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Abstract: The use of artificial intelligence has shown good performance in the medical imaging area,
in particular the deep learning methods based on convolutional neural networks for classification,
detection, and/or segmentation tasks. The task addressed in this research work is the segmentation
of amastigote nests from histological microphotographs in the study of Trypanosoma cruzi infection
(Chagas disease) implementing a U-Net convolutional network architecture. For the nests’ segmenta-
tion, a U-Net architecture was trained on histological images of an acute-stage murine experimental
model performing a 5-fold cross-validation, while the final tests were carried out with data unseen by
the U-Net from three image groups of different experimental models. During the training stage, the
obtained results showed an average accuracy of 98.19 ± 0.01, while in the case of the final tests, an
average accuracy of 99.9 ± 0.1 was obtained for the control group, as well as 98.8 ± 0.9 and 99.1 ± 0.8
for two infected groups; in all cases, high sensitivity and specificity were observed in the results.
We can conclude that the use of a U-Net architecture proves to be a relevant tool in supporting the
diagnosis and analysis of histological images for the study of Chagas disease.

Keywords: automatic nest segmentation; chagas disease; convolutional neural network; deep learning;
histopathological imaging; Trypanosoma cruzi infection

1. Introduction

The use of artificial intelligence in the medical imaging area has been developing
for several years; however, particularly in the last 10 years, the use of deep learning
algorithms has shown robust results related to pattern detection and segmentation in
several biomedical applications [1].

In this sense, the need to be able to automatically detect certain patterns and to seg-
ment regions of interest in images is of great importance, as for example in the images
acquired through a microscope, because on many occasions this work is subjective and
observer-dependent. Such is the particular case in diagnosis of imaging for histopatholog-
ical studies, in which the microphotographs show various patterns or regions that have
different colours, textures, and/or shapes that allow the expert to give a pertinent clinical
interpretation. Histopathological images are an excellent use case for application of deep
learning strategies, where a first challenge has been to analyze individual cells for accurate
diagnosis from deep convolutional neural network to robustly and accurately detect and
segment cells, implementing cascaded by multi-layer convolution operation without sub-
sampling layers for cell segmentation [2]; or some cell segmentation works that tackle the
data heterogeneity problem by cost-sensitive learning strategy to solve the imbalanced data
distribution, and post-processing step based on the controlled watershed to alleviate fragile
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cell segmentation with unclear contour [3]. However, histopathological analysis of images
acquired by an optic microscope can take a lot of time to detect associated patterns, as for
example in the case of parasite nests, which can result in a subjective, observer-dependent
analysis. It is in facing this type of challenge that the use of algorithms derived from deep
learning can be a robust tool that helps experts in the search for findings or patterns for a
diagnosis [4,5].

In this work, we focus on the automatic analysis of microphotographs for the study
and histopathological diagnosis of Chagas disease (CD), which is a parasitic disease caused
by the flagellated protozoan Trypanosoma cruzi (T. cruzi). There are several strains of T. cruzi,
and each one presents tropism for different cells. CD is an endemic disease in various
countries in Latin America, and it is estimated that it affects around 6 to 7 million people
there, in addition to 300,000 in the United States and between 80,000 and 120,000 in Europe.
However, the World Health Organization (WHO) has classified CD as one of the least
attended tropical diseases [6]. In Mexico, even though official records report a few cases per
year, it is believed that at least 1.1 million people are infected with T. cruzi, 29.5 million are at
risk of infection, and 30% of symptomatic infected people develop serious cardiomyopathy
due to myocardial lesions, varying from mild affectations to end-stage heart failure [7].

The life cycle of T. cruzi is complex and presents four distinct developmental stages:
epimastigotes, metacyclic trypomastigotes, bloodstream trypomastigotes, and amastigotes.
The first two stages are found in the vector and the last two in the infected mammal. During
an acute infection, the bloodstream trypomastigote can be found circulating in the blood and
infecting cells, mainly cardiac cells. Once inside the cell, the parasite is transformed into an
amastigote, the replicative form of the parasite in the host. These dividing amastigotes (via
binary fission) infect cells from the phagocytic system or lymphoid, muscular, or nervous
tissue, where these dividing forms continue to grow for up to nine generations inside the
cell and can rupture the plasma membrane when they turn back into trypomastigotes [8]. In
the chronic infection phase, the parasite is no longer found circulating in the bloodstream,
and it persists in the amastigote form in cardiac cells. In 30–40% of infected and untreated
patients, Chagas cardiomyopathy (CC) develops; CC can progress and cause heart failure
and death. Although all stages play a role in the life cycle of the parasite, in this work we
will focus on the amastigotes.

