Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = amastigotes stage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 719 KiB  
Article
Repositioning FDA-Approved Sulfonamide-Based Drugs as Potential Carbonic Anhydrase Inhibitors in Trypanosoma cruzi: Virtual Screening and In Vitro Studies
by Eyra Ortiz-Pérez, Adriana Moreno-Rodríguez, Timoteo Delgado-Maldonado, Jessica L. Ortega-Balleza, Alonzo González-González, Alma D. Paz-González, Karina Vázquez, Guadalupe Avalos-Navarro, Simone Giovannuzzi, Claudiu T. Supuran and Gildardo Rivera
Pharmaceuticals 2025, 18(5), 669; https://doi.org/10.3390/ph18050669 - 1 May 2025
Viewed by 851
Abstract
Background/Objectives: α-carbonic anhydrase (α-TcCA) has emerged as a promising drug target in T. cruzi, the causative agent of Chagas disease in the Americas. Sulfonamides, known inhibitors of CAs, bind to the zinc ion on the enzyme’s active site. This study proposes the [...] Read more.
Background/Objectives: α-carbonic anhydrase (α-TcCA) has emerged as a promising drug target in T. cruzi, the causative agent of Chagas disease in the Americas. Sulfonamides, known inhibitors of CAs, bind to the zinc ion on the enzyme’s active site. This study proposes the repositioning of sulfonamide-based drugs to identify new trypanocidal agents. Method: Ligand-based virtual screening and molecular docking analysis were performed on FDA-approved drugs targeting α-TcCA. These compounds were evaluated in vitro and ex vivo against the A1 and NINOA strains, followed by enzymatic assays. Results: Four sulfonylureas were selected: glimepiride (Glim), acetohexamide (Ace), gliclazide (Glic), and tolbutamide (Tol). Ace and Tol had half-maximal inhibitory concentration (IC50) values similar or better than reference drugs against the NINOA strain in the epimastigote and trypomastigote stages, while Glic and Glim had the highest activity against the A1 strain (epimastigotes and amastigotes). Notably, Ace had the highest trypanocidal activity against all stages in NINOA, with IC50 values of 6.5, 46.5, and 46 μM for epimastigotes, trypomastigotes, and amastigotes, respectively. Additionally, Ace inhibited α-TcCA with KI = 5.6 μM, suggesting that its trypanocidal effect is associated to the enzyme inhibition. Conclusions: This study supports the repositioning of FDA-approved sulfonamide-based hypoglycaemic agents as trypanocidal compounds. Future studies should focus on structural modifications to improve selectivity. Integrating docking, parasitological, and enzymatic data is crucial for optimizing drug candidates for Chagas disease. Full article
(This article belongs to the Special Issue Drug Discovery and Development for Parasitic Diseases)
Show Figures

Figure 1

18 pages, 2275 KiB  
Article
In Vitro Efficacy and Toxicity Assessment of an Amphotericin B Gel for the Treatment of Cutaneous Leishmaniasis
by Lilian Sosa, Lupe Carolina Espinoza, Marcelle Silva-Abreu, Ximena Jaramillo-Fierro, Diana Berenguer, Cristina Riera, María Rincón and Ana C. Calpena
Pharmaceuticals 2025, 18(3), 427; https://doi.org/10.3390/ph18030427 - 18 Mar 2025
Viewed by 766
Abstract
Background/Objectives: Leishmaniasis is a neglected tropical disease caused by a protozoan parasite of Leishmania. This study aimed to evaluate the in vitro efficacy and toxicity of a previously developed amphotericin gel as a possible treatment for cutaneous leishmaniasis. Methods: First, [...] Read more.
Background/Objectives: Leishmaniasis is a neglected tropical disease caused by a protozoan parasite of Leishmania. This study aimed to evaluate the in vitro efficacy and toxicity of a previously developed amphotericin gel as a possible treatment for cutaneous leishmaniasis. Methods: First, quality control of the AmB-gel was carried out, including microbiological stability. The permeated and retained drug was tested on healthy and lacerated human skin. Tolerance to the AmB-gel was tested in vitro using HaCaT, RAW 264.7, and J774 cell lines and by an irritation test (HET-CAM). Promastigotes and amastigotes of various Leishmania species were tested, and the microscopic morphology of promastigotes exposed to the formulation was analyzed. Computational analysis was performed on the drug, polymer, and ergosterol in the promastigote. Results: The AmB-gel presented appropriate characteristics for topical use, including no microbial contamination after storage. The amount of drug retained on the intact and injured skin was 1180.00 ± 13.54 µg/g/cm2 and 750.18 ± 5.43 µg/g/cm2, respectively. The AmB-gel did not cause significant signs of toxicity. The IC50 of the AmB-gel for promastigotes was less than 1 µg/mL for the four species examined, i.e., Leishmania infantum, Leishmania tropica, Leishmania major, and Leishmania braziliensis, and less than 2 µg/mL for amastigotes of Leishmania infantum and Leishmania tropica. The AmB-gel caused notable effects on the surface of promastigotes. Computational analysis revealed primarily hydrophobic and van der Waals interactions between AmB and Pluronic® F127 and ergosterol. Conclusions: Based on the drug retention content and IC50 values observed for both parasite stages, the AmB-gel may be a promising candidate for in vivo studies in patients with cutaneous leishmaniasis. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

