Lupeol Acetate and α-Amyrin Terpenes Activity against Trypanosoma cruzi: Insights into Toxicity and Potential Mechanisms of Action
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pairwise Sequence Alignment and Preparation of the 3D T. cruzi CS Enzyme Model
2.2. Ligand Preparation
2.3. Molecular Docking
2.4. Molecular Dynamics Simulations
2.5. ADME and PAIN Predictions
2.6. Activity against T. cruzi Extracellular Forms
2.7. Activity against Intracellular Forms of T. cruzi
2.8. Cytotoxic Activity on VERO Cells
3. Results and Discussion
3.1. Pairwise Sequence Alignment and Assessment of Model Quality
3.2. Molecular Docking of Terpenes
3.3. Analysis of the Molecular Interactions between Pentacyclic Triterpenes and the TcCS Enzyme
3.4. Assessment of TcCS–Ligand Stability Using Molecular Dynamics Analysis
3.5. ADME and PAIN Predictions
3.6. In Vitro Trypanocidal and Cytotoxic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bern, C. Chagas’ Disease. N. Engl. J. Med. 2015, 373, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Urbina, J.A. Recent Clinical Trials for the Etiological Treatment of Chronic Chagas Disease: Advances, Challenges and Perspectives. J. Eukaryot. Microbiol. 2015, 62, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Urbina, J.A. Specific Chemotherapy of Chagas Disease: Relevance, Current Limitations and New Approaches. Acta Trop. 2010, 115, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Molina, J.A.; Molina, I. Chagas Disease. Lancet 2017, 391, 82–94. [Google Scholar] [CrossRef]
- Rassi, A.; Rassi, A.; Marin-Neto, J.A. Chagas Disease. Lancet 2010, 375, 1388–1402. [Google Scholar] [CrossRef]
- Romero, I.; Téllez, J.; Yamanaka, L.E.; Steindel, M.; Romanha, A.J.; Grisard, E.C. Transsulfuration Is an Active Pathway for Cysteine Biosynthesis in Trypanosoma rangeli. Parasites Vectors 2014, 7, 197. [Google Scholar] [CrossRef]
- Nozaki, T.; Shigeta, Y.; Saito-Nakano, Y.; Imada, M.; Kruger, W.D. Characterization of Transsulfuration and Cysteine Biosynthetic Pathways in the Protozoan Hemoflagellate, Trypanosoma cruzi: Isolation and Molecular Characterization of Cystathionine β-Synthase and Serine Acetyltransferase from Trypanosoma. J. Biol. Chem. 2001, 276, 6516–6523. [Google Scholar] [CrossRef]
- Romero, I.; Téllez, J.; Romanha, A.J.; Steindel, M.; Grisard, E.C. Upregulation of Cysteine Synthase and Cystathionine β-Synthase Contributes to Leishmania braziliensis Survival under Oxidative Stress. Antimicrob. Agents Chemother. 2015, 59, 4770–4781. [Google Scholar] [CrossRef]
- Mazumder, M.; Gourinath, S. Structure-Based Design of Inhibitors of the Crucial Cysteine Biosynthetic Pathway Enzyme O-Acetyl Serine Sulfhydrylase. Curr. Top. Med. Chemestry 2016, 16, 948–959. [Google Scholar] [CrossRef]
- Silva, E.A.P.; Carvalho, J.S.; Guimarães, A.G.; Barreto, R.D.S.; Santos, M.R.; Barreto, A.S.; Quintans-Júnior, L.J. The Use of Terpenes and Derivatives as a New Perspective for Cardiovascular Disease Treatment: A Patent Review (2008–2018). Expert Opin. Ther. Pat. 2019, 29, 43–53. [Google Scholar] [CrossRef]
- de Vasconcelos Cerqueira Braz, J.; Carvalho Nascimento Júnior, J.A.; Serafini, M.R. Terpenes with Antitumor Activity: A Patent Review. Recent Pat. Anticancer Drug Discov. 2020, 15, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Prado-Audelo, D.; Luisa, M.; Cortés, H.; Caballero-Florán, I.H.; González-Torres, M.; Escutia-Guadarrama, L.; Bernal-Chávez, S.A.; Giraldo-Gomez, D.M.; Magaña, J.J.; Leyva-Gómez, G. Therapeutic Applications of Terpenes on Inflammatory Diseases. Front. Pharmacol. 2021, 12, 2114. [Google Scholar] [CrossRef] [PubMed]