CD is characterized by T. cruzi amastigotes infecting myocardium tissue, as is shown
in Figure 1b, in comparison with healthy tissue as in Figure 1a, which may induce inflam-
mation of the four cardiac chambers and, later, cardiomegaly (increase of cardiac mass).
Histological samples show amastigote nests accumulate inside cardiomyocytes, resulting
in cardiac fibrosis, degeneration, and necrosis [9].

Figure 1. Histological samples images of cardiac tissue in the experimental model (haematoxylin and
eosin stain): (a) control animal without T. cruzi infection, and (b) infected animal with amastigote
nests of T. cruzi inside cardiomyocytes.
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At present, the advances that exist in the study of the detection and segmentation of
the T. cruzi parasite through the use of machine learning algorithms have only been for
bloodstream trypomastigotes, that is, when the parasite is circulating in the bloodstream,
as is presented in the works by Cetina et al., who proposed a T. cruzi automatic detection
in blood smears using a Gaussian discriminant analysis (with 98.3% sensitivity and 15.6%
specificity), or using a support vector machine (SVM) in combination with AdaBoost (with
100% sensitivity and 93.2% specificity) [10,11]. Recently, for the detection of trypomastigotes
in the bloodstream, machine learning (ML) algorithms such as random forest (RF) have
also been proposed that use images obtained by mobile phones, reporting 87.6% precision
and 90.5% sensitivity [12]. Ojeda et al. [13], implemented deep learning algorithms for
T. cruzi trypomastigote segmentation from blood samples, which obtained an F2 score of
80.0%, recall of 87.0%, precision of 63.0%, and a Dice score of 68.2%.

Some works have also reported on the detection and segmentation of parasites present
in blood by implementing deep learning techniques, but related to other diseases, as for
example Mehanian et al., who used convolutional neural networks (CNNs) to identify and
quantify the presence of malaria parasites, Plasmodium falciparum, in blood smears (with
sensitivity of 91.6%, specificity of 94.1%, and precision of 89.7%) [14]; another example
is the work presented by Gorriz et al. [15], where they applied a U-Net architecture for
segmentation and classification of leishmaniasis parasites’ amastigotes (with precision of
75.7% and a Dice score of 77.7%). As mentioned, processing histopathological images to
segment amastigotes’ nests continues to be a challenge in the study of Chagas disease.
Amastigote nest detection on myocardial histopathology can be helpful in the case of
donors and recipients of cardiac transplants. The reactivation of infection after transplant
has been reported as a serious complication that can lead to allograft failure and death.
Automatic detection algorithms can also be useful in biomedical research for the study of
cardiac infection in animal models and as a support diagnostic tool in places where no
expert is available.

Unlike the state of the art previously reported, this work presents the following
contributions:

• The implementation of a deep neural network architecture with a data augmentation
strategy for the automatic segmentation of T. cruzi amastigotes’ nests. It can help in
the experimental study of Chagas disease.

• Preparation of murine experimental models during the acute infection stage, and
acquisition of cardiac muscle histology images from four different experimental studies
of T. cruzi infection.

• The proposed methodology for automatic segmentation was thoroughly validated
using three sets of images (hold-out data) with different properties such as: quantity
of inoculated trypomastigotes, days post-infection, acquisition equipment, and images
of infected models and healthy controls.

To our knowledge, there are no current studies that do automatic amastigote nest
segmentation. It is expected that the proposed methodology can help to perform an efficient
and accurate detection of amastigote nests in histology images.

2. Materials and Methods

This section presents a brief description of the experimental murine model in the acute
stage of T. cruzi infection, where optical microphotographs were acquired for histopatho-
logical analysis and, subsequently, the amastigote nests’ segmentation by applying deep
learning techniques. Likewise, the databases used for the neural network training and
the final performance tests of the segmentation algorithm are presented, as well as the
performance metrics used for this analysis.

2.1. Experimental Murine Model Description

For the experimental model of T. cruzi infection in the acute stage, approved by Comité
de Ética del Centro Regional de Investigaciones Dr. Hideyo Noguchi de la Universidad
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Autónoma de Yucatán (CIR-UADY) (CIRB-006-2017) (CEI-04-2020), 18 female ICR mice of
6–8 weeks old were considered, separated into a control group (3 mice) and an infected
group (15 mice. The control mice were intraperitoneally administered with physiological
saline solution, and in the infected group, nine mice were intraperitoneally administered
with 1000 bloodstream trypomastigotes and the other six mice with 500 bloodstream
trypomastigotes, both of H1 T. cruzi strain DTU I. The experimental murine model of the
acute infection stage was analysed at different post-infection days (25, 28, 29, 30, 31, and
35 days post-infection).

In all cases of inoculated mice, developing infection was confirmed and monitored to
corroborate the presence of T. cruzi parasites by microscopy using a Neubauer cell count of
peripheral blood parasites every post-infection test day, and mortality was recorded daily.
Histological images with haematoxylin and eosin stain of control and infected mice were
acquired by microscopy.

