses; or an association with fungi that evolved either in the form of nutrition (ambrosia fungi) or even by reducing the resistance of host trees (blue-stain fungi). Although often specific to a tree genus or species, some bark beetles are polyphagous and have the ability to switch on to new hosts and extend their host range (i.e., between conifer genera such as Pityogenes chalcographus or even from conifer to deciduous trees as Polygraphus grandiclava). A combination of these capabilities in concert with life history or ecological traits explains why bark beetles are considered interesting subjects in evolutionary studies. Several bark beetle species appear in phylogeographic investigations, in an effort to improve our understanding of their ecology, epidemiology and evolution. In this paper investigations that unveil the phylogeographic history of bark beetles are reviewed. A close association between refugial areas and postglacial migration routes that insects and host trees have followed in the last 15,000 BP has been suggested in many studies. Finally, a future perspective of how next generation sequencing will influence the resolution of phylogeographic patterns in the coming years is presented. Utilization of such novel techniques will provide a more detailed insight into the genome of scolytids facilitating at the same time the application of neutral and non-neutral markers. The latter markers in particular promise to enhance the study of eco-physiological reaction types like the so-called pioneer beetles or obligate diapausing individuals. Full article
(This article belongs to the Special Issue Phylogeographic Syntheses)
Back to TopTop