- de Santana Souza, M.T.; Almeida, J.R.G.D.S.; de Souza Araujo, A.A.; Duarte, M.C.; Gelain, D.P.; Moreira, J.C.F.; dos Santos, M.R.V.; Quintans-Júnior, L.J. Structure–Activity Relationship of Terpenes with Anti-Inflammatory Profile—A Systematic Review. Basic Clin. Pharmacol. Toxicol. 2014, 115, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Isah, M.B.; Ibrahim, M.A.; Mohammed, A.; Aliyu, A.B.; Masola, B.; Coetzer, T.H.T. A Systematic Review of Pentacyclic Triterpenes and Their Derivatives as Chemotherapeutic Agents against Tropical Parasitic Diseases. Parasitology 2016, 143, 1219–1231. [Google Scholar] [CrossRef]
- Ansari, M.T.; Saify, Z.S.; Sultana, N.; Ahmad, I.; Saeed-Ul-Hassan, S.; Tariq, I.; Khanum, M. Malaria and Artemisinin Derivatives: An Updated Review. Mini-Rev. Med. Chem. 2013, 13, 1879–1902. [Google Scholar] [CrossRef]
- Demain, A.L.; Vaishnav, P. Natural Products for Cancer Chemotherapy. Microb. Biotechnol. 2011, 4, 687–699. [Google Scholar] [CrossRef]
- Carvalho, A.M.S.; Heimfarth, L.; Santos, K.A.; Guimarães, A.G.; Picot, L.; Almeida, J.R.G.S.; Quintans, J.S.S.; Quintans-Júnior, L.J. Terpenes as Possible Drugs for the Mitigation of Arthritic Symptoms—A Systematic Review. Phytomedicine 2019, 57, 137–147. [Google Scholar] [CrossRef]
- Sülsen, V.P.; Puente, V.; Papademetrio, D.; Batlle, A.; Martino, V.S.; Frank, F.M.; Lombardo, M.E. Mode of Action of the Sesquiterpene Lactones Psilostachyin and Psilostachyin C on Trypanosoma cruzi. PLoS ONE 2016, 11, e0150526. [Google Scholar] [CrossRef]
- Sousa, P.L.; da Silva Souza, R.O.; Tessarolo, L.D.; Sampaio, T.L.; Canuto, J.A.; Martins, A.M.C. Betulinic Acid Induces Cell Death by Necrosis in Trypanosoma cruzi. Acta Trop. 2017, 174, 72–75. [Google Scholar] [CrossRef]
- Ngahang Kamte, S.L.; Ranjbarian, F.; Cianfaglione, K.; Sut, S.; Dall’Acqua, S.; Bruno, M.; Afshar, F.H.; Iannarelli, R.; Benelli, G.; Cappellacci, L.; et al. Identification of Highly Effective Antitrypanosomal Compounds in Essential Oils from the Apiaceae Family. Ecotoxicol. Environ. Saf. 2018, 156, 154–165. [Google Scholar] [CrossRef]
- Izumi, E.; Ueda-Nakamura, T.; Veiga, V.F.; Pinto, A.C.; Nakamura, C.V. Terpenes from Copaifera Demonstrated In Vitro Antiparasitic and Synergic Activity. J. Med. Chem. 2012, 55, 2994–3001. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.A.; Biavatti, M.W.; Brun, R.; Da Costa, F.B.; de Castro, S.L.; Ferreira, V.F.; de Lacerda, M.V.G.; et al. The Potential of Secondary Metabolites from Plants as Drugs or Leads Against Protozoan Neglected Diseases—Part I. Curr. Med. Chem. 2012, 19, 2128–2175. [Google Scholar] [CrossRef] [PubMed]
- Ogungbe, I.V.; Setzer, W.N. In-Silico Leishmania Target Selectivity of Antiparasitic Terpenoids. Molecules 2013, 18, 7761–7847. [Google Scholar] [CrossRef] [PubMed]
- Bernal, F.A.; Coy-Barrera, E. In-Silico Analyses of Sesquiterpene-Related Compounds on Selected Leishmania Enzyme-Based Targets. Molecules 2014, 19, 5550–5569. [Google Scholar] [CrossRef] [PubMed]
- McWilliam, H.; Li, W.; Uludag, M.; Squizzato, S.; Park, Y.M.; Buso, N.; Cowley, A.P.; Lopez, R. Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res. 2013, 41, 597–600. [Google Scholar] [CrossRef]
- Robert, X.; Gouet, P. Deciphering Key Features in Protein Structures with the New ENDscript Server. Nucleic Acids Res. 2014, 42, 320–324. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective. J. Comput. Chem. 2019, 30, 2785–2791. [Google Scholar] [CrossRef]
- Schrödinger Release 2023-1: Maestro (version 12.6.144); Schrödinger, LLC: New York, NY, USA, 2021.