The animals were euthanized by applying deep intraperitoneal anaesthesia with
xylazine and ketamine (10 mg/kg, 100 mg/kg) and later cervical dislocation. The whole
heart was extracted and placed in a plastic container buffered with 10% formaldehyde
and a pH of 7.2 for 24 h for proper fixation. Once the hearts were fixed, a coronal section
was made to visualize the four cardiac chambers, the interventricular septum, and the
outlets of the aorta and pulmonary arteries. Then, the samples were placed in a histological
cassette for dehydration with alcohols at different concentrations. After, the hearts were
placed in paraffin for cubes’ preparation, and 5-µm-thick cuts were made with the aid of a
microtome. These tissue sections were placed on a slide to be stained with haematoxylin
and eosin, finally performing the assembly by placing a coverslip on the samples. Once the
assembly of the cardiac tissue sections was completed, the samples were analysed using an
optical microscope with a 40× objective, and photographs of the amastigote nests present
were taken.

2.2. Database—Histological Imaging

In this work, the following image databases were processed: (a) image group for
training and validation of the automatic segmentation algorithm for nests of amastigotes
in mice inoculated with 1000 bloodstream trypomastigotes at 25, 30, and 35 days post-
infection (Database I); (b) image groups for final testing consisting of three different groups
under various conditions: one group of images consists of acquired images from uninfected
control mice (Database II), another group of images was acquired from infected mice of
an experimental model inoculated with 500 bloodstream trypomastigotes at 28, 29, and
30 days post-infection (Database III), and a final group of images was acquired from T.
cruzi-infected mice inoculated with 500 bloodstream trypomastigotes at 31 days post-
infection (Database IV), as shown in Table 1. All original RGB images have a resolution of
2592 × 1944 pixels.

Table 1. Description of the databases used for the training and validation stage of the automatic
segmentation system for amastigote nests, as well as for final testing under various experimental
conditions.

Database # of Mice
Inoculation

Bloodstream
Trypomastigotes

Post-Infection Days # of Images Infection Stage Analysis

I 9 1000 25/30/35 734 Acute Training & validation
II * 3 - 0/120 27 Acute Final test 1
III 3 500 28/29/30 30 Acute Final test 2
IV 3 500 31 22 Acute Final test 3

* Healthy mice without amastigote nests present.
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2.2.1. Database for Training and Validation

For the automatic segmentation of T. cruzi amastigote nests, a neural network was
trained by means of a set of 734 histopathological microphotographs (Database I), which
were taken from nine infected mice during the acute stage at 25, 30, and 35 days post-
infection. Histopathological images were acquired to 40× from an Olympus CX23 micro-
scope and a Leica DM750 microscope.

2.2.2. Databases for Final Tests

Three sets of images were considered to perform the final tests, where one set of
images was acquired from healthy mice, while the other two sets of images belong to
infected mice from different experimental models.

• Database II. This database consists of 27 images acquired from three healthy mice at
0 and 120 days after being administered physiological saline, showing no presence of
amastigote nests in cardiac tissue. Therefore, they were considered as mice belonging
to the control group. All histological images were acquired at 40× with a Leica
DM750 microscope.

• Database III. For this final test of the nest segmentation system in the acute stage,
images that were not previously seen by the algorithm during training were considered.
For this group of images, three mice infected with 500 bloodstream trypomastigotes
at 28, 29, and 30 days post-infection were considered. Thirty images of histological
sections with presence of amastigote nests in cardiac tissue were processed. All
histopathological images were acquired at 40× with a Leica DM750 microscope.

• Database IV. A final test was also considered using 22 microphotographs of histopatho-
logical sections from three infected mice with 500 bloodstream trypomastigotes at
31 days post-infection. Histopathological images were acquired at 40× with an Olym-
pus CX23 microscope.

All the computational processing was conducted in the Laboratorio Universitario
de Cómputo de Alto Rendimiento (LUCAR) and the Área de Análisis de Imágenes e
Inteligencia Artificial of the Unidad Académica del IIMAS en Yucatán from the Universidad
Nacional Autónoma de México (UNAM).

2.3. Binary Mask of the Manual Segmentation from Amastigote Nests

For each of the processed images, we manually generated their respective binary
masks, segmenting each amastigote nest contained in the image; these annotations were
considered the region of interest (ROI). In those images derived from histological slices of
mice from the control group, i.e., healthy uninfected mice with no amastigote nests, images
containing only background without any ROI were generated. The segmentation of regions
used in the neural network training stage, to indicate to the neural network which patterns
correspond to amastigote nests, was performed using MATLAB 2021a, while to perform
final tests of the automatic segmentation and validation of spatial correspondence between
the resulting automatic regions and the manual segmentation, masks were made with the
help of ImageJ 1.53k software. All manually segmented ROIs, considered as ground truth
masks, were reviewed and validated by experts in Chagasic histopathology.