16 pages, 3907 KiB  
Article
Repurposing COVID-19 Compounds (via MMV COVID Box): Almitrine and Bortezomib Induce Programmed Cell Death in Trypanosoma cruzi
by Carlos J. Bethencourt-Estrella, Atteneri López-Arencibia, Jacob Lorenzo-Morales and José E. Piñero
Pathogens 2025, 14(2), 127; https://doi.org/10.3390/pathogens14020127 - 1 Feb 2025
Viewed by 881
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, affects millions globally, with limited treatment options available. Current therapies, such as benznidazole and nifurtimox, present challenges, including their toxicity, side effects, and inefficacy in the chronic phase. This study explores the potential of [...] Read more.
Chagas disease, caused by the protozoan Trypanosoma cruzi, affects millions globally, with limited treatment options available. Current therapies, such as benznidazole and nifurtimox, present challenges, including their toxicity, side effects, and inefficacy in the chronic phase. This study explores the potential of drug repurposing as a strategy to identify new treatments for T. cruzi, focusing on compounds from the Medicines for Malaria Venture (MMV) COVID Box. An initial screening of 160 compounds identified eight with trypanocidal activity, with almitrine and bortezomib showing the highest efficacy. Both compounds demonstrated significant activity against the epimastigote and amastigote stages of the parasite and showed no cytotoxicity in murine macrophage cells. Key features of programmed cell death (PCD), such as chromatin condensation, mitochondrial membrane potential disruption, and reactive oxygen species accumulation, were observed in T. cruzi treated with these compounds. The potential to induce controlled cell death of these two compounds in T. cruzi suggests they are promising candidates for further research. This study reinforces drug repurposing as a viable approach to discovering novel treatments for neglected tropical diseases like Chagas disease. Full article
(This article belongs to the Special Issue Parasitic Diseases in the Contemporary World)
Show Figures

Figure 1

34 pages, 17958 KiB  
Article
Exploring the Potential of Malvidin and Echiodinin as Probable Antileishmanial Agents Through In Silico Analysis and In Vitro Efficacy
by Luis Daniel Goyzueta-Mamani, Daniela Pagliara Lage, Haruna Luz Barazorda-Ccahuana, Margot Paco-Chipana, Mayron Antonio Candia-Puma, Gonzalo Davila-Del-Carpio, Alexsandro Sobreira Galdino, Ricardo Andrez Machado-de-Avila, Rodolfo Cordeiro Giunchetti, Edward L. D’Antonio, Eduardo Antonio Ferraz Coelho and Miguel Angel Chávez-Fumagalli
Molecules 2025, 30(1), 173; https://doi.org/10.3390/molecules30010173 - 4 Jan 2025
Viewed by 1590
Abstract
Leishmaniasis, a neglected tropical disease caused by Leishmania species, presents serious public health challenges due to limited treatment options, toxicity, high costs, and drug resistance. In this study, the in vitro potential of malvidin and echioidinin is examined as antileishmanial agents against L. [...] Read more.
Leishmaniasis, a neglected tropical disease caused by Leishmania species, presents serious public health challenges due to limited treatment options, toxicity, high costs, and drug resistance. In this study, the in vitro potential of malvidin and echioidinin is examined as antileishmanial agents against L. amazonensis, L. braziliensis, and L. infantum, comparing their effects to amphotericin B (AmpB), a standard drug. Malvidin demonstrated greater potency than echioidinin across all parasite stages and species. Against L. amazonensis, malvidin’s IC50 values were 197.71 ± 17.20 µM (stationary amastigotes) and 258.07 ± 17 µM (axenic amastigotes), compared to echioidinin’s 272.99 ± 29.90 μM and 335.96 ± 19.35 μM. AmpB was more potent, with IC50 values of 0.06 ± 0.01 µM and 0.10 ± 0.03 µM. Malvidin exhibited lower cytotoxicity (CC50: 2920.31 ± 80.29 µM) than AmpB (1.06 ± 0.12 µM) and a favorable selectivity index. It reduced infection rates by 35.75% in L. amazonensis-infected macrophages. The in silico analysis revealed strong binding between malvidin and Leishmania arginase, with the residues HIS139 and PRO258 playing key roles. Gene expression analysis indicated malvidin’s modulation of oxidative stress and DNA repair pathways, involving genes like GLO1 and APEX1. These findings suggest malvidin’s potential as a safe, natural antileishmanial compound, warranting further in vivo studies to confirm its therapeutic efficacy and pharmacokinetics in animal models. Full article
Show Figures