- Fyfe, P.K.; Westrop, G.D.; Ramos, T.; Müller, S.; Coombs, G.H.; Hunter, W.N. Structure of Leishmania major Cysteine Synthase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012, 68, 738–743. [Google Scholar] [CrossRef]
- Téllez, J.; Amarillo, A.; Suarez, C.; Cardozo, C.; Guerra, D.; Ochoa, R.; Muskus, C.; Romero, I. Prediction of Potential Cysteine Synthase Inhibitors of Leishmania braziliensis and Leishmania major Parasites by Computational Screening. Acta Trop. 2022, 225, 106182. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeerschd, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. Autodock Vina: Improving the Speed and Accuracy of Docking. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully Automated Protein-Ligand Interaction Profiler. Nucleic Acids Res. 2015, 43, W443–W447. [Google Scholar] [CrossRef]
- Zoete, V.; Cuendet, A.M.; Grosdidier, A.; Michielin, O. SwissParam: A Fast Force Field Generation Tool for Small Organic Molecules. J. Comput. Chem. 2012, 32, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Joung, I.S.; Cheatham, T.E. Molecular Dynamics Simulations of the Dynamic and Energetic Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters. J. Phys. Chem. B 2009, 113, 13279–13290. [Google Scholar] [CrossRef] [PubMed]
- Hess, B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 116–122. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef]
- Nosé, S.; Klein, M.L. Constant Pressure Molecular Dynamics for Molecular Systems. Mol. Phys. 1983, 50, 1055–1076. [Google Scholar] [CrossRef]
- Páll, S.; Hess, B. A Flexible Algorithm for Calculating Pair Interactions on SIMD Architectures. Comput. Phys. Commun. 2013, 184, 2641–2650. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Wang, N.N.; Yao, Z.J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.P. ADMETlab: A Platform for Systematic ADMET Evaluation Based on a Comprehensively Collected ADMET Database. J. Cheminform. 2018, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, A.L.; Silva, L.S.; Torrecilhas, A.C.; Pascoalino, B.S.; Ramos, T.C.; Rodrigues, E.G.; Schenkman, S.; Caires, A.C.F.; Travassos, L.R. In Vitro and in Vivo Trypanocidal Effects of the Cyclopalladated Compound 7a, a Drug Candidate for Treatment of Chagas’ Disease. Antimicrob. Agents Chemother. 2010, 54, 3318–3325. [Google Scholar] [CrossRef]
- Meira, C.S.; Guimarães, E.T.; Dos Santos, J.A.F.; Moreira, D.R.M.; Nogueira, R.C.; Tomassini, T.C.B.; Ribeiro, I.M.; de Souza, C.V.C.; Ribeiro Dos Santos, R.; Soares, M.B.P. In Vitro and In Vivo Antiparasitic Activity of Physalis angulata L. Concentrated Ethanolic Extract against Trypanosoma cruzi. Phytomedicine 2015, 22, 969–974. [Google Scholar] [CrossRef]
- Valencia, L.; Muñoz, D.L.; Robledo, S.M.; Echeverri, F.; Arango, G.J.; Vélez, I.D.; Triana, O. Trypanocidal and cytotoxic activity of extracts of Colombian plants. Biomedica 2011, 31, 552–559. [Google Scholar] [CrossRef]