2.4. Data Augmentation

One of the requirements for the robust training of a CNN is to provide the algorithm
with a large number of input images [16]; however, it is not always possible to have a
large database containing a robust number of images, especially when it comes to medical
images. That is why techniques have been proposed for data augmentation through various
types of transformations applied to the original images with which the neural network
training is to be performed, thus generating a considerable increase in the number of input
images. The advantages of making use of data augmentation are the model’s generalization
and improvement of the detection algorithm’s precision, as well as its robustness for
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unseen data. Some of the most common transformations applied to images are geometric
ones, such as rotation or reflections, as well as contrast and brightness transformations
or changes, which have been shown to give good results [17], in addition to spectral
changes of the colour components, whether RBG, HSV, or any other colour model. For this
work, data augmentation was performed from the training set of images, i.e., Database
I (734 microphotographs of infected mice). Before performing the geometric, contrast,
and colour transformations of the images, the original images were resized to reduce the
computational weight of the segmentation algorithm, as were all the binary masks that were
manually segmented. Subsequently, the vertical and horizontal axes, changes in contrast
and brightness levels, and spectral changes in the RGB components were applied. Figure 2
shows a diagram of the data augmentation process that was carried out, generating a total
database of 11,508 images for training and validation of the U-Net CNN. The following
transformations were carried out during the data augmentation process: 90- and 180-degree
rotations, random rotations between −45 and 45 degrees, reflections along the vertical
and horizontal axes, changes in contrast and brightness levels, and spectral changes in the
RGB components.

Figure 2. Diagram showing pre-processing of histological images and segmentation of binary masks,
as well as representative examples of geometric, intensity, and spectral transformations to perform
data enhancement.

2.5. Deep Learning–Based Segmentation

As part of what is known as deep learning (DL), neural networks are implemented
based on basic elements such as interconnected perceptrons or artificial neurons performing
functions as part of an artificial intelligence model. Artificial neural networks (ANNs)
consist of an input layer, one or several hidden layers composed of a certain number
of interconnected perceptrons, and an output layer, from which fully connected neural
networks (FCNNs) can be obtained, where the pattern features are organized into vectors.
As a result of this type of ANN model, new architectures have been considered for the
analysis of images, taking into account the spatial relationship that exists between the
pixels of an image, as well as existing patterns in it, such as corners, edges, or some other
feature that allows differentiating between images. This is how a class of deep ANNs
called convolutional neural networks (CNNs or ConvNets) arises. Currently, there are
several proposed architectures whose input is an image, and whose output can be a data
vector or another image [18]; for example, networks’ architectures that propose dual-branch
collaborative modules to extract global and local features of images [19], or spatial, spectral,
and texture-aware attention networks from hyperspectral images information [20], but in
the case of other applications.
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2.5.1. U-Net Architecture

The U-Net architecture was presented by Ronneberger et al. [21]. Some characteristics
of this CNN are to skip connections, concatenate feature maps, and add convolutions
and non-linearities between the up-sampling steps. Skipped connections make it possible
to recover the full spatial resolution in the network output, and it is for this reason that
U-Net is a CNN architecture designed for region segmentation or detection. The U-Net
architecture presents a symmetrical U-shaped structure and is divided into two paths: the
encoder (contracting path), which provides classification information, and the decoder
(expansive path), which allows the CNN to learn localized classification information.
Figure 3 shows the U-Net architecture that was implemented for the amastigote nest
segmentation algorithm. There are also concatenations or skipped connections between
different layers from the encoder and the decoder, which convey feature maps from one to
the other. In this work, the U-Net architecture was implemented because, in a preliminary
work, it showed better performance compared to an SVM trained with texture features [22].
In addition, in other reported works the U-Net architecture has shown good results in the
segmentation of histology image tissue [23,24].

In medical image analysis, the persistent problem of missing pixel-level context in-
formation can be solved by implementing the U-Net architecture [1,25]. As is shown in
Figure 3, in the contraction path, first two 3 × 3 convolutions and a ReLU (rectified linear
unit) activation function are applied, followed by a 2 × 2 max-pooling operation. This
process is repeated five times, increasing the kernel size each time. And for the expansion
process, the decoder consists of several up-samplings of the feature map using 2 × 2 up-
convolution; after that, the feature map from the corresponding layer in the contracting
path is concatenated onto the up-sampled feature map, followed by two successive 3 × 3
convolutions and ReLU activation functions, until the contraction path length is reached.
At the end, an additional 1 × 1 convolution with two filters is used to reduce the feature
map or feature vector to the desired number of classes to generate the output segmented
image [21]. For this work, a total of 23 layers and 1,941,105 trainable U-Net parameters
were implemented to obtain the segmentation maps (512 × 512 pixels).

