Next Article in Journal
Shared Ancestry of Symbionts? Sagrinae and Donaciinae (Coleoptera, Chrysomelidae) Harbor Similar Bacteria
Previous Article in Journal
Bed Bug (Cimex lectularius L.) Population Composition as Determined by Baited Traps
Previous Article in Special Issue
Phylogeography of Saproxylic and Forest Floor Invertebrates from Tallaganda, South-eastern Australia
Article Menu

Export Article

Open AccessReview
Insects 2012, 3(2), 453-472;

What is Next in Bark Beetle Phylogeography?

Forest Research Institute, N.AG.RE.F., Vassilika, Thessaloniki 57006, Greece
Institute of Forest Entomology, Forest Pathology and Forest Protection, Boku, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
Author to whom correspondence should be addressed.
Received: 16 April 2012 / Revised: 25 April 2012 / Accepted: 26 April 2012 / Published: 7 May 2012
(This article belongs to the Special Issue Phylogeographic Syntheses)
Full-Text   |   PDF [124 KB, uploaded 7 May 2012]


Bark beetle species within the scolytid genera Dendroctonus, Ips, Pityogenes and Tomicus are known to cause extensive ecological and economical damage in spruce and pine forests during epidemic outbreaks all around the world. Dendroctonus ponderosae poses the most recent example having destroyed almost 100,000 km2 of conifer forests in North America. The success and effectiveness of scolytid species lies mostly in strategies developed over the course of time. Among these, a complex system of semiochemicals promotes the communication and aggregation on the spot of infestation facilitating an en masse attack against a host tree’s defenses; or an association with fungi that evolved either in the form of nutrition (ambrosia fungi) or even by reducing the resistance of host trees (blue-stain fungi). Although often specific to a tree genus or species, some bark beetles are polyphagous and have the ability to switch on to new hosts and extend their host range (i.e., between conifer genera such as Pityogenes chalcographus or even from conifer to deciduous trees as Polygraphus grandiclava). A combination of these capabilities in concert with life history or ecological traits explains why bark beetles are considered interesting subjects in evolutionary studies. Several bark beetle species appear in phylogeographic investigations, in an effort to improve our understanding of their ecology, epidemiology and evolution. In this paper investigations that unveil the phylogeographic history of bark beetles are reviewed. A close association between refugial areas and postglacial migration routes that insects and host trees have followed in the last 15,000 BP has been suggested in many studies. Finally, a future perspective of how next generation sequencing will influence the resolution of phylogeographic patterns in the coming years is presented. Utilization of such novel techniques will provide a more detailed insight into the genome of scolytids facilitating at the same time the application of neutral and non-neutral markers. The latter markers in particular promise to enhance the study of eco-physiological reaction types like the so-called pioneer beetles or obligate diapausing individuals. View Full-Text
Keywords: bark beetles; Scolytinae; phylogeography; Ips; Dendroctonus; Tomicus; Pityogenes; host selection; glacial refugia; next generation sequencing bark beetles; Scolytinae; phylogeography; Ips; Dendroctonus; Tomicus; Pityogenes; host selection; glacial refugia; next generation sequencing
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Share & Cite This Article

MDPI and ACS Style

Avtzis, D.N.; Bertheau, C.; Stauffer, C. What is Next in Bark Beetle Phylogeography? Insects 2012, 3, 453-472.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Insects EISSN 2075-4450 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top