Figure 1

18 pages, 2824 KiB  
Article
Molecular Characterization of Sterol C4-Methyl Oxidase in Leishmania major
by Yu Ning, Somrita Basu, Fong-fu Hsu, Mei Feng, Michael Zhuo Wang and Kai Zhang
Int. J. Mol. Sci. 2024, 25(20), 10908; https://doi.org/10.3390/ijms252010908 - 10 Oct 2024
Cited by 1 | Viewed by 1253
Abstract
Sterol biosynthesis requires the oxidative removal of two methyl groups from the C-4 position by sterol C-4-demethylase and one methyl group from the C-14 position by sterol C-14-demethylase. In Leishmania donovani, a CYP5122A1 (Cytochrome P450 family 5122A1) protein was recently identified as [...] Read more.
Sterol biosynthesis requires the oxidative removal of two methyl groups from the C-4 position by sterol C-4-demethylase and one methyl group from the C-14 position by sterol C-14-demethylase. In Leishmania donovani, a CYP5122A1 (Cytochrome P450 family 5122A1) protein was recently identified as the bona fide sterol C-4 methyl oxidase catalyzing the initial steps of C-4-demethylation. Besides CYP5122A1, Leishmania parasites possess orthologs to ERG25 (ergosterol pathway gene 25), the canonical sterol C-4 methyl oxidase in Saccharomyces cerevisiae. To determine the contribution of CYP5122A1 and ERG25 in sterol biosynthesis, we assessed the essentiality of these genes in Leishmania major, which causes cutaneous leishmaniasis. Like in L. donovani, CYP5122A1 in L. major could only be deleted in the presence of a complementing episome. Even with strong negative selection, L. major chromosomal CYP5122A1-null mutants retained the complementing episome in both promastigote and amastigote stages, demonstrating its essentiality. In contrast, the L. major ERG25-null mutants were fully viable and replicative in culture and virulent in mice. Deletion and overexpression of ERG25 did not affect the sterol composition, indicating that ERG25 is not required for C-4-demethylation. These findings suggest that CYP5122A1 is the dominant and possibly only sterol C-4 methyl oxidase in Leishmania, and inhibitors of CYP5122A1 may have strong therapeutic potential against multiple Leishmania species. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

13 pages, 6875 KiB  
Article
From Trypomastigotes to Trypomastigotes: Analyzing the One-Way Intracellular Journey of Trypanosoma cruzi by Ultrastructure Expansion Microscopy
by Ramiro Tomasina, Fabiana C. González, Andrés Cabrera, Yester Basmadjián and Carlos Robello
Pathogens 2024, 13(10), 866; https://doi.org/10.3390/pathogens13100866 - 2 Oct 2024
Cited by 2 | Viewed by 3440
Abstract
The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, also called American trypanosomiasis. This neglected tropical disease affects millions of individuals across the Americas. To complete its life cycle, T. cruzi parasitizes both vertebrate hosts and its vector, commonly known [...] Read more.
The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, also called American trypanosomiasis. This neglected tropical disease affects millions of individuals across the Americas. To complete its life cycle, T. cruzi parasitizes both vertebrate hosts and its vector, commonly known as the ‘kissing bug’. The parasite’s survival and proliferation strategies are driven by the diverse environments it encounters. Despite being described by Carlos Chagas in 1909, significant knowledge gaps persist regarding the parasite’s various life forms and adaptive capabilities in response to environmental cues. In this study, we employed Ultrastructure Expansion Microscopy to explore the intricate journey of T. cruzi within the host cell. Upon entry into the host cell, trypomastigotes undergo folding, resulting in intermediate forms characterized by a rounded cell body, anterior positioning of basal bodies, and a shortened flagellum. The repositioning of basal bodies and the kinetoplast and the shortening of the flagella mark the culmination of intracellular amastigogenesis. Furthermore, we analyzed intracellular trypomastigogenesis, identifying discrete intermediate forms, including leaf-shaped stages and epimastigote-like forms, which suggests a complex differentiation process. Notably, we did not observe any dividing intracellular epimastigotes, indicating that these may be non-replicative forms within the host cell. Our detailed examination of amastigote cell division revealed semi-closed nuclear mitosis, with mitotic spindle formation independent of basal bodies. This study provides new insights into the morphological and cytoskeletal changes during the intracellular stages of T. cruzi, providing a model for understanding the dynamics of intracellular amastigogenesis and trypomastigogenesis. Full article
(This article belongs to the Special Issue Advances in Human Pathogenic Trypanosomatids)
Show Figures