For the training of the U-Net, the input was the images of the histological micropho-
tographs, each of which had its respective binary mask that indicated the spatial segmenta-
tion ground truth of the regions with the presence of amastigote nests.

Figure 3. U-Net architecture, showing a symmetrical U-shaped structure, divided into the contracting
path (encoder) and the expansive path (decoder), implemented for amastigote nest segmentation.

2.5.2. Selecting the Threshold for the Binary Segmentation Mask

As the output of the U-Net, what is obtained is an image corresponding to a probability
map, where each pixel is assigned a probability that indicates how likely that pixel belongs
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to an amastigote nest. Therefore, in order to have a binary mask of the segmentation of
amastigote nests (Figure 4), it is necessary to consider an optimal threshold that allows us
to binarize in the best way the resulting probability map at the output of the U-Net and
thus obtain a binary segmentation of the amastigote nests in a robust way, for which it was
proposed to carry out a precision-recall (PR) ROC curve analysis.

As post-processing, there is a thresholding stage of the probability map obtained as
the output of the U-Net, which is why it is necessary to define the optimal threshold from
which the best performance is obtained in the segmentation of the binary masks of the
amastigote nests. For this purpose, precision-recall curves (PR curves) were constructed.

Figure 4. Diagram of the process of automatic segmentation of amastigote nests in histological
microphotographs from a U-Net CNN architecture.

This is a parameterized curve that captures the trade-off between accuracy and pre-
sented noise, the threshold of which varies because precision (see Section 2.6.1) is the
segmentation fraction that are true positives rather than false positives, while recall is the
true positives fraction that were segmented rather than missed. The main advantage of
using PR curves for the evaluation in segmentation overlap regions is that we can compare
the produced segmentation with the same algorithm using different input parameters,
where it has been proposed to vary the probability threshold (t) in order to be able to
determine the threshold that is closest to a perfect model (precision = 1 and recall = 1) [26].

In addition, the values of the BF-Score and F1-score were verified (also described in
Section 2.6.1), where the location of the maximum F-measure along a PR curve provides
the optimal segmentation threshold given t, where this parameter determines the relative
importance of each term (t = 0.5 indicates no preference for either) [27].

2.6. Training and Cross-Validation

To verify the reproducibility of the model and validate the results, a 5-fold cross-
validation method was used [28], as is shown in Figure 5, where 90% of the images were
used for training (n = 10,357) and 10% in the validation test (n = 1151). The parameters
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chosen to train the U-Net network were an Adam gradient optimizer, a binary entropy loss
function, and 50 epochs.

Figure 5. Diagram of training and 5-fold cross-validation for automatic amastigote nest segmentation;
the final test used three different databases.

2.6.1. Confusion Matrix Metrics and Similarity Segmentation Indices

A classifier’s performance can be summarized by means of a confusion matrix, where
each row refers to ground truth classes as recorded in the reference set, and each column to
classes as predicted by the classifier. It is convenient to distinguish the performance of the
classes, where correctly classified positives and negatives are referred to as true positives
(TP) and true negatives (TN), respectively; incorrectly classified positives are called false
negatives (FN); and misclassified negatives are called false positives (FP) [29], as is shown
in Table 2.

Table 2. Confusion matrix representation.

Predicted Nest

Truth
Nest

1 0
1 True Positive (TP) False Negative (FN)
0 False Positive (FP) True Negative (TN)

Some performance measures to validate the ROI segmentation can be defined based
on the confusion matrix as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

Precision =
TP

TP + FP
, (2)

Sensitivity =
TN

FP + TN
, (3)

Recall =
TP

TP + FN
. (4)

Also, to be able to compare the similarity between the ground truth mask of seg-
mented regions and the mask automatically predicted by U-Net’s CNN of amastigote
nests, statistical similarity coefficients can be obtained, such as the Dice and Jaccard in-
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dices [30,31], which, in this case, are measures of the relationship between areas of the
manually segmented and predicted binary masks:

Dice =
2TP

2TP + FP + FN
, (5)

Jaccard =
TP

TP + FP + FN
. (6)

The accuracy and Jaccard coefficient were implemented for the training stage evaluat-
ing Database I, and all similarity measures were used for the final tests using Databases II,
III, and IV, as is explained in the next section. As mentioned in Section 2.5.2, for the case
of the BF-score and F1-score values, the location of the maximum F-measure along the PR
curve provides the optimal segmentation threshold given t, where the difference between
the BF-score and F1-score is that the first score is a boundary-based measure, while the
F1-score is an F-measure that considers all the pixels in a region and is equivalent to the
Dice similarity coefficient [32]; these scores are valued between 0 and 1, where larger values
are more desirable, and are defined as:

F1-score =
2TP

2TP + FP + FN
, (7)

BF-score =
(2Precision)(Recall)

Precision + Recall
. (8)

2.7. Final Test Validation

As can be seen in Figure 5, in a second stage after having performed the training
of the U-Net and the cross-validation to know its performance, some final tests of the
implemented algorithm were performed using images that were not seen by the algorithm
during the training stage. These are new images from which the U-Net’s performance
for automatic segmentation of amastigote nests is objectively analysed. For this purpose,
we performed this final test using three different sets of images: histological images of
healthy mice belonging to the control group (Database II) and histopathological images
of infected mice from two different experimental models (Databases III and IV). All im-
ages were pre-processed by means of a scaling transformation to reduce their original
size (512 × 512 pixels), with the intention that they would have the required size for the
implemented U-Net and could be used as input for this CNN.

From the image resulting from the automatic segmentation by the U-Net, the binary
mask of the region or regions corresponding to the parasite amastigote nests was obtained;
then, these binary masks were validated with the ground truth images to obtain as perfor-
mance metrics the accuracy, precision, sensitivity, and recall, as well as the Dice and Jaccard
similarity indices described above.

3. Results and Discussion

The U-Net performance for amastigote nest segmentation in the training stage for
the 5-fold cross-validation showed an accuracy of 98.19 ± 0.01% and a Jaccard coefficient
value of 49.43 ± 0.00%. From these results, we can observe that during the training stage,
for almost all validation images, the U-Net was capable of detecting the amastigote nests
well, but not the total number of pixels that contained the segmented nest regions. Figure 6
shows two cases of nest segmentation during the training stage, where we can observe one
example of successful segmentation and another example of poor segmentation, which
produced a bad overlap between the binary masks of ground truth segmentation and the
automatic segmentation of nest regions.

From Figure 6, it can be seen that in one of the examples, the number of pixels
considered as part of a parasite nest was overestimated; however, it is also possible to
observe that some of them belong to possible very small nests that are found in the
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histological image but were not considered by the expert, precisely because of their size,
when performing the manual segmentation and the subjectivity that some of these regions
presented. Likewise, it was observed that the cases that presented low Jaccard coefficient
values were in histological images that presented some artefacts or very particular RGB
colour spectral patterns, derived from the staining quality of the histological sample rather
than the image acquisition or processing.

Figure 6. Two examples of amastigote nest segmentation by a U-Net architecture during the training
validation: an example of very successful segmentation (upper row), and an example of over-
segmentation (lower row). For the visualization of mask overlapping: the ground truth region is
shown in yellow, the automatic region in rose, and the overlapping region in cyan.

However, these results may vary according to the probability threshold implemented
in the probability map at the output of the U-Net, with the objective to obtain the binary
mask corresponding to the segmented region of the amastigote nest. Since it is necessary to
analyse which is the optimal threshold to achieve the best learning system performance for
the amastigote nests’ segmentation, PR-curves were generated considering 52 histopatho-
logical images of infected mice (Database III + Database IV), from which the corresponding
binary masks were generated using different probability values as thresholds (t = 0.97, 0.90,
0.85, 0.8 0, 0.75, 0.70, 0.65, 0.60, 0.50, 0.40, 0.30, 0.20, 0).

The automatic segmentation system’s performance was analysed to obtain the preci-
sion and recall for each threshold t. The final PR-curve is shown in Figure 7a, showing the
optimal threshold t = 0.20 that allows us to have better performance in detecting the nests.
Figure 7b shows the graph of the BF-score and F1-score values, corresponding to each of the
used t threshold values, observing that the highest scores are obtained for a value of t = 0.20.
We can also observe that the probability map obtained by a U-Net architecture is quite
robust, since it is possible to detect a nest from low probability values, that is, practically a
zero value in the probability map corresponds to regions that are not amastigote nests.

Table 3 shows the performance metrics of the U-Net for the generation of the binary
masks of the amastigote nests’ segmentation, as well as the similarity coefficients, which
were obtained when performing the final tests using Databases II, III, and IV considering a
threshold value of t = 0.20 in the probability map.
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Table 3. Confusion matrix metrics and similarity coefficients for final tests using Databases II, III, and
IV with the implemented U-Net architecture (t = 0.20).

Database Accuracy Precision Specificity Recall Dice Jaccard

II * 0.999 ± 0.001 - 1.00 ± 0.00 - - -
III 0.988 ± 0.009 0.66 ± 0.14 0.96 ± 0.14 0.75 ± 0.20 0.69 ± 0.15 0.55 ± 0.16
IV 0.991 ± 0.008 0.70 ± 0.13 0.98 ± 0.01 0.94 ± 0.07 0.80 ± 0.09 0.67 ± 0.12

* Healthy mice without amastigote nests present.