- Benkert, P.; Künzli, M.; Schwede, T. QMEAN Server for Protein Model Quality Estimation. Nucleic Acids Res. 2009, 37, 510–514. [Google Scholar] [CrossRef]
- Muley, L.; Baum, B.; Smolinski, M.; Freindorf, M.; Heine, A.; Klebe, G.; Hangauer, D.G. Enhancement of Hydrophobic Interactions and Hydrogen Bond Strength by Cooperativity: Synthesis, Modeling, and Molecular Dynamics Simulations of a Congeneric Series of Thrombin Inhibitors. J. Med. Chem. 2010, 53, 2126–2135. [Google Scholar] [CrossRef]
- Prasanna, S.; Doerksen, R.J. Topological Polar Surface Area: A Useful Descriptor in 2D-QSAR. Curr. Med. Chem. 2009, 16, 21–41. [Google Scholar] [CrossRef]
- Brooke, D.N.; Dobbs, A.J.; Williams, N. Octanol: Water Partition Coefficients (P): Measurement, Estimation, and Interpretation, Particularly for Chemicals with P > 105. Ecotoxicol. Environ. Saf. 1986, 11, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Furtado, N.A.J.C.; Pirson, L.; Edelberg, H.; Miranda, L.M.; Loira-Pastoriza, C.; Preat, V.; Larondelle, Y.; André, C.M. Pentacyclic Triterpene Bioavailability: An Overview of in Vitro and in Vivo Studies. Molecules 2017, 22, 400. [Google Scholar] [CrossRef] [PubMed]
- Delaney, J.S. ESOL: Estimating Aqueous Solubility Directly from Molecular Structure. J. Chem. Inf. Comput. Sci. 2004, 44, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Al Musayeib, N.M.; Mothana, R.A.; El Gamal, A.A.; Al-Massarani, S.M.; Maes, L. In Vitro Antiprotozoal Activity of Triterpenoid Constituents of Kleinia Odora Growing in Saudi Arabia. Molecules 2013, 18, 9207–9218. [Google Scholar] [CrossRef]
- da Silva, A.C.N.; Nascimento, R.M.C.D.; Rodrigues, D.C.D.N.; Ferreira, P.M.P.; Pessoa, C.; Lima, D.J.B.; Filho, M.O.D.M.; de Almeida, R.M.; Ferreira, S.R.; Fujiwara, R.T.; et al. In Vitro Activity Evaluation of Seven Brazilian Asteraceae against Cancer Cells and Leishmania Amazonensis. S. Afr. J. Bot. 2019, 121, 267–273. [Google Scholar] [CrossRef]
- Iverson, C.D.; Zahid, S.; Li, Y.; Shoqafi, A.H.; Ata, A.; Samarasekera, R. Glutathione S-Transferase Inhibitory, Free Radical Scavenging, and Anti-Leishmanial Activities of Chemical Constituents of Artocarpus Nobilis and Matricaria Chamomilla. Phytochem. Lett. 2010, 3, 207–211. [Google Scholar] [CrossRef]
- Schinor, E.C.; Salvador, M.J.; Pral, E.M.F.; Alfieri, S.C.; Albuquerque, S.; Dias, D.A. Effect of Extracts and Isolated Compounds from Chresta Scapigera on Viability of Leishmania amazonensis and Trypanosoma cruzi. Rev. Bras. Cienc. Farm./Braz. J. Pharm. Sci. 2007, 43, 295–300. [Google Scholar] [CrossRef]
- Machado, V.R.; Sandjo, L.P.; Pinheiro, G.L.; Moraes, M.H.; Steindel, M.; Pizzolatti, M.G.; Biavatti, M.W. Synthesis of Lupeol Derivatives and Their Antileishmanial and Antitrypanosomal Activities. Nat. Prod. Res. 2018, 32, 275–281. [Google Scholar] [CrossRef]
- Saleem, M. Lupeol, a Novel Anti-Inflammatory and Anti-Cancer Dietary Triterpene. Cancer Lett. 2009, 285, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Siddique, H.R.; Saleem, M. Beneficial Health Effects of Lupeol Triterpene: A Review of Preclinical Studies. Life Sci. 2011, 88, 285–293. [Google Scholar] [CrossRef] [PubMed]