Figure 1

15 pages, 2968 KiB  
Article
3-Alkoxy-1-Benzyl-5-Nitroindazole Derivatives Are Potent Antileishmanial Compounds
by Niurka Mollineda-Diogo, Sergio Sifontes-Rodríguez, María Magdalena Aguirre-García, Alma Reyna Escalona-Montaño, Teresa Espinosa-Buitrago, Ricardo Mondragón-Flores, Mónica Edith Mondragón-Castelán, Alfredo Meneses-Marcel, Ofelia Pérez-Olvera, Daniel Andrés Sánchez-Almaraz, Yunierkis Perez-Castillo and Vicente Arán-Redó
Int. J. Mol. Sci. 2024, 25(19), 10582; https://doi.org/10.3390/ijms251910582 - 1 Oct 2024
Cited by 1 | Viewed by 1480
Abstract
Indazoles have previously been identified as molecules with antiprotozoal activity. In this study, we evaluate the in vitro activity of thirteen 3-alkoxy-1-benzyl-5-nitroindazole derivatives (series D) against L. amazonensis, L. infantum, and L. mexicana. In vitro, cytotoxicity against mouse peritoneal macrophages and [...] Read more.
Indazoles have previously been identified as molecules with antiprotozoal activity. In this study, we evaluate the in vitro activity of thirteen 3-alkoxy-1-benzyl-5-nitroindazole derivatives (series D) against L. amazonensis, L. infantum, and L. mexicana. In vitro, cytotoxicity against mouse peritoneal macrophages and growth inhibitory activity in promastigotes were evaluated for all compounds, and those showing adequate activity and selectivity were tested against intracellular amastigotes. Transmission and scanning electron microscopy were employed to study the effects of 3-alkoxy-1-benzyl-5-nitroindazole and 2-benzyl-5-nitroindazolin-3-one derivatives on promastigotes of L. amazonensis. Compounds NV6 and NV8 were active in the two life stages of the three species, with the latter showing the best indicators of activity and selectivity. 3-alkoxy-1-benzyl-5-nitroindazole derivatives (series D) showed in vitro activity comparable to that of amphotericin B against the promastigote stage of Leishmania spp. Two compounds were also found to be active the amastigote stage. Electron microscopy studies confirmed the antileishmanial activity of the indazole derivatives studied and support future research on this family of compounds as antileishmanial agents. Full article
(This article belongs to the Special Issue Advances in Therapeutics against Eukaryotic Pathogens)
Show Figures

Figure 1

14 pages, 2012 KiB  
Article
Free Radical Production Induced by Nitroimidazole Compounds Lead to Cell Death in Leishmania infantum Amastigotes
by Julia Andrés-Rodríguez, María-Cristina González-Montero, Nerea García-Fernández, Estefanía Calvo-Álvarez, María-Yolanda Pérez-Pertejo, Rosa-María Reguera-Torres, Rafael Balaña-Fouce and Carlos García-Estrada
Molecules 2024, 29(17), 4041; https://doi.org/10.3390/molecules29174041 - 26 Aug 2024
Cited by 1 | Viewed by 1449
Abstract
Leishmania infantum is the vector-borne trypanosomatid parasite causing visceral leishmaniasis in the Mediterranean basin. This neglected tropical disease is treated with a limited number of obsolete drugs that are not exempt from adverse effects and whose overuse has promoted the emergence of resistant [...] Read more.
Leishmania infantum is the vector-borne trypanosomatid parasite causing visceral leishmaniasis in the Mediterranean basin. This neglected tropical disease is treated with a limited number of obsolete drugs that are not exempt from adverse effects and whose overuse has promoted the emergence of resistant pathogens. In the search for novel antitrypanosomatid molecules that help overcome these drawbacks, drug repurposing has emerged as a good strategy. Nitroaromatic compounds have been found in drug discovery campaigns as promising antileishmanial molecules. Fexinidazole (recently introduced for the treatment of stages 1 and 2 of African trypanosomiasis), and pretomanid, which share the nitroimidazole nitroaromatic structure, have provided antileishmanial activity in different studies. In this work, we have tested the in vitro efficacy of these two nitroimidazoles to validate our 384-well high-throughput screening (HTS) platform consisting of L. infantum parasites emitting the near-infrared fluorescent protein (iRFP) as a biomarker of cell viability. These molecules showed good efficacy in both axenic and intramacrophage amastigotes and were poorly cytotoxic in RAW 264.7 and HepG2 cultures. Fexinidazole and pretomanid induced the production of ROS in axenic amastigotes but were not able to inhibit trypanothione reductase (TryR), thus suggesting that these compounds may target thiol metabolism through a different mechanism of action. Full article
Show Figures