(a)

(b)
Figure 7. Performance graphs of the automatic amastigote nest segmentation for different threshold-
ing values t from the probability map in the case of the general infected group (Databases III + IV):
(a) PR curve, (b) BF- and F1-scores; where in each graph the points and values corresponding to the
optimal threshold are marked in red.

As can be seen in Table 3, in the case of images corresponding to healthy mice (Database
II) that did not present amastigote nests, in most cases, no binary regions or masks were
detected, but only the background; with the exception of two images in which a segmented
region was obtained, as shown in Figure 8.

We associate this erroneous detection with the RGB colour pattern present in the
images derived from the staining process of the histological samples; those small regions
present similar characteristics to those of an amastigote nest. Therefore, as future work,
more extensive RGB colour transformations and corrections can be carried out for the
U-Net training. In Figure 9, we can see that in relation to the other two final tests carried out
with infected mice from two different T. cruzi experimental infection models, segmentation
of all regions belonging to amastigote nests was achieved; however, in some cases, a sub-
adjustment of the segmented regions was presented, or regions related to small nests that
had not been considered as such were detected. This could make it possible to find regions
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associated with amastigote nests’ presence at an early infection stage, which would result
in an auxiliary tool for the clinician.

Figure 8. Examples of the two cases of histological images from the control mice group, without
amastigote nests present, where the U-Net architecture segmented some pixels as a nest. Subfigure
(a) shows the original image of a healthy mouse and the segmentation with false positives detected;
subfigure (b) is another representative example of misclassified data in a control mouse image.

(a) (b)
Figure 9. U-Net performance metrics for automatic nest segmentation: (a) Database III (acute stage,
500 bloodstream trypomastigotes, 28, 29, and 30 days post-infection), and (b) Database IV (acute
stage, 500 bloodstream trypomastigotes, 31 days post-infection).

The detail of the average pixels correctly classified for Databases III and IV is shown
in Table 4. The results of Database II are not presented since it is a healthy population
and does not contain amastigote nests. Similar to what is shown in Table 3 and Figure 9, a
high rate of correctly classified pixels can be observed (98.8% for Database III and 99.1%
for Database IV adding TP and TN data). False negatives (0.64% for Database III and
0.12% for dataset IV) are associated with small incorrect detections of altered color patterns
derived from the staining process in histology images. False positives can also be observed
(0.60% and 0.82% for Databases III and IV respectively); in some cases the FPs are due to
misclassified data, and in others they are regions that were not manually annotated by the
experts, but are detected by the network. The obtained results suggest that the proposed
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methodology can be useful as a tool for the experimental study of Chagas disease, as well
as to quantify the degree of amastigote nests in different regions of the heart.

Another point to highlight is the good performance after resizing the images. This
resizing was done in order to mitigate the computational cost, as well as the transmission
and storage of information. In addition, this normalization allows the processing of images
acquired with microscopes of different centers, which may have different resolutions. It is
considered that these factors can facilitate the use of this tool in different Chagas disease
research centers.

Table 4. Confusion matrices obtained from the final tests with Databases III and IV respectively. Data
belonging to a nest are represented as 1 and healthy tissue as 0. Results are shown according to the
number of pixels classified (mean ± standard deviation).

Predicted Nest
Database III

Predicted Nest
Database IV

Truth
Nest

1 0 1 0
1 3104 ± 1933 1668 ± 1514 5161 ± 3556 306 ± 352
0 1573 ± 1058 255796 ± 4034 2140 ± 2022 254536 ± 4922

Since no other work has been found that presents a method for amastigote nests’
segmentation for T. cruzi infection, we do not report any direct and objective comparison of
the results.

However, in accordance with the state of the art, the importance of using computa-
tional techniques in similar applications can be emphasized, such as a work related to the
semi-automatic counting of amastigote nests by mathematical morphology; although in
other studies the authors do not perform nest detection, they show a precision of 0.91 and
0.96, an accuracy of 0.83 and 0.86, as well as accuracy rates of 0.85 ± 0.10, recall rates of
0.86 ± 0.11%, and error rates of 0.16 ± 0.08 [33]. A similar work has also been presented
about amastigote counting in Chagas-infected cells using unsupervised automatic clas-
sification techniques and morphological granulometric processing, obtaining in its test
models error rates of 0.10 and 0.26, precision of 0.76 and 0.85, recall 0.61 and 0.78, as well
as F-measures of 0.66 and 0.75, respectively [34]. Therefore, we consider that our results
are objectively comparable to those already reported, also considering that automatic nest
detection is being carried out.