- de Souza, J.H.; Michelon, A.; Banhuk, F.W.; Staffen, I.V.; Klein, E.J.; da Silva, E.A.; Menolli, R.A. Leishmanicidal, Trypanocidal and Antioxidant Activity of Amyrin-Rich Extracts from Eugenia Pyriformis Cambess. Iran. J. Pharm. Res. 2020, 19, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, E.S.K.; Keriko, J.M.; Machocho, A.K.; Wanyonyi, A.W.; Malebo, H.M.; Chhabra, S.C.; Tarus, P.K. Antiprotozoal Activity and Cytotoxicity of Metabolites from Leaves of Teclea Trichocarpa. J. Med. Plants Res. 2010, 4, 726–731. [Google Scholar] [CrossRef]
- Zingales, B.; Miles, M.A.; Moraes, C.B.; Luquetti, A.; Guhl, F.; Schijman, A.G.; Ribeiro, I. Drug Discovery for Chagas Disease Should Consider Trypanosoma cruzi Strain Diversity. Memórias Inst. Oswaldo Cruz. 2014, 109, 828–833. [Google Scholar] [CrossRef]
- Berná, L.; Chiribao, M.L.; Greif, G.; Rodriguez, M.; Alvarez-Valin, F.; Robello, C. Transcriptomic Analysis Reveals Metabolic Switches and Surface Remodeling as Key Processes for Stage Transition in Trypanosoma cruzi. PeerJ 2017, 5, e3017. [Google Scholar] [CrossRef]
- Booth, L.-A.; Smith, T.K. Lipid Metabolism in Trypanosoma cruzi: A Review. Mol. Biochem. Parasitol. 2020, 240, 111324. [Google Scholar] [CrossRef]
- Azeredo, C.M.O.; Santos, T.G.; Maia, B.H.L.D.N.S.; Soares, M.J. In Vitro Biological Evaluation of Eight Different Essential Oils against Trypanosoma Cruzi, with Emphasis on Cinnamomum Verum Essential Oil. BMC Complement. Altern. Med. 2014, 14, 309. [Google Scholar] [CrossRef]
- Di, L.; Artursson, P.; Avdeef, A.; Ecker, G.F.; Faller, B.; Fischer, H.; Houston, J.B.; Kansy, M.; Kerns, E.H.; Krämer, S.D.; et al. Evidence-Based Approach to Assess Passive Diffusion and Carrier-Mediated Drug Transport. Drug Discov. Today 2012, 17, 905–912. [Google Scholar] [CrossRef]
- Santoro, G.F.; Cardoso, M.G.; Guimarães, L.G.L.; Mendonça, L.Z.; Soares, M.J. Trypanosoma cruzi: Activity of Essential Oils from Achillea millefolium L., Syzygium aromaticum L. and Ocimum basilicum L. on Epimastigotes and Trypomastigotes. Exp. Parasitol. 2007, 116, 283–290. [Google Scholar] [CrossRef]
Compound | Chemical Formula | ZINC ID | PUBCHEM ID |
---|---|---|---|
Monoterpenes | |||
α-Pinene | C10H16 | 1530385 | 6654 |
α-Terpinene | C10H16 | 967594 | 7461 |
α-Thujene | C10H16 | ND | 17868 |
β-Pinene | C10H16 | 967582 | 14896 |
Camphor | C10H16O | 967520 | 2537 |
Cineole | C10H18O | 967566 | 2758 |
Limonene | C10H16 | 967513 | 22311 |
Perillic Acid | C10H14O2 | 1532418 | 1256 |
Tricyclene | C10H16 | 59778294 | 79035 |
Uroterpenol | C10H18O2 | ND | 93024 |
Sesquiterpenes | |||
α-Agarofuran | C15H26O | ND | 10857022 |
α-Santalol | C15H24O | ND | 5281531 |
α-Sinensal | C15H22O | 4098303 | 5281534 |
Aromadendrene | C15H24 | ND | 91354 |
Artemisinin | C15H18O4 | 100014791 | 9838675 |