Figure 1

4 pages, 584 KiB  
Case Report
Visceral Leishmaniasis Masquerading as Drug-Induced Pancytopenia in Lung Cancer Patients
by Sophie Laroumagne, Julie Tronchetti, Hervé Dutau and Philippe Astoul
Curr. Oncol. 2024, 31(4), 2274-2277; https://doi.org/10.3390/curroncol31040168 - 17 Apr 2024
Cited by 1 | Viewed by 1895
Abstract
Maintenance chemotherapy is a standard treatment in patients with non-progressive advance staged IV non-squamous non-small cell lung cancer after induction therapy. Here, we report the case of a 53-year-old man undergoing a maintenance monotherapy with pemetrexed who presented prolonged pancytopenia despite filgrastim injections. [...] Read more.
Maintenance chemotherapy is a standard treatment in patients with non-progressive advance staged IV non-squamous non-small cell lung cancer after induction therapy. Here, we report the case of a 53-year-old man undergoing a maintenance monotherapy with pemetrexed who presented prolonged pancytopenia despite filgrastim injections. A bone marrow aspiration revealed a macrophage activation syndrome with Leishmania amastigotes. A Polymerase Chest Reaction testing confirmed the diagnosis of visceral leishmaniasis. Treatment with liposomal amphotericin B was started. Oncologists should bear in mind that visceral leishmaniasis in endemic areas can potentially induce severe and prolonged pancytopenia in immunosuppressed patients, during chemotherapy in particular. Full article
(This article belongs to the Section Thoracic Oncology)
Show Figures

Figure 1

17 pages, 3277 KiB  
Article
Discovery of Strong 3-Nitro-2-Phenyl-2H-Chromene Analogues as Antitrypanosomal Agents and Inhibitors of Trypanosoma cruzi Glucokinase
by Shane M. Carey, Destiny M. O’Neill, Garrett B. Conner, Julian Sherman, Ana Rodriguez and Edward L. D’Antonio
Int. J. Mol. Sci. 2024, 25(8), 4319; https://doi.org/10.3390/ijms25084319 - 13 Apr 2024
Cited by 2 | Viewed by 2546
Abstract
Chagas disease is one of the world’s neglected tropical diseases, caused by the human pathogenic protozoan parasite Trypanosoma cruzi. There is currently a lack of effective and tolerable clinically available therapeutics to treat this life-threatening illness and the discovery of modern alternative [...] Read more.
Chagas disease is one of the world’s neglected tropical diseases, caused by the human pathogenic protozoan parasite Trypanosoma cruzi. There is currently a lack of effective and tolerable clinically available therapeutics to treat this life-threatening illness and the discovery of modern alternative options is an urgent matter. T. cruzi glucokinase (TcGlcK) is a potential drug target because its product, d-glucose-6-phosphate, serves as a key metabolite in the pentose phosphate pathway, glycolysis, and gluconeogenesis. In 2019, we identified a novel cluster of TcGlcK inhibitors that also exhibited anti-T. cruzi efficacy called the 3-nitro-2-phenyl-2H-chromene analogues. This was achieved by performing a target-based high-throughput screening (HTS) campaign of 13,040 compounds. The selection criteria were based on first determining which compounds strongly inhibited TcGlcK in a primary screen, followed by establishing on-target confirmed hits from a confirmatory assay. Compounds that exhibited notable in vitro trypanocidal activity over the T. cruzi infective form (trypomastigotes and intracellular amastigotes) co-cultured in NIH-3T3 mammalian host cells, as well as having revealed low NIH-3T3 cytotoxicity, were further considered. Compounds GLK2-003 and GLK2-004 were determined to inhibit TcGlcK quite well with IC50 values of 6.1 µM and 4.8 µM, respectively. Illuminated by these findings, we herein screened a small compound library consisting of thirteen commercially available 3-nitro-2-phenyl-2H-chromene analogues, two of which were GLK2-003 and GLK2-004 (compounds 1 and 9, respectively). Twelve of these compounds had a one-point change from the chemical structure of GLK2-003. The analogues were run through a similar primary screening and confirmatory assay protocol to our previous HTS campaign. Subsequently, three in vitro biological assays were performed where compounds were screened against (a) T. cruzi (Tulahuen strain) infective form co-cultured within NIH-3T3 cells, (b) T. brucei brucei (427 strain) bloodstream form, and (c) NIH-3T3 host cells alone. We report on the TcGlcK inhibitor constant determinations, mode of enzyme inhibition, in vitro antitrypanosomal IC50 determinations, and an assessment of structure–activity relationships. Our results reveal that the 3-nitro-2-phenyl-2H-chromene scaffold holds promise and can be further optimized for both Chagas disease and human African trypanosomiasis early-stage drug discovery research. Full article
(This article belongs to the Special Issue Advances in Therapeutics against Eukaryotic Pathogens)
Show Figures