Regarding the use of the U-Net architecture, similar works have been reported with
satisfactory results, specifically in the case of T. cruzi parasite segmentation by an automatic
system to detect the parasite in blood sample images, but not in the parasite stage as an
amastigote in cardiac tissue to relate it to heart damage; even so, good results are reported
in the use of the U-Net (F2 = 0.80, recall = 0.87, precision = 0.63, and Dice = 0.68) [13]. It is
more common to find works related to automatic T. cruzi parasite detection in blood [35,36];
however, this analysis is far from the objective of our work.

It has also been found that there are some works related to the T. cruzi parasite, but
making use of fluorescence images, where the characteristics or observed patterns differ
from those present in a histological microphotograph, where image processing techniques
have been used for image enhancement by intensity equalization and shading correction to
calculate the ratio between infected host cells and the total host cells, and the number of
parasites per infected host cell [37].

There are different clinical scenarios in which histopathology for T. cruzi infection
diagnosis in tissues is very useful: heart transplantation is a therapeutic option in pa-
tients with CD where there is advanced heart failure that is refractory to medical therapy,
and monitoring in transplant patients, since infection reactivation can occur. In addition,
infection reactivation can occur under immunosuppressive conditions, as is the case of
coinfections with Chagas/HIV, where in approximately 30–40% of the cases, the infection
reactivation involves the heart. Other immunosuppressive pathologies that can reactivate
the infection are autoimmune diseases, cancer and cancer chemotherapy, immunosuppres-
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sive drugs administered to prevent rejection in the case of transplants, as well as any other
immunosuppressive disease. In these cases, the pathological findings described are acute
myocarditis, intense inflammatory infiltrate, damage to cardiac fibres, focal necrosis, and a
large number of amastigote nests, which may be the joint result of established infection
and acute infection reactivation [38].

The identification of amastigote nests by histopathology, from tissues of biopsies or
cadavers, is one of the most used diagnostic tools, since not only the number of amastigote
nests and their distribution can be identified, but also the inflammation extension and
repair, thus establishing indices where the survival of affected patients can be predicted.
However, according to our experience in the laboratory, we have observed that for robust
amastigote nest identification in necrotic and inflamed cardiac tissues, a high degree of
preparation is required, since T. cruzi amastigote nests can commonly be confused with
other microorganisms that have a similar shape and size, such as Histoplasma capsulatum,
Toxoplasma gondii, or Leishmania donovani amastigotes [39]. Therefore, using this deep U-Net
network has been of great help to identify and calculate, in a robust and fast way, the
number and distribution of amastigote nests in the evaluated tissues.

4. Conclusions

In this paper, we present an implementation of the U-Net deep neural network,
in combination with data augmentation approaches, for the automatic segmentation of
amastigote nests in histopathology images. Adequate nest segmentation can help experts
with CD study, follow-up, and analysis. For the automatic segmentation evaluation, four
databases were used: the first was used for training, and the other three databases to carry
out the final validation with data not previously seen by the system. These three image
sets used for the final test contain images with and without the parasite nests present
(infected and control groups, respectively), which were acquired under different conditions.
This exhaustive validation has helped to evaluate the proposed approach, as well as its
robustness to images with different histology stains and conditions, showing good results.
The U-Net convolutional network implementation has made it possible to successfully
segment T. cruzi amastigote nests in the acute stage using histopathological images of
cardiac tissue in a murine experimental model. The automatic segmentation from this deep
learning technique has presented very favourable results and can be used as an auxiliary
tool in the study, analysis, and diagnosis of subjects infected with the parasite, seeking
to carry out this analysis in an early infection stage. Thus, this automatic detection and
segmentation can be used not only in experimental studies but also directly in patients
suffering from CD, particularly in those in which an infection reactivation is studied. The
results shown, in some cases, present an overestimation of amastigote nests that were
not initially labelled by the experts due to their small size; hence, we believe this had an
impact on the Dice and Jaccard indices’ performance. However, the segmentation of these
amastigote nests without manual labelling confirms the importance of using automatic
algorithms for segmentation and exploration of histopathological images. On the other
hand, the final test with the control image database (Database II without the presence of
nests) helped to verify that the automatic system implemented did show a low rate of false
positives, as was observed in the results obtained.

As future work, it is proposed to evaluate other neural network architectures such
as Mask-RCNNN, residual neural networks, based on transformers or self-trained net-
works. In addition, it is expected to further evaluate the presented system with image
banks from other centers and/or images with other characteristics (different resolutions,
staining, acquired at different magnifications of the microscope, or quantity of inoculated
trypomastigotes). This would allow the use of the tool in different centers.

In conclusion, it is considered that the proposed automatic segmentation tool can be
useful for the detection and quantification of amastigote nests, which could help the study
of Chagas disease in different clinical centers.
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