Bisabolene | C15H24 | ND | 3033866 |
Bisabolol | C15H26O | 968461 | 1549992 |
Caryophylene Oxide | C15H24O | 2039864 | 14350 |
Dehydroleucodin | C15H16O3 | 5202250 | 73440 |
Helenalin | C15H18O4 | 4098120 | 23205 |
Humulene | C15H24 | 38139375 | 5281520 |
Isoplumericin | C15H14O6 | 4098343 | 5281543 |
Mexicanin I | C15H18O4 | 4098149 | 93016 |
Nerolidol | C15H26O | 1531550 | 5284507 |
Obtusol | C15H23Br2ClO | 6018594 | 44583704 |
Peruvin | C15H20O4 | 64403867 | 52944698 |
Plumericin | C15H14O6 | 16343443 | 5281545 |
Polygodial | C15H22O2 | 4098293 | 72503 |
Psilostachyin A | C15H20O5 | 29134496 | 5320767 |
Spatulenol | C15H24O | 13373002 | 92231 |
Diterpenes | |||
11-Hydroxysugiol | C20H28O3 | ND | 10403490 |
12-Hydroxydehydroabietic Acid | C20H28O3 | ND | 13370050 |
Abietic Acid | C20H30O2 | 2267806 | 10569 |
Communic Acid | C20H30O2 | ND | 637125 |
Dolabelladienetriol | C20H34O3 | ND | 6477027 |
Eleganolone | C20H32O2 | 14654612 | 6439034 |
Geranylgeraniol | C20H34O | 1531391 | 5281365 |
Kaurenoic acid | C20H30O2 | 101485632 | 73062 |
Lambertic Acid | C20H28O3 | 4720783 | 13370049 |
Salviol | C20H30O2 | ND | 13966146 |
Sugikurojin A | C20H28O2 | ND | 12116652 |
Serterterpene | |||
Drimanial | C25H30O6 | ND | 636975 |
Tetracyclic Triterpenes | |||
Cycloartenol | C30H50O | 118937272 | 500213 |
Dammarenediol | C30H52O2 | ND | 10895555 |
Lanosterol | C30H50O | 3870056 | 246983 |
Pentacyclic Triterpenes | |||
20 α-Hydroxytingenone | C28H36O4 | 66100553 | 10717799 |
28-Hydroxyisoiguesterin | C28H36O3 | ND | 10622044 |
3-O-Caffeicoleanolic Acid | C39H54O6 | ND | 24873431 |
3-O-Trans-Caffeoyltormentic Acid | C39H54O8 | ND | 44584640 |
α-Amyrin | C30H50O | 100780293 | 73170 |
Alisol B | C30H48O4 | 26828734 | 15558620 |
Asiatic acid | C30H48O5 | 8221271 | 119034 |
β-Amyrin | C30H50O | 3978270 | 73145 |
Betulinic Acid | C30H48O3 | 118937400 | 64971 |
Boswellic acid | C30H48O3 | 14089743 | 168928 |
Celastrol | C29H38O4 | 19795938 | 122724 |
Enoxolone | C30H46O4 | 19203131 | 10114 |
Epikatonic Acid | C30H48O3 | 32296198 | 636467 |
Euscaphic Acid | C30H48O5 | 43552893 | 471426 |
Hydroxygeningenone | C28H36O4 | ND | 500289 |
Isoiguesterin | C28H36O2 | 31761332 | 11373102 |
Lupane | C30H52O2 | 14720190 | 9548715 |
Lupeol Acetate | C32H52O2 | ND | 92157 |
Murrayenol | C30H46O4 | ND | 73086673 |
Myrianthic Acid | C30H48O6 | ND | 14055735 |
Oleanolic Acid | C30H48O3 | 3785416 | 10494 |
Pomonic Acid | C30H46O4 | 15118611 | 12314449 |
Pristimerin | C30H40O4 | 4097723 | 159516 |
Pubesenolide | C28H42O5 | 118936969 | 44249449 |
Sumaresinol | C30H48O4 | 4349900 | 12443148 |
Ursane | C30H52 | ND | 9548870 |
Ursolic Acid | C30H48O3 | 3978827 | 64945 |
Terpenic Coumarins | |||
2-Epi-Helmanticine | C26H34O10 | ND | 102272642 |
Auraptene | C19H22O3 | 1658901 | 1550607 |
Farnesiferol B | C24H30O4 | 29134692 | 1779468 |
Farnesiferol C | C24H30O4 | 28107226 | 15559239 |
Galbanic Acid | C24H30O5 | 4042371 | 7082474 |
Methyl Galbanate | C25H32O5 | 4025386 | 7075765 |