Figure 1

16 pages, 2220 KiB  
Article
Assessment of Deep Learning Models for Cutaneous Leishmania Parasite Diagnosis Using Microscopic Images
by Ali Mansour Abdelmula, Omid Mirzaei, Emrah Güler and Kaya Süer
Diagnostics 2024, 14(1), 12; https://doi.org/10.3390/diagnostics14010012 - 20 Dec 2023
Cited by 11 | Viewed by 2643
Abstract
Cutaneous leishmaniasis (CL) is a common illness that causes skin lesions, principally ulcerations, on exposed regions of the body. Although neglected tropical diseases (NTDs) are typically found in tropical areas, they have recently become more common along Africa’s northern coast, particularly in Libya. [...] Read more.
Cutaneous leishmaniasis (CL) is a common illness that causes skin lesions, principally ulcerations, on exposed regions of the body. Although neglected tropical diseases (NTDs) are typically found in tropical areas, they have recently become more common along Africa’s northern coast, particularly in Libya. The devastation of healthcare infrastructure during the 2011 war and the following conflicts, as well as governmental apathy, may be causal factors associated with this catastrophic event. The main objective of this study is to evaluate alternative diagnostic strategies for recognizing amastigotes of cutaneous leishmaniasis parasites at various stages using Convolutional Neural Networks (CNNs). The research is additionally aimed at testing different classification models employing a dataset of ultra-thin skin smear images of Leishmania parasite-infected people with cutaneous leishmaniasis. The pre-trained deep learning models including EfficientNetB0, DenseNet201, ResNet101, MobileNetv2, and Xception are used for the cutaneous leishmania parasite diagnosis task. To assess the models’ effectiveness, we employed a five-fold cross-validation approach to guarantee the consistency of the models’ outputs when applied to different portions of the full dataset. Following a thorough assessment and contrast of the various models, DenseNet-201 proved to be the most suitable choice. It attained a mean accuracy of 0.9914 along with outstanding results for sensitivity, specificity, positive predictive value, negative predictive value, F1-score, Matthew’s correlation coefficient, and Cohen’s Kappa coefficient. The DenseNet-201 model surpassed the other models based on a comprehensive evaluation of these key classification performance metrics. Full article
(This article belongs to the Special Issue Deep Learning in Medical Image Segmentation and Diagnosis)
Show Figures

Figure 1

17 pages, 2462 KiB  
Article
Deep Learning–Based Segmentation of Trypanosoma cruzi Nests in Histopathological Images
by Nidiyare Hevia-Montiel, Paulina Haro, Leonardo Guillermo-Cordero and Jorge Perez-Gonzalez
Electronics 2023, 12(19), 4144; https://doi.org/10.3390/electronics12194144 - 5 Oct 2023
Cited by 3 | Viewed by 2080
Abstract
The use of artificial intelligence has shown good performance in the medical imaging area, in particular the deep learning methods based on convolutional neural networks for classification, detection, and/or segmentation tasks. The task addressed in this research work is the segmentation of amastigote [...] Read more.
The use of artificial intelligence has shown good performance in the medical imaging area, in particular the deep learning methods based on convolutional neural networks for classification, detection, and/or segmentation tasks. The task addressed in this research work is the segmentation of amastigote nests from histological microphotographs in the study of Trypanosoma cruzi infection (Chagas disease) implementing a U-Net convolutional network architecture. For the nests’ segmentation, a U-Net architecture was trained on histological images of an acute-stage murine experimental model performing a 5-fold cross-validation, while the final tests were carried out with data unseen by the U-Net from three image groups of different experimental models. During the training stage, the obtained results showed an average accuracy of 98.19 ± 0.01, while in the case of the final tests, an average accuracy of 99.9 ± 0.1 was obtained for the control group, as well as 98.8 ± 0.9 and 99.1 ± 0.8 for two infected groups; in all cases, high sensitivity and specificity were observed in the results. We can conclude that the use of a U-Net architecture proves to be a relevant tool in supporting the diagnosis and analysis of histological images for the study of Chagas disease. Full article
Show Figures