Szowitsiacoumarin A | C24H30O4 | ND | 102272640 |
Szowitsiacoumarin B | C24H30O5 | ND | 102272641 |
Umbelliprenin | C24H30O3 | 2126785 | 1781413 |
Controls | |||
NSC61610 | C34H24N6O2 | ND | 247228 |
O-Acetyl-DL-Serine | C5H9NO4 | ND | 189 |
Pyridoxal Phosphate | C8H10NO6P | 1532514 | 1051 |
Compound | TcCS | LmCS | Compound | TcCS | LmCS |
---|---|---|---|---|---|
(kcal/mol) | (kcal/mol) | ||||
Monoterpenes (n = 10) | Pentacyclic Triterpenes (n = 27) | ||||
α-Pinene | −5.3 | −5.5 | 20-α-Hydroxytingenone | −10.1 | −10.7 |
α-Terpinene | −5.2 | −6.2 | 28-Hydroxyisoiguesterin | −9.6 | −10.7 |
α-Thujene | −5.2 | −5.4 | 3-O-Caffeicoleanolic Acid | −10.3 | −12.2 |
β-Pinene | −5.3 | −5.5 | 3-O-Trans-Caffeoyltormentic Acid | −10.0 | −11.5 |
Camphor | −5.4 | −5.6 | α-Amyrin | −9.8 | −10.1 |
Cineole | −5.6 | −5.8 | Alisol B | −9.6 | −10.4 |
Limonene | −5.2 | −5.9 | Asiatic acid | −9.6 | −10.4 |
Perillic Acid | −6.7 | −6.4 | β-Amyrin | −9.7 | −11.0 |
Tricyclene | −4.9 | −5.9 | Betulinic Acid | −9.5 | −10.0 |
Uroterpenol | −5.8 | −6.2 | Boswellic acid | −9.6 | −11.0 |
Sesquiterpenes (n = 20) | Celastrol | −9.8 | −10.7 | ||
α-Agarofuran | −6.7 | −6.9 | Enoxolone | −10.1 | −11.0 |
α-Santalol | −5.8 | −7 | Epikatonic Acid | −9.8 | −10.7 |
α-Sinensal | −5.9 | −6.3 | Euscaphic Acid | −9.4 | −10.1 |
Aromadendrene | −6.4 | −6.4 | Hydroxygeningenone | −9.8 | −10.7 |
Artemisinin | −7.6 | −8.8 | Isoiguesterin | −9.8 | −10.8 |
Bisabolene | −5.4 | −7.4 | Lupane | −9.2 | −10.2 |
Bisabolol | −6.0 | −6.8 | Lupeol Acetate | −9.4 | −10 |
Caryophylene Oxide | −6.3 | −7.1 | Murrayenol | −9.2 | −10.7 |
Dehydroleucodin | −7.1 | −8.2 | Myrianthic Acid | −9.6 | −10.3 |
Helenalin | −7.3 | −8.6 | Oleanolic Acid | −9.5 | −11.2 |
Humulene | −6.5 | −6.6 | Pomonic Acid | −9.2 | −11.5 |
Isoplumericin | −7.4 | −8.8 | Pristimerin | −9.2 | −10.2 |
Mexicanin I | −7.6 | −8.7 | Pubesenolide | −9.2 | −11.4 |
Nerolidol | −5.2 | −6.3 | Sumaresinol | −9.6 | −11.2 |
Obtusol | −7.0 | −7.5 | Ursane | −9.5 | −10.7 |
Peruvin | −7.5 | −8.2 | Ursolic Acid | −9.6 | −10.7 |
Plumericin | −7.5 | −8.9 | Terpenic Coumarins (n = 9) | ||
Polygodial | −6.2 | −6.9 | 2-Epi-Helmanticine | −7.5 | −10 |
Psilostachyin A | −8.4 | −9.0 | Auraptene | −6.4 | −8.6 |
Spatulenol | −6.7 | −7.1 | Farnesiferol B | −8.3 | −10.2 |
Diterpenes (n = 11) | Farnesiferol C | -8.5 | -10.0 | ||
11-Hydroxysugiol | −7.9 | −9.0 | Galbanic Acid | −7.4 | −9.9 |
12-Hydroxydehydroabietic Acid | −8.5 | −9.0 | Methyl Galbanate | −7.5 | −10.0 |
Abietic Acid | −7.3 | −7.9 | Szowitsiacoumarin A | −8.9 | −10.7 |
Communic Acid | −7.1 | −7.7 | Szowitsiacoumarin B | −9.0 | −10.7 |
Dolabelladienetriol | −8.1 | −9.1 | Umbelliprenin | −6.8 | −9.3 |
Eleganolone | −6.8 | −7.9 | Controls (n = 3) | ||
Geranylgeraniol | −6.2 | −7.1 | NSC61610 | −9.6 | −12.6 |
Kaurenoic acid | −8.0 | −8.7 | O-Acetyl-DL-Serine | −5.6 | −5.7 |
Lambertic Acid | −8.2 | −8.7 | Pyridoxal Phosphate | −6.6 | −7.5 |
Salviol | −7.8 | −8.2 | |||