Figure 1

18 pages, 2306 KiB  
Article
Lupeol Acetate and α-Amyrin Terpenes Activity against Trypanosoma cruzi: Insights into Toxicity and Potential Mechanisms of Action
by Daniel Pardo-Rodriguez, Andres Cifuentes-López, Juan Bravo-Espejo, Ibeth Romero, Jorge Robles, Claudia Cuervo, Sol M. Mejía and Jair Tellez
Trop. Med. Infect. Dis. 2023, 8(5), 263; https://doi.org/10.3390/tropicalmed8050263 - 3 May 2023
Cited by 9 | Viewed by 3837
Abstract
Background: Chagas disease is a potentially fatal disease caused by the parasite Trypanosoma cruzi. There is growing scientific interest in finding new and better therapeutic alternatives for this disease’s treatment. Methods: A total of 81 terpene compounds with potential trypanocidal activity were [...] Read more.
Background: Chagas disease is a potentially fatal disease caused by the parasite Trypanosoma cruzi. There is growing scientific interest in finding new and better therapeutic alternatives for this disease’s treatment. Methods: A total of 81 terpene compounds with potential trypanocidal activity were screened and found to have potential T. cruzi cysteine synthase (TcCS) inhibition using molecular docking, molecular dynamics, ADME and PAIN property analyses and in vitro susceptibility assays. Results: Molecular docking analyses revealed energy ranges from −10.5 to −4.9 kcal/mol in the 81 tested compounds, where pentacyclic triterpenes were the best. Six compounds were selected to assess the stability of the TcCS–ligand complexes, of which lupeol acetate (ACLUPE) and α-amyrin (AMIR) exhibited the highest stability during 200 ns of molecular dynamics analysis. Such stability was primarily due to their hydrophobic interactions with the amino acids located in the enzyme’s active site. In addition, ACLUPE and AMIR exhibited lipophilic characteristics, low intestinal absorption and no structural interferences or toxicity. Finally, selective index for ACLUPE was >5.94, with moderate potency in the trypomastigote stage (EC50 = 15.82 ± 3.7 μg/mL). AMIR’s selective index was >9.36 and it was moderately potent in the amastigote stage (IC50 = 9.08 ± 23.85 μg/mL). Conclusions: The present study proposes a rational approach for exploring lupeol acetate and α-amyrin terpene compounds to design new drugs candidates for Chagas disease. Full article
Show Figures

Figure 1

20 pages, 3124 KiB  
Article
In Vitro Evaluation of Aerosol Therapy with Pentamidine-Loaded Liposomes Coated with Chondroitin Sulfate or Heparin for the Treatment of Leishmaniasis
by Lucía Román-Álamo, Mohamad Allaw, Yunuen Avalos-Padilla, Maria Letizia Manca, Maria Manconi, Federica Fulgheri, Jorge Fernández-Lajo, Luis Rivas, José Antonio Vázquez, José Esteban Peris, Xavier Roca-Geronès, Srisupaph Poonlaphdecha, Maria Magdalena Alcover, Roser Fisa, Cristina Riera and Xavier Fernàndez-Busquets
Pharmaceutics 2023, 15(4), 1163; https://doi.org/10.3390/pharmaceutics15041163 - 6 Apr 2023
Cited by 8 | Viewed by 2750
Abstract
The second-line antileishmanial compound pentamidine is administered intramuscularly or, preferably, by intravenous infusion, with its use limited by severe adverse effects, including diabetes, severe hypoglycemia, myocarditis and renal toxicity. We sought to test the potential of phospholipid vesicles to improve the patient compliance [...] Read more.
The second-line antileishmanial compound pentamidine is administered intramuscularly or, preferably, by intravenous infusion, with its use limited by severe adverse effects, including diabetes, severe hypoglycemia, myocarditis and renal toxicity. We sought to test the potential of phospholipid vesicles to improve the patient compliance and efficacy of this drug for the treatment of leishmaniasis by means of aerosol therapy. The targeting to macrophages of pentamidine-loaded liposomes coated with chondroitin sulfate or heparin increased about twofold (up to ca. 90%) relative to noncoated liposomes. The encapsulation of pentamidine in liposomes ameliorated its activity on the amastigote and promastigote forms of Leishmania infantum and Leishmania pifanoi, and it significantly reduced cytotoxicity on human umbilical endothelial cells, for which the concentration inhibiting 50% of cell viability was 144.2 ± 12.7 µM for pentamidine-containing heparin-coated liposomes vs. 59.3 ± 4.9 µM for free pentamidine. The deposition of liposome dispersions after nebulization was evaluated with the Next Generation Impactor, which mimics human airways. Approximately 53% of total initial pentamidine in solution reached the deeper stages of the impactor, with a median aerodynamic diameter of ~2.8 µm, supporting a partial deposition on the lung alveoli. Upon loading pentamidine in phospholipid vesicles, its deposition in the deeper stages significantly increased up to ~68%, and the median aerodynamic diameter decreased to a range between 1.4 and 1.8 µm, suggesting a better aptitude to reach the deeper lung airways in higher amounts. In all, nebulization of liposome-encapsulated pentamidine improved the bioavailability of this neglected drug by a patient-friendly delivery route amenable to self-administration, paving the way for the treatment of leishmaniasis and other infections where pentamidine is active. Full article
(This article belongs to the Special Issue Drug Delivery Systems for Treatment of Leishmaniasis)
Show Figures