Sugikurojin A | −8.0 | −7.1 | |||
Serterterpene (n = 1) | |||||
Drimanial | −7.4 | −8.9 | |||
Tetracyclic Triterpenes (n = 3) | |||||
Cycloartenol | −8.4 | −9.4 | |||
Dammarenediol | −8.8 | −10.5 | |||
Lanosterol | −8.3 | −9.3 |
TcCS | LmCS | |||
---|---|---|---|---|
Compound Type | MDE (kcal/mol) | % RSD | MDE (kcal/mol) | % RSD |
Monoterpenes (n = 10) | −5.46 | 9.15 | −5.84 | 5.89 |
Sesquiterpenes (n = 20) | −6.73 | 12.44 | −7.58 | 12.78 |
Diterpenes (n = 11) | −7.63 | 9.09 | −8.22 | 8.97 |
Sesterterpenes (n = 1) | −7.4 | -- | −8.9 | -- |
Tetracyclic Triterpenes (n = 3) | −8.50 | 3.11 | −9.73 | 6.84 |
Pentacyclic Triterpenes (n = 27) | −9.62 | 3.07 | −10.74 | 4.93 |
Terpenic Coumarins (n = 9) | −7.81 | 11.71 | −9.93 | 6.60 |
Compound | MW | HBA | HBD | TPSA | cLogPo/w | ESOL logs | PAINs |
Lupeol acetate | 458.675 | 2 | 0 | 26.3 | 7.67 | −9.13 | 0 |
ESOL class | GI abs. | LogKp (SP) | LP.V | LD.V | SA | ||
Poorly soluble | low | −1.74 | 1 | 2 | 5.66 | ||
Compound | MW | HBA | HBD | TPSA | cLogPo/w | ESOL logs | PAINs |
α-amyrin | 426.72 | 1 | 1 | 20.23 | 7.05 | −8.16 | 0 |
ESOL class | GI abs. | LogKp (SP) | LP.V | LD.V | SA | ||
Poorly soluble | low | −2.51 | 1 | 2 | 3.17 |
Compound | μg/mL | SI | |||
---|---|---|---|---|---|
EC50 TRY | IC50 AMA | CC50 VERO | TRY | AMA | |
ACLUPE | 15.82 ± 3.7 | 32.55 ± 1.2 | >94 | >5.94 | >2.88 |
AMIR | 73.3 ± 1.85 | 9.08 ± 2.5 | >85 | >1.15 | >9.36 |
NFX | 2.49 ± 1.80 | 3.07 ± 0.96 | 13.7 ± 6.23 | 5.50 | 4.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardo-Rodriguez, D.; Cifuentes-López, A.; Bravo-Espejo, J.; Romero, I.; Robles, J.; Cuervo, C.; Mejía, S.M.; Tellez, J. Lupeol Acetate and α-Amyrin Terpenes Activity against Trypanosoma cruzi: Insights into Toxicity and Potential Mechanisms of Action. Trop. Med. Infect. Dis. 2023, 8, 263. https://doi.org/10.3390/tropicalmed8050263
Pardo-Rodriguez D, Cifuentes-López A, Bravo-Espejo J, Romero I, Robles J, Cuervo C, Mejía SM, Tellez J. Lupeol Acetate and α-Amyrin Terpenes Activity against Trypanosoma cruzi: Insights into Toxicity and Potential Mechanisms of Action. Tropical Medicine and Infectious Disease. 2023; 8(5):263. https://doi.org/10.3390/tropicalmed8050263
Chicago/Turabian StylePardo-Rodriguez, Daniel, Andres Cifuentes-López, Juan Bravo-Espejo, Ibeth Romero, Jorge Robles, Claudia Cuervo, Sol M. Mejía, and Jair Tellez. 2023. "Lupeol Acetate and α-Amyrin Terpenes Activity against Trypanosoma cruzi: Insights into Toxicity and Potential Mechanisms of Action" Tropical Medicine and Infectious Disease 8, no. 5: 263. https://doi.org/10.3390/tropicalmed8050263
APA StylePardo-Rodriguez, D., Cifuentes-López, A., Bravo-Espejo, J., Romero, I., Robles, J., Cuervo, C., Mejía, S. M., & Tellez, J. (2023). Lupeol Acetate and α-Amyrin Terpenes Activity against Trypanosoma cruzi: Insights into Toxicity and Potential Mechanisms of Action. Tropical Medicine and Infectious Disease, 8(5), 263. https://doi.org/10.3390/tropicalmed8050263