Figure 1

18 pages, 7915 KiB  
Article
Zinc(II)-Sterol Hydrazone Complex as a Potent Anti-Leishmania Agent: Synthesis, Characterization, and Insight into Its Mechanism of Antiparasitic Action
by Gonzalo Visbal, Rodrigo M. S. Justo, Gabrielle dos Santos da Silva e Miranda, Sara Teixeira de Macedo Silva, Wanderley de Souza, Juliany Cola Fernandes Rodrigues and Maribel Navarro
Pharmaceutics 2023, 15(4), 1113; https://doi.org/10.3390/pharmaceutics15041113 - 31 Mar 2023
Cited by 8 | Viewed by 2388
Abstract
Searching for new alternatives for treating leishmaniasis, we present the synthesis, characterization, and biological evaluation against Leishmania amazonensis of the new ZnCl2(H3)2 complex. H3 is 22-hydrazone-imidazoline-2-yl-chol-5-ene-3β-ol, a well-known bioactive molecule functioning as a sterol Δ24-sterol methyl [...] Read more.
Searching for new alternatives for treating leishmaniasis, we present the synthesis, characterization, and biological evaluation against Leishmania amazonensis of the new ZnCl2(H3)2 complex. H3 is 22-hydrazone-imidazoline-2-yl-chol-5-ene-3β-ol, a well-known bioactive molecule functioning as a sterol Δ24-sterol methyl transferase (24-SMT) inhibitor. The ZnCl2(H3)2 complex was characterized by infrared, UV-vis, molar conductance measurements, elemental analysis, mass spectrometry, and NMR experiments. The biological results showed that the free ligand H3 and ZnCl2(H3)2 significantly inhibited the growth of promastigotes and intracellular amastigotes. The IC50 values found for H3 and ZnCl2(H3)2 were 5.2 µM and 2.5 µM for promastigotes, and 543 nM and 32 nM for intracellular amastigotes, respectively. Thus, the ZnCl2(H3)2 complex proved to be seventeen times more potent than the free ligand H3 against the intracellular amastigote, the clinically relevant stage. Furthermore, cytotoxicity assays and determination of selectivity index (SI) revealed that ZnCl2(H3)2 (CC50 = 5 μΜ, SI = 156) is more selective than H3 (CC50 = 10 μΜ, SI = 20). Furthermore, as H3 is a specific inhibitor of the 24-SMT, free sterol analysis was performed. The results showed that H3 was not only able to induce depletion of endogenous parasite sterols (episterol and 5-dehydroepisterol) and their replacement by 24-desalkyl sterols (cholesta-5,7,24-trien-3β-ol and cholesta-7,24-dien-3β-ol) but also its zinc derivative resulting in a loss of cell viability. Using electron microscopy, studies on the fine ultrastructure of the parasites showed significant differences between the control cells and parasites treated with H3 and ZnCl2(H3)2. The inhibitors induced membrane wrinkle, mitochondrial injury, and abnormal chromatin condensation changes that are more intense in the cells treated with ZnCl2(H3)2. Full article
Show Figures

Figure 1

Back to TopTop